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Abstract
Background: Environmental quality assessment is traditionally based on responses of
reproduction and survival of indicator organisms. For soil assessment the springtail Folsomia candida
(Collembola) is an accepted standard test organism. We argue that environmental quality
assessment using gene expression profiles of indicator organisms exposed to test substrates is
more sensitive, more toxicant specific and significantly faster than current risk assessment
methods. To apply this species as a genomic model for soil quality testing we conducted an EST
sequencing project and developed an online database.

Description: Collembase is a web-accessible database comprising springtail (F. candida) genomic
data. Presently, the database contains information on 8686 ESTs that are assembled into 5952
unique gene objects. Of those gene objects ~40% showed homology to other protein sequences
available in GenBank (blastx analysis; non-redundant (nr) database; expect-value < 10-5). Software
was applied to infer protein sequences. The putative peptides, which had an average length of 115
amino-acids (ranging between 23 and 440) were annotated with Gene Ontology (GO) terms. In
total 1025 peptides (~17% of the gene objects) were assigned at least one GO term (expect-value
< 10-25). Within Collembase searches can be conducted based on BLAST and GO annotation,
cluster name or using a BLAST server. The system furthermore enables easy sequence retrieval for
functional genomic and Quantitative-PCR experiments. Sequences are submitted to GenBank
(Accession numbers: EV473060 – EV481745).

Conclusion: Collembase http://www.collembase.org is a resource of sequence data on the
springtail F. candida. The information within the database will be linked to a custom made
microarray, based on the Agilent platform, which can be applied for soil quality testing. In addition,
Collembase supplies information that is valuable for related scientific disciplines such as molecular
ecology, ecogenomics, molecular evolution and phylogenetics.
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Background
Organisms are able to maintain homeostasis in changing
environments by regulating their metabolic machinery.
To accomplish this, organisms continuously have to
adjust the expression of their genes. This is particularly
evident when environmental challenges drive organisms
to the boundaries of their ecological niche and induce
stress responses (e.g. [1]). In recent years, significant
understanding has been obtained on the signal transduc-
tion pathways by which stress affects gene transcription
[2]. The question arises whether it is possible to sense
aspects of the environment by investigating transcrip-
tional profiles of exposed organisms.

Recent advances in the field of toxicogenomics suggest
that environmental quality can indeed be diagnosed by
transcriptional profiling [3] and it is generally acknowl-
edged that genomic techniques, and more specifically
transcriptomics, have the potential to revolutionize envi-
ronmental risk assessment [4-9]. The prospects are that
gene expression studies will enable a fast and sensitive
detection and evaluation of environmental stressors and
toxicants. This is strengthened by the fact that several
recent studies have shown that transcription profiling can
be applied as an early indicator of toxicity [10,11] in a
dose-dependent manner [12].

We started a project that aims to develop a microarray-
based methodology for soil quality assessment using the
parthenogenetic springtail Folsomia candida (Collem-
bola). This species, which is easy to culture and has a short
generation time, was chosen because it is already a stand-
ard test organism in ecotoxicology [13]. It lives in direct
contact with the soil and toxicological data are already
widely available (e.g. ECOTOX database from U.S. EPA
[14]). Furthermore, a standard test looking at survival and
reproduction after 28 day exposure is in place that follows
OECD (Organisation for Economic Co-operation and
Development) and ISO (International Standard Organi-
zation) guidelines. Although the latter test is conducted in
a standardized laboratory setting, it has been shown that
the outcomes are predictive of natural situations [15].
However, there are several shortcomings to the current
test. First, it does not provide information about the
nature of the stressor. Second, the mode of action of toxi-
cants cannot be verified. Third, the test is time-consuming
as it lasts for at least 28 days. Finally, the test is rather labor
intensive.

By extending the ISO standard test with genomic technol-
ogies, these shortcomings may be circumvented. How-
ever, genomic information on F. candida is very poor: a
search for sequences yields only 52 hits in the National
Center of Biotechnology (NCBI;[16]) nucleotide database
(July 5th 2007), mainly consisting of 18S rRNA, 28S rRNA

and cytochrome c oxidase sequences used as phylogenetic
markers.

A time- and cost effective way to retrieve sequence infor-
mation on the functional part of the genome is to set up
an Expressed Sequence Tag (EST) project, which was con-
ducted for the F. candida transcriptome. Here we report on
the sequencing and annotation of ~9000 ESTs, which
form the starting point for the construction of an oligo
array that can be applied in soil quality testing. The
sequences were processed, assembled, BLAST-based anno-
tated and stored in a web-accessible database [17]. The
database can be searched for BLAST-based annotations
and Gene Ontology terms [18] and by using a stand alone
BLAST server. Collembase furthermore enables retrieval of
sequence information on (differentially) expressed genes,
which can then be applied in functional genomic and
Quantitative-Polymerase Chain Reaction (Q-PCR) valida-
tion experiments.

Although Collembase was primarily created for the devel-
opment of a microarray, we expect that it is of interest for
researchers outside the field of ecotoxicology as well. Due
to its short generation time, F. candida is often used in eco-
logical studies [13]. In addition, Collembola have a cru-
cial position in the phylogeny of the arthropods and, thus,
also have the attention from evolutionary biologists (e.g.
[19]). The retrieved genome data will significantly
enhance molecular ecological and evolutionary studies on
F. candida.

Construction and content
Construction of cDNA libraries
To restrict redundant sequencing we chose to start our EST
project with a normalized cDNA pool. RNA extraction
from the parthenogenetic, clonally reproducing collem-
bolan Folsomia candida (laboratory strain 'Berlin'; Vrije
Universiteit Amsterdam) was carried out using the Spin
Vacuum (SV) Total RNA isolation system (Promega). Ani-
mals (eggs, juveniles and adult females) were taken from
a culture of mixed age with a more or less even age distri-
bution. All animals (~100 mg) were pooled before RNA
extraction. Concentration and purity of the total RNA
pool was checked by UV absorption (260 and 280 nm).
Quality of total RNA was evaluated on a 1% agarose gel
(stained with SYBR Gold stain; Invitrogen) and on an Agi-
lent BioAnalyzer (Agilent Technologies). Afterwards 0.1
volumes of 3 M sodium acetate and 3 volumes of 96%
ethanol were added and total RNA was shipped at room
temperature to Evrogen (Moscow, Russia).

Double-stranded cDNA synthesis (SMART technology
[20]), normalization and library construction were per-
formed by Evrogen. The reaction was started with 0.3 μg
total RNA and cDNA was SMART amplified (18 PCR
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cycles) and normalized by the procedure described by
[21], which consists of cDNA denaturation/reassociation,
a duplex-specific nuclease (DNS) treatment [22] and PCR
amplification. The cDNA thus obtained was used for
library construction as follows. The cDNA was incubated
with restriction enzymes Sbf1 and Not1, and ligated into
Sbf1 and Not1 digested pAL17.2 vector (Evrogen). The
resulting plasmids were subsequently transformed into E.
coli (Evrogen). Finally, glycerol stocks were made (17%
glycerol), which were transferred to the Vrije Universiteit
(Amsterdam) on dry-ice and stored at -80°C until further
use.

Efficiency of the procedure was examined by determining
the abundance of several transcripts before and after nor-
malization using Q-PCR. Primers were developed based
on five available GenBank accessions and β-actin. Genes
amplified were β-actin (GenBank:EU037094), USP-RXR
(GenBank:AY157930), Ultrabitorax (GenBank:
AF435789), Kruppel (GenBank:AF395109), RNA helicase
Dead1 (GenBank:AY043229) and 28S rDNA (GenBank:
AF483424). Primer sequences are given on [17] (see Addi-
tional file 1). Primers were developed using Primer
Express version 1.5 (Applied Biosystems Inc., Foster City,
USA), using the following parameters: Minimum Tm: 59–
60°C, Maximum Tm difference between primers: 1°,
Oligo length: 20–25 bp, Amplicon length: 90–120 bp.

Real-time PCR was performed on an Opticon 1 real-time
PCR machine (MJ Research) using SYBR green 2X Master-
mix (Finnzymes), according to [23]. Real time PCR reac-
tions used 3 μl normalized and non-normalized non-
ligated cDNA template (0.2 μg/100μl). The program used
for amplification was: denaturation (95°C for 15 min.),
2-step amplification and quantification (92°C for 15s,
60°C for 1 min. and one fluorescence measurement),
melting curve program (60–90°C with a heating rate of
0.1°C per second and one fluorescence measurement per
second). As can be seen in Figure 1 the normalization pro-
cedure was effective: transcripts that were highly abundant
in the original pool (Figure 1A) occurred considerably
diminished after normalization (Figure 1B) as compared
to lower abundant transcripts. Differences in Ct-values
between the high abundant 28S rRNA and β-actin tran-
scripts and the less abundant USP-RXR and RNA helicase
Dead1 transcripts was reduced from about 14 cycles to
less than three cycles. However, the least abundant tran-
scripts (Ultrabithorax and Kruppel) were not very well
enriched: they maintained high Ct-values.

De Boer et al. (unpublished data) constructed cDNA
libraries enriched for stress responsive genes as described
by [24]. In short, 960 clones were isolated from each of
two subtracted cDNA libraries enriched for 1) cadmium-
and 2) phenanthrene responsive genes. Both libraries

were built using the suppression subtractive hybridization
procedure (SSH) [25] making use of poly (A)+ RNA iso-
lated from ~150 exposed unsynchronized adult individu-
als (whole body; laboratory strain 'Berlin'; Vrije
Universiteit Amsterdam). Exposure to cadmium was per-
formed by placing animals on cellulose filters wetted to
approximately 50% water-holding capacity with a 267
μmole/l CdCl2 solution for 48 h. Animals were exposed to
phenanthrene by placing them on a compressed layer of
LUFA 2.2 soil spiked with 840 μm/kg phenanthrene
according to the standard ISO11267 [26] protocol for 6
days.

EST sequencing, bioinformatics and construction of the 
database
In total, 9984 cDNA clones were picked and sequenced
(Greenomics; Wageningen University and Research
Center) using the M13 forward primer. Clones originating
from the normalized library were sequenced from the 5'
end of the gene (8064 total). The cDNA fragments from
the SSH procedure were not ligated directionally, and

Relative abundance of six cDNAs before (upper) and after (lower) normalization as measured using quantitative PCRFigure 1
Relative abundance of six cDNAs before (upper) and after 
(lower) normalization as measured using quantitative PCR. 
Act: β-actin; 28S: 28S rDNA; De: RNA helicase Dead1; RXR: 
RXR-USP; Ub: Ultrabithorax; Kr: Kruppel.
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therefore not sequenced from a predefined orientation
(960 clones from each of the two libraries).

Raw trace files were processed using Trace2dbest [27],
employing a Phred [28,29] quality threshold of 20 and a
minimal high quality sequence length of 150 base pairs
(bp). Of the 9984 sequences 1142 sequences did not pass
the quality control, and were excluded from further anal-
ysis. A summary of the number of sequences that
remained from each of the three libraries after processing
of the raw data is given in Table 1.

CLOBB [30] and Phrap (P. Green, personal communica-
tion [31]) were applied, as part of the Partigene script
[27], to cluster and assemble the ESTs into unique gene
objects. This procedure resulted in 6092 unique
sequences. There were 4686 singletons and 1406 clusters
with more than one sequence. Of those 1406 clusters 920
consisted of two sequences only. The redundancy
(defined as total number of sequences/clusters) was 1.45,
1.32 and 1.62 for the total dataset, the normalized library
and the cadmium library respectively, but appeared con-
siderably higher in the phenanthrene enriched library
(3.18). The highest sequence depth also occurred the
phenanthrene enriched library with 98 ESTs in one clus-
ter, compared to a maximum of 31 and 16 ESTs per cluster
for the normalized and cadmium library respectively.

Sequences that were assigned to one cluster were not
always assembled into one single contiguous consensus
sequence (contig) by Phrap, due to high quality base pair
differences between sequences. The Phrap assembly (Par-
tigene default criteria) resulted in a total number of 6212
contigs instead of the 6092 given above (Table 2). The
length of those 6212 contigs ranged between 153 bp and
1636 bp and was on average 520 bp (see Additional file
2). The sequence variation that was observed within those
clusters might constitute natural occurring (allelic) varia-
tion (e.g. Single Nucleotide Polymorphisms), Taq
polymerase errors and/or gene duplications, and will have
to be confirmed by re-sequencing efforts.

Furthermore, a PERL script, which is made available on
[17], was used to determine the sequence overlap between
the three libraries. This script determined for each cluster

which library contributed ESTs to that cluster. The overlap
appeared rather low (Figure 2). Only seven clusters con-
tained sequences from each of the three libraries (Table
3). At least three of those clusters remained un-annotated.
However, it has to be mentioned that the sequence over-
lap that was observed might be an underestimation of the
actual overlap in the database, as 5' sequencing (Normal-
ized library) generally results in an overestimation of the
number of unique sequences [32].

The contigs were subjected to BLAST [33] searches of Gen-
Bank using blastx (against non-redundant database),
blastn (against non-redundant database), tblastx (against
dbEST) and an additional blastx (against non-redundant
database restricted to Insecta). In addition, sequences
were compared to all known and predicted proteins of
Caenorhabditis elegans, Drosophila melanogaster and Mus
musculus. Those species were chosen as they have fully
sequenced genomes. In addition, C. elegans and D. mela-
nogaster belong, like F. candida, to the group of molting
animals (Ecdysozoa). A summary of the BLAST analyses is
given in Table 4. Clusters that were perfect nucleotide
matches to baker's yeast (Saccharomyces cerevisiae; 125
clusters) and human sequences (15 clusters) were
regarded as contamination and later on removed. The rel-
atively high number of yeast clusters observed (~2%) is
explained by the fact that in our laboratory F. candida is
fed baker's yeast. The fact that the food of F. candida is in
itself a genomic model species was advantageous when
pruning the database: these sequences are readily identi-
fied by their high bit and e-values scores in the BLAST
searches.

F. candida harbors intracellular bacteria of the genus Wol-
bachia [34] and its gut contains many bacterial species as
well [35]. Those might turn up as contaminating
sequences in the EST dataset. To pinpoint contaminating
sequences from bacterial origin the clusters were com-
pared to all protein encoding sequences found in the
genome of Escherichia coli (GenBank: U00096) and in the
Wolbachia endosymbiont of Drosophila melanogaster (Gen-
Bank: AE017196). Sequences showing significant hom-
ology to E. coli or Wolbachia (blastx; e-value < 10-5), but
not to D. melanogaster, C. elegans or M. musculus, were
marked as putative contaminants. In total 70 of such clus-

Table 1: Remaining sequences after the Trace2dbest process

Library # Clones sequenced # Passed (%)

Normalized 8064 7329 (91)
Cadmium enriched 960 705 (73)
Phenanthrene enriched 960 808 (84)

Total 9984 8842 (89)
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ters were retrieved, which overlapped to a great extent (56
E. coli and 32 Wolbachia clusters): In total 18 clusters
appeared in both analyses (see Additional file 3). Those
putative 'bacterial clusters' were not excluded from further
analysis, as our procedure does not guarantee if a
sequence is contamination or not.

Table 3 shows the five most abundant transcripts for each
of the three libraries. The SSH procedure conducted on
phenanthrene exposed animals appeared efficient. Of the
top five phenanthrene clusters three show high similari-
ties to monooxygenases of the cytochrome P450 enzyme

family, which are known to be involved in phase I
biotransformation of lipophilic substances such as phen-
anthrene [36]. The two other clusters show homology to
other monooxygenases, and might be involved in phase I
metabolism as well. The results for the cadmium library
are less straightforward. Two of the five most abundant
clusters remain un-annotated, and two clusters show
resemblance to accessions that are not from animal ori-
gin. Note that one of those two latter clusters (cluster
Fcc00170) occurred in all three libraries (Table 3). As with
the 'bacterial clusters', those clusters are currently not dis-
carded from the database and are submitted to GenBank.
Supplementary experiments will be conducted to deter-
mine the exact origin of those clusters, and whether or not
they represent contaminants.

The absence of highly expressed house-keeping genes
among the five most abundant transcripts in the normal-
ized library, suggests that the normalization procedure
was successful. Without normalization more highly abun-
dant transcripts, like tubulins, ribosomal proteins and
actins, would have been sequenced (e.g. [37]). Although
these sequences are present in the dataset, they do not
form the list of most abundantly sequenced transcripts.
For example, more than 40 ribosomal protein sequences
were obtained (e.g. cluster Fcc02740), but most of these
were represented by only one or two ESTs.

The prot4EST [38] script was applied to infer protein
sequences (excluding the DECODER program). Putative
open reading frames of the total dataset ranged between
23 and 440 amino-acids, and had an average length of
115 amino-acids. The amino acid sequences were anno-
tated with Gene Ontology terms (GO; http://geneontol
ogy.org) using the PartiGene [27] annot8r_blast2GO
script (Schmid and Blaxter, personal comm.; [39]). An
overview of the results of these analyses is given in Table
5. Of the 6212 contigs 1126 contigs (~18%) were assigned
at least one GO term (expect-value < 10-25; 1025 contigs
when excluding the 140 clusters originating from yeast

Venn-diagram showing the cluster overlap between the three libraries for the total dataset: Cad: cadmium enriched library; Phe: phenanthrene enriched library; Nor: normalized libraryFigure 2
Venn-diagram showing the cluster overlap between the three 
libraries for the total dataset: Cad: cadmium enriched library; 
Phe: phenanthrene enriched library; Nor: normalized library.

Table 2: Contigs per cluster, as generated by CLOBB and Phrap

# Clusters # Contigs/cluster Total number of contigs

Clusters 1 11 11
1 10 10
1 5 5
7 3 21
83 2 166
1313 1 1313*

Singletons 4686 1 4686

Total 6092 6212

* In 75 instances Phrap did not assemble the contigs, in those cases the pseudo-contig files generated by PartiGene were used.
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and human mRNA from the analysis). The Partigene [27]
PERL scripts were used to store all the information in a
web-accessible relational database [17]. All processed
ESTs, excluding the ones marked as human and yeast con-
tamination, were submitted to dbEST (accession num-
bers:  – ).

Utility and discussion
Current contents of the database
Currently, Collembase comprises data on 8686 ESTs,
which are structured in 5952 clusters. That is 6092 minus
the 140 clusters from yeast and human origin. To enable
easy access to the sequence dataset, the information gath-
ered was stored in a relational database and a web-inter-
face was created. For all clusters data is offered on (1) the
ESTs within a cluster and their clone names, (2) the cDNA
library from which the ESTs originated, (3) blastx and
blastn hits against GenBank 'nr' databases and tblastx hits

against dbEST, which all will be updated regularly, (4) the
consensus sequences as generated by Phrap, and (5) the
GO terms when available. Furthermore, for each cluster
the BLAST results and the processed ESTs can be down-
loaded.

Collembase can be explored library-specific using text
queries (e.g. cluster name or BLAST annotation) and by
sequence similarity using a local BLAST [33] server. Fur-
thermore, a Primer3 web-server [40] was implemented to
enable PCR primer design on the assembled sequences.

Future application and intended uses of the database
Soil quality and risk assessment
The dataset presented here was generated mainly to
obtain the required genomic information to construct a
microarray for soil quality assessment. The array, which is
based on the Agilent microarray technology, is linked to

Table 3: A) Clusters that contain sequences from all three libraries and B) the most abundantly sequenced transcripts for each of the 
three F. candida cDNA libraries. n = the number of sequences that are found in a cluster and that originate from the library specified. 
e-values for blast analyses against 'nr'-databases

Library Cluster (n) Overview of related sequences (blastx) Species GenBank
Accession

blastx e-value

A.
All three Fcc00101 (5) Hypothetical protein Caenorhabditis elegans CAA90252                        1e-32

BCS1-like Mus musculus AAH19781                        3e-29
Fcc02080 (3) No Significant Hit - -
Fcc00256 (6) No Significant Hit - -
Fcc00343 (22) Hypothetical protein Aspergillus nidulans XP_001397474 1e-19

Haloacid dehalogenase-like hydrolase Neosartorya fischeri XP_001260321                         2e-19
Hypothetical protein Danio rerio NP_001017717 8e-06

Fcc01457 (8) Cytochrome c oxidase s.u.II Folsomia candida AAS66294                        7e-93
Fcc03109 (3) No Significant Hit - -
Fcc00170 (27) Alpha-aminoadipyl-cysteinyl -valine synthetase Lysobacter lactamgenus BAA08846                         4e-58

B.
Normalized Fcc00179 (31) No Significant Hit - -

Fcc00087 (25) No Significant Hit - -
Fcc00164 (16) No Significant Hit - -
Fcc00632 (14) No Significant Hit - -
Fcc00225 (12) GA19585-PA Drosophila pseudoobscura EAL32218                         2e-06

Phenanthrene Fcc00058 (98) Dipeptidyl peptidase Nasonia vitripennis XP_001607433                        9e-35
Cytochrome P450 Aedes albopictus AAF97937                        1e-12

Fcc00015 (91) Cytochrome P450 Anopheles minimus AAN05727                         9e-15
Fcc00021 (35) Monooxygenase, DBH-like 1 Rattus norvegicus AAH91331                        1e-21
Fcc00217 (25) Monooxygenase, DBH-like 1 Gallus gallus NP_989955                        2e-08
Fcc04217 (23) Cytochrome P450 Apis melifera XP_392000                        3e-12

Cadmium Fcc01017 (16) Hypothetical protein Ustilago maydis XP_757859                        5e-13
Endo-1,3 1,4-beta-D -glucanase precursor Oryza sativa XP_480878                        2-07

Fcc00170 (15) Alpha-aminoadipyl-cysteinyl -valine synthetase Lysobacter lactamgenus BAA08846                        4e-58
Fcc01428 (16) 16S ribosomal RNA gene Folsomia candida AY555551                        1e-66*
Fcc01142(12) No Significant Hit - -
Fcc00018 (9) No Significant Hit - -

*) e-value from blastn
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Collembase: The 60-mer oligos printed on the chip follow
the nomenclature of the clusters from which they were
derived. This "linkage" enables straightforward sequence
retrieval. Sequences of differentially expressed genes can
be downloaded from Collembase and used in validation
experiments (e.g. Q-PCR). Furthermore, in the near future
we intend to store microarray and Q-PCR gene expression
data as well. This freely accessible online repository will
allow evaluation and analysis of the data by the scientific
community (sensu [41]).

The small overlap between the toxicant enriched libraries
and the normalized library (Figure 2), in combination
with the higher redundancy of the toxicant enriched
libraries (especially the phenanthrene library), suggests
that metal and PAH exposure trigger different genes in F.
candida. Although our expression data on F. candida still
have to be verified by actual gene expression assays, such
specificity would imply that transcription profiles contain
a signature of the nature of the stress, and that different
stresses can be distinguished by transcription profiling.
This view is strengthened by a recent ecotoxicogenomic
study by [42]. These authors showed that in the crustacean
Daphnia magna different substances belonging to one
chemical class (metals) can be discriminated on the basis
of their characteristic expression profiles. Finally, we
believe that transcription profiling will enable mechanis-
tic insight in responses to mixtures of toxicants, a rela-
tively new and unknown field in (eco)toxicology.

Other applications
The collembolan F. candida is frequently used in experi-
mental studies (for a recent review see [13]), therefore
Collembase could be useful outside the field of ecotoxi-
cology as well. We expect applicability in the following
research areas:

Ecogenomics
To fully disentangle the molecular mechanisms by which
organisms deal with ecological challenges and environ-

mental stress, additional ecologically relevant model
organisms are needed [36,43]. F. candida is among a few
others (e.g. free-living nematodes and earthworms
[37,44]) one of the first soil organisms that is subject to
EST sequencing. Collembase could form the basis of F.
candida becoming a model organism in the research field
of ecogenomics. F. candida has this potential as the species
is easy to rear in the laboratory, reproduces parthenoge-
netically, has a short generation time, has a well-defined
ecology and is traceable in (mesocosm) field experiments.
It seems obvious that the sequence information stored in
Collembase can be exploited to answer ecological ques-
tions, e.g. related to drought-tolerance, starvation and
microbial resistance in soil ecosystems.

Molecular ecology and population genetics
The EST dataset presented holds information applicable
in molecular ecological- and population genetic studies.
For example, within the dataset 184 contigs showing one
or more tandem-repeats (microsatellites) with a mini-
mum of five repeats were discovered using the MISA PERL
script [45] (Additional file 4). Within some of the clusters
up to three different alleles were observed. However, due
to the limited redundancy in our dataset and the fact that
the libraries were constructed from animals from one par-
thenogenetic strain it is impossible to determine their
degree of polymorphism. Still, in theory those loci are
molecular markers that can be applied to unravel the
forces that maintain genetic diversity and generate popu-
lation genetic structure in this soil and cave inhabiting
species. Furthermore, it seems obvious that the dataset
and its accompanying microarray could be helpful in
finding out whether transcriptional regulation is an
important driver of adaptive evolution in this species.

Phylogenetics and comparative genomics
Collembola take an exceptional and fascinating position
in the tree of life. Together with other basal hexapods (e.g.
Protura, Diplura) they are positioned in-between the
insects and crustaceans. However, recently some authors

Table 4: Percentages of contigs showing sequence similarity (e-value < 10-5) with sequences stored in GenBank (nr, est databases and 
nr database restricted to the Insecta) and proteins of Caenorhabditis elegans, Drosophila melanogaster and Mus musculus (April 2007)

Database BLAST Significant hits for the total dataset Significant hits excl. 140 clusters*

nr blastx 42 41
nr blastn 9 7
est tblastx 40 39
nr – Insecta** blastx 36 35
C. elegans blastx 25 24
D. melanogaster blastx 32 30
M. musculus blastx 31 29

* In total 140 clusters showed high similarity to yeast and human DNA sequences stored in GenBank and were therefore regarded as 
contamination.
** Blast analysis performed August 2007
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suggested that the six-legged body plan found among
basal hexapods and insects evolved minimally twice (e.g.
[46,47]). The dataset presented here might add the
sequence information that is needed to gain a more
detailed insight into the evolution of these groups, and
the relationship between insects and crustaceans. Using
the BLAST tool, Collembase can be queried for genes val-
uable for phylogenetic inference. Degenerate PCR primers
can be developed on the retrieved sequences to obtain
information on other basal hexapod groups.

Conclusion
Collembase provides EST and related data on the spring-
tail F. candida. In the near future this database will be sup-
plemented with microarray expression data. We expect
that our strategy will impact soil quality testing. In addi-

tion, it is clear that Collembase holds information appli-
cable to many fields of ecological sciences (e.g. molecular
ecology and ecogenomics, molecular evolution and phyl-
ogenetics).

Availability and requirements
Collembase can be accessed from URL: http://www.colle
mbase.org
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