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Abstract
Background: Recent studies have shown that when individuals are grouped on the basis of genetic
similarity, group membership corresponds closely to continental origin. There has been
considerable debate about the implications of these findings in the context of larger debates about
race and the extent of genetic variation between groups. Some have argued that clustering
according to continental origin demonstrates the existence of significant genetic differences
between groups and that these differences may have important implications for differences in
health and disease. Others argue that clustering according to continental origin requires the use of
large amounts of genetic data or specifically chosen markers and is indicative only of very subtle
genetic differences that are unlikely to have biomedical significance.

Results: We used small numbers of randomly selected single nucleotide polymorphisms (SNPs)
from the International HapMap Project to train naïve Bayes classifiers for prediction of ancestral
continent of origin. Predictive accuracy was tested on two independent data sets. Genetically
similar groups should be difficult to distinguish, especially if only a small number of genetic markers
are used. The genetic differences between continentally defined groups are sufficiently large that
one can accurately predict ancestral continent of origin using only a minute, randomly selected
fraction of the genetic variation present in the human genome. Genotype data from only 50 random
SNPs was sufficient to predict ancestral continent of origin in our primary test data set with an
average accuracy of 95%. Genetic variations informative about ancestry were common and widely
distributed throughout the genome.

Conclusion: Accurate characterization of ancestry is possible using small numbers of randomly
selected SNPs. The results presented here show how investigators conducting genetic association
studies can use small numbers of arbitrarily chosen SNPs to identify stratification in study subjects
and avoid false positive genotype-phenotype associations. Our findings also demonstrate the extent
of variation between continentally defined groups and argue strongly against the contention that
genetic differences between groups are too small to have biomedical significance.
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Background
A major goal of both the Human Genome Project and the
subsequent International HapMap Project was to provide
a foundation for understanding genetic variation in the
human genome [1,2]. Multiple studies over the past sev-
eral decades have consistently concluded that only 5–15%
of human genetic variation can be explained by differ-
ences between populations [3-6]. Although this propor-
tion is relatively small, recent studies have shown that
when individuals are grouped on the basis of genetic sim-
ilarity, group membership corresponds closely to ances-
tral geographic origin [5] or self-identified race or
ethnicity [7].

There has been considerable discussion about the impli-
cations of these findings in the context of larger debates
about population sub-structure, race and genetics [8-13].
One major aspect of the debate concerns the extent of
genetic variation between groups. This debate is becoming
less theoretical as targeted therapies like BiDil (a branded
combination of hydralazine and isosorbide dinitrate
approved by the FDA for the treatment of congestive heart
failure in African-Americans) are introduced. Some have
argued that the genetic differences between continentally
defined groups are relatively small and thus unlikely to
have biomedical significance [3,14]. Providing support
for this view, others have noted that accurate classification
of ancestral origin, while possible, requires large numbers
of genetic markers [9-12,15]. The opposing viewpoint
holds that there are significant genetic differences
between groups and that these genetic differences may
account for differences in risk of disease between popula-
tions [16]. Proponents of this viewpoint also note that an
understanding of genetic variation between groups is
important to avoid confounding in genotype-phenotype
association studies [7,17].

A variety of different computational methods, including
those implemented in the popular programs STRUCTURE
and BAPS, have been developed and used to explore
genetic variation in populations [18-20]. Previous investi-
gators have used variation in both mitochondrial DNA
and microsatellites to characterize population sub-struc-
ture and ancestral geographic origin [5,7,21-23]. Analysis
of the relationship between genetic variation in chromo-
somal (as opposed to mitochondrial) SNPs and ancestral
geographic origin has been more limited because large
scale, genome-wide SNP data from geographically diverse
individuals has not been available. Lao et al recently used
data from Affymetrix 10K arrays to identify 10 specific
SNPs that were highly informative for characterizing
ancestry. These SNPs were found to be somewhat less
informative when used to characterize an independent
data set.

In this paper, we use recently published genome-wide
SNP data to analyze population sub-structure and ances-
tral geographic origin. The analysis uses a much larger
number of SNPs than has previously been possible and
focuses on the use of randomly selected SNPs. We show
that one can accurately predict continent of origin in inde-
pendent data sets using only a very small number of ran-
domly selected SNPs. Genotype data from 50 random
SNPs is sufficient to predict ancestral continent of origin
in our primary test data set with an average accuracy of
95%. We analyze the comparative utility of SNPs in
introns, coding exons, regulatory regions and regions cod-
ing for untranslated mRNA for prediction of ancestry.
Finally, we show that SNPs that are informative about
ancestry are common and widely distributed throughout
the genome. Our findings demonstrate how researchers
conducting SNP based genotype-phenotype association
studies can accurately and reproducibly characterize
ancestry using random SNPs, as opposed to SNPs specifi-
cally chosen to be informative about ancestry. As geneti-
cally similar groups should be difficult to distinguish
using only a small number of genetic markers, our results
also demonstrate the extent of genetic variation between
continentally defined groups and argue strongly against
the contention that differences between groups are too
small to have biomedical significance.

Results
The International HapMap Project is a large collaborative
effort that has made publicly available genotype data for
270 individuals from four different populations: Yoruba
in Ibadan, Nigeria (YRI); Japanese in Tokyo, Japan (JPT);
Han Chinese in Beijing (CHB), China; and Utah residents
with ancestry from northern and western Europe (CEU)
[2]. At the time of our study, genotype data that had
passed quality control filters was available for almost 4
million SNPs. We used the HapMap data to develop clas-
sifiers for predicting ancestral continent of origin and
tested these classifiers on independent data sets.

Our primary test data set consisted of 1,586,383 SNPs
genotyped by investigators at Perlegen Sciences to study
DNA variation in human populations [24]. We excluded
nine individuals of European ancestry in this data because
they were also genotyped in the HapMap Project. Thus,
this test data set included genotype data for 23 African-
Americans, 15 European-Americans and 24 Han Chinese.
The second test data set consisted of 4,124 SNPs geno-
typed as part of the Innate Immunity Program for
Genomic Applications (IIPGA) and made publicly availa-
ble on their website [25]. Nine individuals in this data set
were also excluded from the analysis because they were
genotyped in the HapMap Project. This test data set there-
fore included data for 24 African-Americans and 14 Euro-
pean-Americans. SNPs in the HapMap and Perlegen data
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sets were selected so as to be generally representative of
variation throughout the genome, while SNPs in the
IIPGA data set were selected by the original investigators
for genotyping on the basis of potential involvement in
the innate immune response.

For each of the test data sets, we limited our analysis to the
bi-allelic SNPs that were present on autosomal chromo-
somes in both the HapMap data and the test set data.
There were 1,047,543 and 1,588 such SNPs in the inter-
section of the HapMap data with the Perlegen and IIPGA
data, respectively.

As an initial step in our investigation of genetic variation,
for each individual we calculated the average genetic dis-
tance to the three continentally defined HapMap groups.
We used an allele-sharing distance described by Mountain
and Cavalli-Sforza as our measure of genetic distance [26].
Individuals clearly cluster according to ancestral continent
of origin in both the Perlegen (Fig. 1) and IIPGA (Fig. 2)
data sets. The clusters are most distinct in the Perlegen
data set where the much larger number of SNPs provides
greater resolution. The African-Americans in the test data
sets cluster with the Yoruba, but the African-Americans are
slightly closer to the European-American cluster. This is
likely indicative of the fact that African-Americans repre-
sent a group of African origin that has had some degree of
admixture with people of European origin. Finally, note
that there are some points in the IIPGA data set (such as
those labeled with arrows in Fig. 2) that lie between clus-
ters. These individuals may have a particularly high degree
of admixture.

The analysis described above shows that when large num-
bers of SNPs are used, it is readily apparent that genetic
structure varies as a function of ancestral continent of ori-
gin. Next, in order to evaluate the extent of variation
between continentally defined groups, we randomly
selected varying numbers of SNPs and then used genotype
information from the HapMap individuals to train a naïve
Bayes classifier. Naïve Bayes is a simple predictive algo-
rithm that has been shown perform well in a wide variety
of situations [27]. We chose to use this algorithm because
its simplicity and speed made it computationally feasible
to test thousands of sets of randomly selected SNPs. Using
naïve Bayes, we were able to accurately predict ancestral
continent of origin with genotype information from only
a small number of randomly selected SNPs (Fig. 3). For
example, when only 50 randomly selected SNPs are used,
mean predictive accuracy is 95% in the Perlegen data set
and 89% in the IIPGA data set. Even with only 5 randomly
selected SNPs, the observed predictive accuracies (63% in
both the Perlegen and IIPGA data) are much higher than
the 33% accuracy expected by chance.

Genetic distance from individuals in the Perlegen data to the three continentally defined HapMap groupsFigure 1
Genetic distance from individuals in the Perlegen 
data to the three continentally defined HapMap 
groups. Individuals of similar geographic origin cluster 
together. African-Americans from the Perlegen data set lie in 
between the HapMap Yoruba and European-Americans, but 
are much closer to the Yoruba.

Genetic distance from individuals in the IIPGA data to the three continentally defined HapMap groupsFigure 2
Genetic distance from individuals in the IIPGA data 
to the three continentally defined HapMap groups. 
Individuals cluster according to ancestral continent of origin 
but the clusters are less compact than those seen with the 
Perlegen data because of the smaller number of SNPs. Indi-
viduals intermediate between clusters, like those labeled with 
arrows, may have a high degree of admixture.
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The Perlegen data set is large enough to investigate genetic
variation as a function of SNP type. We used the dbSNP
database [28] to identify SNPs in introns, coding exons,
regulatory regions and regions coding for untranslated
mRNA. We then constructed naïve Bayes classifiers using
only SNPs from a specific category. Predictive accuracies
are very similar across all of the classifiers created in this
manner (Fig. 4). However, more than one million SNPs
were used in this analysis and the small differences in pre-
dictive accuracy across SNP categories were found to be
statistically significant when compared using one-way
ANOVA. The p-value was .0002 when we tested the null
hypothesis that mean predictive accuracies were equal
across SNP categories when 100 randomly selected SNPs
were used to build classifiers. P-values were less than .01
for all tests where n>5 (where n is the number of ran-
domly selected SNPs used to build classifiers). Predictive
accuracy tended to be lowest when coding non-synony-
mous SNPs were used to build classifiers – although the
absolute differences in predictive accuracy were extremely
small.

We also tested whether some regions of the genome were
more informative than others in predicting ancestral con-
tinent of origin. SNPs where allele frequency differs signif-
icantly between groups are most useful in predicting
group membership. As one measure of informativeness,
we evaluated pairwise difference in major allele frequency
between groups. SNPs where the pairwise difference in
major allele frequency was greater than .3 were considered
to be informative. Other threshold frequencies were also
evaluated and the relative distribution of informative
SNPs was found to be similar across a range of thresholds.
We also analyzed the informativeness for assignment.
This measure was introduced by Rosenberg et al and is a
generalization of the difference in major allele frequency
to more than two groups [29]. The distribution of inform-
ative SNPs was relatively even throughout the genome
(Figs. 5 and 6). One-way ANOVA was used to test whether
the mean informativeness for assignment was equal
throughout the genome. As was the case with SNP catego-
ries, the large number of SNPs analyzed resulted in the
small observed differences being statistically significant (p

Mean predictive accuracy in the test data setsFigure 3
Mean predictive accuracy in the test data sets. Each data point represents the mean of 100 trials. Error bars depict 95% 
confidence intervals. Predictive accuracy increases with the number of SNPs used, but is still very good even with only a small 
number of SNPs.
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< .0001 for tests of equality across both chromosomes and
10 M base pair bins).

Discussion
In this paper, we use naïve Bayes classifiers trained on data
from the HapMap to predict the ancestral geographic ori-
gin of individuals from three independent data sets. Even
when a relatively small number of randomly selected
SNPs are used, classification is accurate and robust. In the
large Perlegen data set, predictive accuracy increases to
100% as the number of SNPs grows. This is not the case
for the IIPGA test data set. Predictive accuracy as a func-
tion of the number of SNPs used, while still very good in
comparison to many tests used in biology and medicine,
levels off at 95% with two individuals being consistently
misclassified. These two individuals were classified incor-
rectly even if all 1588 available SNPs were used to train
the classifier. The two misclassifications were the two Afri-
can-Americans labeled with arrows in Fig. 2 who were
noted to be intermediate between the African and Euro-

pean clusters. These two individuals may have mixed Afri-
can and European ancestry or may have African ancestors
from different parts of Africa than the Yoruba used to train
the classifier.

Accurate characterization of ancestry will allow investiga-
tors conducting genetic association studies to identify
stratification in study subjects and avoid false positive
genotype-phenotype associations. The analysis we
describe here is designed to predict ancestral continent of
origin. It could easily be extended to make predictions
about smaller units of geography or individuals with a
mixed background. This would require more extensive
genotype data and well-characterized information about
ancestral geographic origin from such individuals. There
is only very limited data of this kind currently available,
but this is expected to change in the future as genotyping
costs decrease. Thus we anticipate that identification of
more complex patterns of ancestry will be increasingly
feasible as the amount of available data grows. This in

Mean predictive accuracy stratified by type of SNPFigure 4
Mean predictive accuracy stratified by type of SNP. Each data point represents the mean of 100 trials. 95% confidence 
intervals are shown for the coding non-synonymous SNPs. Confidence interval widths are of comparable size for the other 
SNP categories. Predictive accuracy is very similar across all types of SNPs, although the small differences in mean predictive 
accuracy are statistically significant because of the large number of SNPs used in the analysis. For each n (where n is the 
number of randomly selected SNPs used to build the classifiers), one-way ANOVA was used to test the null hypothesis that 
means across SNP categories were equal. P-values were less than .01 for all tests where n>5, and p = .07 for n = 5.
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turn will allow the development of higher resolution
genographic maps and provide investigators designing
genetic association studies with more powerful tools for
detecting stratification.

In this paper, we have shown that the differences between
continentally defined groups are sufficiently large that
even a randomly selected, minute fraction of the genetic
variation in the human genome can be used to character-
ize ancestral geographic origin in an accurate and repro-

ducible manner. This argues strongly against the
contention that differences between groups are too small
to have biomedical significance. Understanding if and
how these differences relate to risk of disease and response
to therapy is one of the major challenges facing the bio-
medical research community.

Conclusion
Some have argued that the differences between continen-
tally defined groups are relatively small and that it is diffi-

Distribution of informative SNPs by chromosomeFigure 5
Distribution of informative SNPs by chromosome. The primary y-axis (on the left) shows the proportion of SNPs on 
each chromosome where the difference in major allele frequency between two of the continentally defined HapMap groups is 
greater than 0.3. Informativeness for assignment is shown on the secondary y-axis (on the right). The distribution of informa-
tive SNPs is fairly even across chromosomes. Since almost 4 million SNPs were used in this analysis, the relatively small 
observed differences are statistically significant however (p < .0001 for the difference in mean informativeness for assignment 
across chromosomes using one-way ANOVA).
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cult to distinguish groups without using large amounts of
genetic data or specifically chosen markers. Our results
show that continentally defined groups can be easily dis-
tinguished using only a small number of randomly
selected SNPs. SNPs that are informative about ancestry
are common and widely distributed throughout the
genome and across SNP types. These findings illustrate the
extent of genetic variation between continentally defined
groups.

Methods
Data sources
The HapMap, Perlegen and IIPGA data sets were obtained
from their respective websites [25,30,31]. For the Hap-
Map data we used the non-redundant data sets from pub-
lic release 19 which contained data for phases I and II.
Thirty trios were genotyped for both the Yoruba and Euro-
pean populations. We excluded the children from our
analysis because they did not represent independent gen-
otypes. We also excluded the one individual from the Jap-
anese population who did not have phase I data. There
were 60 Yoruba, 60 European-Americans, 45 Han Chinese
and 44 Japanese. For the purpose of our analysis, the Han
Chinese and Japanese subjects were grouped together.

For the IIPGA data set, we used dbSNP annotation files to
map the IIPGA identifiers to the official NCBI reference
SNP identifier [28]. The dbSNP annotation files were also
used to determine SNP type.

Nine individuals in both the Perlegen and IIPGA data sets
were also genotyped as part of the HapMap project. In our
study, these individuals were included in the HapMap
data set, but not in the Perlegen or IIPGA data sets.

Genetic distance
The genetic distance between two individuals at a single
loci was defined to be zero if the two individuals had the
same genotype, 1/2 if they had one allele in common and
1 if they had neither allele in common (i.e. d(CG,CC) = .5
and d(CC,GG) = 1) [26]. The genetic distance between
two individuals was calculated as the mean genetic dis-
tance over all loci genotyped in both individuals. The
genetic distance between an individual and a group was
defined as the mean of the pairwise genetic distances
between the individual and all members of the group –
except if the individual was a member of the group, we did
not include the distance between the individual and him
or herself. Genetic distances were normalized so that for
each individual the genetic distances to the HapMap YRI,
CEU and JPT+CHB summed to one.

Classification with naïve Bayes
We wrote our own implementation of the naïve Bayes
algorithm [32] in PERL. We assumed a uniform prior
probability distribution over the class variable. For each
test data set, we randomly selected a specified number of
SNPs. We then used the HapMap data for these SNPs to
train a classifier. The performance of this classifier was
then evaluated by determining accuracy of prediction on
the test data set. This process was repeated 100 times for
the specified number of SNPs.

Identification of SNPs informative about ancestry
To evaluate the distribution of SNPs where allele fre-
quency differed significantly between groups, we com-
puted the pairwise differences in major allele frequency
among the three HapMap groups. For the purposes of our
study, the most frequent allele in the Yoruba was consid-
ered to be the major allele. For each pairwise combination
of groups, we determined the proportion of SNPs where
the difference in major allele frequency exceeded a thresh-
old value. We investigated how this proportion varied
across the genome.

We also used the informativeness for assignment measure
to analyze SNPs [29]. The informativeness for assignment
(I) of a SNP is defined as:

Distribution of informative SNPs throughout the genomeFigure 6
Distribution of informative SNPs throughout the 
genome. Each chromosome was divided into 10 M base pair 
bins. Bins near centromeres or near the ends of chromo-
somes containing only a very small number of SNPs were 
excluded. Bins contained an average of 3650 SNPs. The figure 
shows mean informativeness for assignment by bin for the 
entire genome. The mean informativenss for assignment is 
relatively similar over all the bins, although the small 
observed differences are statistically significant (p < .0001 
with one-way ANOVA). Results were similar when 1 M base 
pair bins were evaluated.
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where there are N alleles and K populations, pij represents
the frequency of allele j in population i, and pj represents
the mean value of pij over the K populations. This measure
is a generalization of the absolute difference in allele fre-
quency to more than two populations.

We analyzed the distribution of informative SNPs on both
a chromosomal basis and by dividing the chromosomes
into bins of a constant size. We tested multiple combina-
tions of bin size and allele frequency cutoff threshold. The
conclusion that SNPs useful for classification are distrib-
uted across the genome was not sensitive to changes in
these parameters.

Comparing means
One-way ANOVA (calculated using Microsoft Excel) was
used to compare mean predictive accuracy across SNP
types and to compare informativeness for assignment
across both chromosomes and bins. The null hypothesis
was that all means were equal. P-values less than .05 were
considered to be statistically significant.
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