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Abstract
Background: Upstream open reading frames (uORFs) can down-regulate the translation of the
main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing
reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that
conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how
prevalent conserved uORFs are in closely related plants.

Results: We used a homology-based approach to identify conserved uORFs in five cereals
(monocots) that could potentially regulate translation. Our approach used a modified reciprocal
best hit method to identify putative orthologous sequences that were then analysed by a
comparative R-nomics program called uORFSCAN to find conserved uORFs.

Conclusion: This research identified new genes that may be controlled at the level of translation
by conserved uORFs. We report that conserved uORFs are rare (<150 loci contain them) in cereal
transcriptomes, are generally short (less than 100 nt), highly conserved (50% median amino acid
sequence similarity), position independent in their 5'-UTRs, and their start codon context and the
usage of rare codons for translation does not appear to be important.

Background
RNA-omics, or more simply R-nomics, is the large-scale
study of RNA structure and function [1]. One of the major
challenges faced by R-nomics is to understand the regula-
tory mechanisms of complex signals found in the untrans-
lated regions (UTRs) of messenger RNAs. In particular, the
control signals found in the 5'-UTR of some eukaryotic
mRNAs play a crucial role in translational control that can
result in rapid changes to the proteome [2]. These post-
transcriptionally regulated mRNAs frequently encode
important regulatory proteins (e.g., proto-oncogenes,
growth factors, and transcription factors) [3] that need to

be strongly or precisely regulated for normal cellular activ-
ity. In other cases, control signals in the 5'-UTR provide
continuous regulation of essential mRNAs by providing
an alternative route for translation when cap-dependent
translation is compromised (e.g., under stress conditions)
[4].

Translational control signals are often found in long 5'-
UTRs (>100 nt) [5] where they can contain either a single
control signal [6] or multiple control signals that function
independently [7] or in a coordinated fashion [8-10]. One
important translational control signal found in both
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prokaryotes and eukaryotes is the upstream open reading
frame (uORF), a small open reading frame located
upstream of the main coding region [11].

Two types of functional upstream open reading frames
have been described that have a demonstrated activity
either in-vitro or in-vivo: a) uORFs encoding bioactive pep-
tides [12-15] that either act on translation or have biolog-
ical roles other than reducing the translation of the main
ORF, and therefore can be described as sequence-depend-
ent, and b) sequence-independent uORFs. A sequence-
dependent uORF encodes a small peptide, and some of
these uORF-encoded peptides have been shown to
directly affect translation via either ribosomal stalling dur-
ing translation of the uORF or termination of translation
by inhibiting the peptidyl transferase activity of the ribos-
ome and thus peptide bond formation [16,17]. For
sequence-independent uORFs, the uORF-encoded pep-
tide is not important for translational control, but other
factors like uORF recognition, length, stop codon envi-
ronment, and the downstream intercistronic sequence
(length and structure) can affect reinitiation efficiency at
the downstream ORF [18,19]. Sequence-independent
uORFs can also indirectly affect translation by allowing
ribosomes to bypass inhibitory stem structures [20] or
activate dormant internal ribosome entry sites (IRES) [8]
via conformational changes induced by the translation of
the uORF. These distinct mechanisms of translational
control have been proven to be important through in-vitro
genetic (mutational analyses) and biochemical (toe-print-
ing) assays [16].

There are two known pathways where uORFs can influ-
ence mRNA stability. Studies in yeast have indicated that
both sequence-dependent and sequence-independent
uORFs can cause mRNA destabilisation by the nonsense-
mediated mRNA decay pathway [21]. Mutations in the
mRNA 5'-UTR that insert an uORF trigger the nonsense-
mediated decay pathway and lead to decapping of the
mRNA. Alternatively, mRNA destabilisation can occur via
the termination dependent decay pathway [22]. In this
pathway, the 40S ribosomal units are released from the
mRNA due to features such as stop codon environment
(e.g., GC rich) or short intercistronic sequence containing
a secondary structure. Release of the 40S ribosomal units
prevent reinitiation of translation downstream of the
uORF, and the mRNA becomes susceptible to decay. The
mechanisms underlying both uORF nonsense-mediated
decay and post-termination mediated decay remain
unclear.

Identifying uORFs involved in regulation of gene expres-
sion remains a challenge [16,23,24]. Recently it has been
estimated that it would take 20 man-months to find a sin-
gle functional uORF by random selection and testing of

yeast mRNAs [25]. To overcome this problem Selpi et al.
[25] used an artificial intelligence approach called induc-
tive logic programming to identify likely functional
uORFs. The approach used rules based on background
knowledge of uORFs in yeast mRNAs and as such may not
be applicable to other organisms such as plants.

Another approach for identifying sequence-independent
uORFs was recently described [26]. Kochetov et al. [26]
selected human mRNAs with specific sequence organisa-
tion (i.e., uORF overlapping the main ORF) that could
facilitate reinitiation at downstream start codons. If the
downstream start codons were nested in-frame with the
main ORF then potentially N-terminally truncated vari-
ants of the main protein could be produced via reinitia-
tion. Kochetov et al. [26] reported that 297 out of 754
mRNAs (39% of the sub-sample) contained this specific
sequence organisation with an average intercistronic
spacer of 66 ± 77 nt, which provides sufficient space for
reinitiation. This novel approach highlights another way
in which uORFs can be functional via the generation of
novel protein isoforms.

The number of characterised uORFs in plants is appar-
ently less than 100 (0.3%) based on a PubMed search, and
about four have been identified in cereals. They include
the uORFs of the S-adenosylmethionine decarboxylase
gene (AdoMetDC) in both monocots and dicots
[9,27,28], rice myb7 gene [29]; transcription factorssuch
as maize Opaque-2 [30], maize R [31], and maize Lc [7].
Also, uORFs have been found in dicot plant genes that
include AtB2/AtbZIP11 [32], ABI3 [33], and CpbZIP2 [34];
and auxin responsive factor genes ETT and MP [35]. These
characterised uORFs (<0.3%) in plants are much lower
than the estimated number of genes that contain uORFs,
which can vary from 11% [36] to 60% [12].

One strategy for identifying functional uORFs in plants is
to use a comparative approach [12,13,37]. There are
extensive assembled EST datasets for five important cereal
crops and Arabidopsis. The cereals include rice (Oryza
sativa L.), wheat (Triticum aestivum), barley (Hordeum vul-
gare), maize (Zea mays), and sorghum (Sorghum bicolor).
Rice is the best characterised of these cereals with a
sequenced genome [38] and a cDNA database containing
32,000 clones that were enriched for 5' full-length
sequences [39]. Cereals such as wheat are unlikely to be
fully sequenced in the near future because of their large
genome size. Wheat has a hexaploid genome of 16000 Mb
[40] that is 37 times that of rice (430 Mb), and 5.5 times
(2900 Mb) the size of the human genome [41]. A compar-
ative approach is likely to identify sequence dependent
uORFs [16] where the encoded peptide of the uORF is
involved in regulation of gene expression.
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In this study, we used comparative R-nomics to identify
conserved uORF motifs in cereals and Arabidopsis. We
constructed a bioinformatics pipeline called uORFSCAN
that performs a comparative analysis on the important
agronomic crops rice, wheat, barley, maize, and sorghum;
and the well studied dicot plant Arabidopsis. To account
for the variable quality of assembled EST data, we have
used orthologous sequence clustering, iterative sequence
analysis, and manual curation. Our comparative method
is easily transferable to uORF identification in other spe-
cies.

Methods
Data material
KOME (Knowledge-based Oryza Molecular biological
Encyclopedia) full-length rice cDNA sequences were
obtained from ftp://cdna01.dna.affrc.go.jp/pub/data/
CURRENT/INE_FULL_SEQUENCE_DB.zip. This file is
dated Tuesday, 24 January 2006, and contains 32,127 full-
length cDNA clones (originally 28,469). The TIGR plant
gene indices database ftp://ftp.tigr.org/pub/data/tgi/ was
used to obtain tentative contigs (TCs) from wheat (release
10.0, Jan 05, 580155 ESTs, 44954 TCs), barley (release
9.0, Sept 04, 370546 ESTs, 23176 TCs), maize (release
17.0, Nov 06, 695811 ESTs, 56687 TCs), and sorghum
(release 8.0, Nov 05, 187282 ESTs, 20029 TCs). Data
cleaning was performed on the TIGR dataset to select for
sequences that are designated as tentative contigs (identi-
fiers prefixed with "TC"), thereby excluding all singletons.
All data files were imported and managed using Microsoft
Access 2003. We also re-ran the analysis using the TIGR
Plant Transcript Assemblies (last updated on October
17th, 2006) for wheat (840871 ESTs), barley (456410
ESTs), maize (1084701 ESTs), and sorghum (203575
ESTs) on the uORFSCAN pipeline, but did not find any
additional conserved upstream open reading frames
(uORFs).

Orthologue searches
The reciprocal best hit method (rbh) was adapted to
account for alternative splice forms that are present in the
KOME dataset that would otherwise give many false neg-
atives. The problem with alternative splice forms is that
they will never have the highest score in the reverse BLAST
because the presence of a longer alternative splice form
will always be listed higher on the hit list due to the way
BLAST [42] ranks hits (according to score and e-value). To
account for alternative splice forms, we examined not
only the top hit but also similar hits (percent identity to
top hit: Δ -5%, similar length to top hit: +/- 20%) for sym-
metry with the top hit in the forward blast. If there is sym-
metry between the forward and reverse blasts then we
considered the reciprocal pair to be orthologous. General
parameters for similarity searches were: tblastx program,
expect threshold value at 1.0e-50, scoring parameters,

BLOSUM62 matrix; gap costs (existence, 11; extension 1),
and filter and masking, off. Only sequence alignments
with at least 70% sequence coverage were considered fur-
ther. Similarity searches were performed at The South Aus-
tralian Partnership for Advanced Computing (SAPAC)
http://www.sapac.edu.au/.

Verification of main ORF
The rice cDNA sequences containing conserved uORFs
were used in a blastn search against NCBI Non-redundant
database to identify uORFs predicted from ribosomal
RNA genes, chloroplastic genes, and mitochondrial genes.
These genes do not represent coding genes derived from
the nuclear genome, and therefore have been removed
from this study. Also, the main open reading frames, pre-
dicted by uORFSCAN were used to search (blastn) the
coding sequence (CDS) annotations from TIGR rice pseu-
domolecules database http://www.tigr.org/tdb/e2k1/
osa1/data_download.shtml. Alignments not starting from
the beginning of the CDS were regarded as suspicious. As
additional verification, the rice main open reading frame
predictions were also compared with protein data from
The UniProt Knowledgebase (UniProtKB) http://
www.ebi.uniprot.org/database/download.shtml. Transla-
tions of the rice cDNA sequences in the same frame as the
predicted main open reading frame, starting from the 5'-
untranslated region to the end of the main open reading
frame, were used to search (blastp) against UniProtKB.
Aligments not beginning from the start of the protein
sequence were discarded if they also did not have TIGR
CDS support.

Statistical analysis of codon usage
The p-values were calculated according to the following
formulas:

The probability to observe the number of times each
codon was present in the uORFs (nobs) that was less than
or equal to the expected (nav) by chance alone is:

The probability to observe the number of times each
codon was present in the uORFs (nobs) that was greater
than or equal to the expected (nav) by chance alone is:

Where,
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nobs = The observed number of times a codon was present
in the uORFs.

nav = The average number of times a codon was present in
the uORFs based on the frequency of this codon in the
mORF and the sample size (the observed number of
codons for the set of codons for an amino in the uORFs).

Results
The uORFSCAN pipeline for discovering uORFs
The uORFSCAN pipeline used rice full-length cDNAs [39]
and wheat, barley, maize, and sorghum assembled EST
data for comparative analysis (Figure 1). In the first step of
the pipeline, we identified rice genes that had orthologues
in wheat, barley, maize, and sorghum. The use of orthol-
ogous sequences allowed us to more accurately predict the
main coding region and define the 5'-UTR that is neces-
sary to identify conserved uORFs.

The reciprocal best hit (rbh) method was used to find true
orthologues by a process of eliminating paralogues
[43,44]. The principle of rbh is that a pair of sequences are
orthologues if they are each others best hit. We modified
the rbh method to find orthologues of rice genes in wheat,
barley, maize, and sorghum such that it allowed us to
keep alternative splice forms while at the same time elim-
inating paralogues. Alternative splice forms of a gene were
distinguished by changes in gene length while still main-
taining high sequence identity. We found that the modi-
fied reciprocal best hit method eliminated 70–75% of
paralogue sequences. For example, in the one directional
BLAST against the barley assembled EST database 19,655
sequences were identified, however this number was
reduced to 5,115 (26%) sequences when the reciprocal
best hit method was used (Figure 1, Step 1).

Only 1723 of the rice genes had conserved orthologues in
the other four cereals (wheat, barley, maize, and sor-
ghum), most likely because none of the assembled EST
datasets contained the entire transcriptome. To account
for missing or erroneous sequences, we grouped the
orthologues into three datasets for 5'-UTR analysis (Figure
1, Step 2). The datasets included rice genes that had ortho-
logues in four other cereals (5 out of 5 dataset), in three
other cereals (4 out of 5 dataset), and in two other cereals
(3 out of 5 dataset).

In Figure 1 (Step 3), we developed a program called
uORFSCAN (see Additional file 9)  to find conserved
uORFs. uORFSCAN takes as input a FASTA file containing
the rice cDNA sequence and its orthologues, and identi-
fies for each of these sequences all the possible open read-
ing frames (ORFs). In the first iteration, the longest
conserved ORF was designated as the main coding region.
However, the longest ORF is not always the main coding

Tran_Figure1.epsFigure 1
Tran_Figure1.eps. 'Overview of the uORFSCAN pipeline'. 
The pipeline consists of four steps: 1) Identifying putative 
orthologues using a modified reciprocal best hit (rbh) 
method, 2) Clustering of orthologues according to how 
many cereal species they are found in, 3) Using uORFSCAN 
program to find conserved uORFs using a comparative 
approach, and 4) manual curation of predicted conserved 
cereal and Arabidopsis uORFs.
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region when there are other ORFs of similar length. There-
fore, a comparative approach was used to identify the
main coding region (Figure 1, Step 3.1). This involved
finding the longest ORF that was present in all ortholo-
gous sequences, and then iteratively reducing the number
of orthologous sequences, one at a time, to determine if a
longer conserved set of ORFs could be found, and finally
terminating when there was no improvement. The longest
ORF in at least three out of five cereals was considered the
main coding region. In Figure 1 (Step 3.2), uORFSCAN
attempts to align rice uORFs with similar length ortholo-
gous uORFs (+/- 5%) at the protein level using ClustalW
([45], see Additional file 8) . Finally, uORFSCAN analysed
each alignment file to determine the average conservation
of the uORFs, and grouped the alignments based on the
number of conserved orthologous uORFs found. For
example, using the 4 out of 5 dataset generated the 4 out
of 4 and the 3 out of 4 datasets (Figure 1). We report
uORFs from orthologous genes that shared sequence sim-
ilarity because of our interest in finding functional uORFs.

The final step (Figure 1, Step 4) was manual curation to
verify the predicted rice main coding region of each gene
by comparing it with the genome annotation and other
protein data. This was necessary, as uORFSCAN is
expected to be sensitive to inaccurate (e.g., frame-shifts)
and/or incomplete sequence data. For example, rice full
length sequences can be incomplete because of failure of
the 5' capping method [39]. If the coding region is trun-
cated, this can result in an internal methionine selected as
the start codon and therefore the derived 5'-UTR is actu-
ally coding sequence, which is often highly conserved and
can lead to false positive predictions.

Conserved upstream open reading frames appear to be 
rare
The uORFSCAN pipeline identified nine cDNAs contain-
ing uORFs that were conserved in the five out of five (5/5)
dataset containing orthologous sequences in all 5 cereals
(Table 1). Three of these cDNAs encoded multiple uORFs,
one of the cDNAs being AdoMetDC, which has previously
been reported to contain two uORFs [46]. We manually
curated all nine cDNAs and showed that they were all reli-
able based on our validation criteria (Table 2), which
included the removal of the uORFs predicted from ribos-
omal rRNA genes (data not shown). The cDNAs included
the multiple uORFs in S-adenosylmethionine decarboxy-
lase cDNA [46], alkaline phytoceramidase cDNA, cal-
cineurin B-like (CBL)-interacting protein kinase cDNA;
and a single conserved uORF in a cDNA encoding an oxi-
doreductase protein, ribosomal protein S6 kinase, treha-
lose-6-phosphate phosphatase, ubiquitin-fold protein,
F9L1.29 protein, and an ankyrin-3 protein.

To account for variable quality in assembled EST data, we
also looked for cases where the uORFs (4/5, 3/5, 4/4, 3/4,
and 3/3 result set) were conserved in only four out of five
(4/5) orthologues and three out of five orthologues (see
Additional files 1, 2, 3, 4, 5; Figure 1, Step 3.2). In brief,
the 4/5 result set contains 16 rice genes with a total of 20
conserved uORFs in orthologous cereal genes, the 3/5
result set contains 44 rice genes with a total of 79 con-
served uORFs in orthologous cereal genes, the 4/4 result
set contains 16 rice genes with a total of 23 conserved
uORFs in orthologous genes, the 3/4 result set contains
113 rice genes with a total of 129 conserved uORFs in
orthologous genes, and finally the 3/5 result set contains
65 genes with a total of 93 conserved uORFs in ortholo-
gous genes.

In order to identify sequence dependent uORFs, we
extended our search for cereal uORFs that might also be
conserved in the dicot Arabidopsis by using the rice
cDNAs that contained conserved uORFs in four other
cereals (5/5 result set) and the Arabidopsis Tair 7 cDNA
dataset (see Methods). The uORFSCAN pipeline identi-
fied 13 rice cDNAs containing uORFs that were conserved
in Arabidopsis (Table 3). Four of these cDNAs encoded
multiple uORFs. Of the 13 cDNAs with uORFs, only 11
were verified as reliable based on manual curation (Table
4) that removed the uORFs predicted from a cDNA encod-
ing a helicase. Manual curation of the helicase cDNA
revealed that the genome and protein annotation for the
coding region extended further upstream than predicted
by uORFSCAN, highlighting the limitations of using
assembled EST data where frame-shift errors was the likely
reason for the false positive prediction. The reliable pre-
dictions included the multiple uORFs found in a cDNA
encoding ww domain containing protein, trehalose-6-
phosphate phosphatase, GAMYB-binding protein, and
ankyrin-3. The latter three cDNAs contained a combina-
tion of uORFs that were conserved between the cereals
(rice and at least two other cereals) and Arabidopsis, and
uORFs conserved between rice and Arabidopsis (Table 3).
uORFSCAN also identified seven rice cDNAs containing a
single uORF that were conserved in Arabidopsis and in
almost all cases (except cDNA encoding an auxilin-like
protein) the cereals as well (Table 3). They included the
uORFs found in a cDNA encoding phosphatase 2a pro-
tein, homeodomain containing protein, S-Adenosylme-
thionine decarboxylase, auxilin-like protein, CBL-
interacting protein kinase, protein kinase ATN1, and a
hypothetical protein.

Position and occupation of uORFs in 5'-UTRs
Studies have shown that the position of an uORF within
its 5'-UTR, which determines the pre-orf and intercistronic
distances, can have profound effects on its function
[18,22]. When we examined the positions of cereal uORFs
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Table 1: The uORFs predicted by uORFSCAN in 5 out of 5

Rice Wheat Barley Maize Sorghum Avg. A.A. 
similarity (%)

Putative functionb

Identifier 5'-UTR Identifier 5'-UTRa Identifier 5'-UTRa Identifier 5'-UTRa Identifier 5'-UTRa

AK106095 131_9_17 TC265929 113_9_16 TC148181 67_9_16 TC288369 131_9_17 TC102998 149_9_17 100 Oxidoreductase
AK103391c 205_75_74 TC269775 251_75_62 TC134190 204_75_62 TC294011 215_75_75 TC103599 106_75_378 88 Trehalose-6-

phosphate 
phosphatase

AK100589 d,e 240_9_334 TC264559 201_9_317 TC130707 228_9_318 TC292591 286_9_320 TC91317 260_9_329 50 S-
adenosylmethionine 
decarboxylase 
(AdoMetDC)

248_156_179 209_150_168 236_150_169 294_153_168 268_153_177 90
296_108_179 254_105_168 281_105_169 336_111_168 310_111_177 92

AK073303 67_9_142 TC237149 75_9_113 TC132556 81_9_139 TC305609 127_9_69 TC102988 222_9_69 50 Alkaline 
phytoceramidase

135_9_74 75_9_113 81_9_139 127_9_69 222_9_69 50
AK072868 e 249_27_248 TC247418 258_27_266 TC139536 298_27_272 TC306591 444_27_564 TC102544 331_27_265 11 CBL-interacting 

protein kinase
259_195_70 268_198_85 308_198_91 260_192_583 341_195_87 29
269_39_216 278_39_234 318_39_240 768_39_228 351_39_233 8
338_90_96 347_93_111 387_93_117 576_93_366 420_90_113 10
392_36_96 404_36_111 444_36_117 633_36_366 474_36_113 8

AK072649 100_192_117 TC236348 79_192_117 TC133316 76_192_93 TC305793 180_192_116 TC93140 168_192_116 78 Ribosomal protein 
S6 kinase

AK066145 178_12_58 TC266262 149_12_73 TC134484 154_12_231 TC286452 224_12_70 TC94546 187_12_69 33 Ubiquitin-fold 
protein

AK064792 276_15_187 TC267323 254_15_188 TC132983 253_15_-9 TC306152 263_15_170 TC107743 230_15_150 87 F9L1.29 protein
AK060523 173_123_185 TC235416 201_126_157 TC148319 211_120_163 TC305149 255_129_195 TC103609 240_129_212 58 Ankyrin-3

a Pre-orf distance_uORF length_intercistronic distance.
b Functional annotation based on "The UniProt Knowledgebase (UniProt)" database.
c One of several genes (identifiers) that are in multiple tables because different conserved uORFs were identified in the different datasets.
d Previously reported upstream open reading frames (see 'Introduction' section on AdoMetDC).
e Contain one or more nested uORFs.
Ribosomal rRNA genes have been removed.
See Table 2 for criteria for verifying rice uORFs in 5 out of 5.
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Table 2: Criteria for verifying rice uORFs in 5 out of 5

Accession FL- cDNAa Upstream & 
In-frame 

stop codon

Agreement 
with 

genome 
annotationb

Alignment of uORFSCAN identified main proteins with UniProt proteinsc uORF valid

UniProt 
protein 

length (AA)

Align length 
(AA)

Identities 
(%)

Expect Annotation GO classication 
(Arabidopsis thaliana)

AK106095 Yes Yes Yes 392 392 100 2.2e-217 Oxidoreductase [go:19538] protein metabolism
[go:16706] oxidoreductase activity

Yes

AK103391 Yes Yes Yes 371 371 100 3.4e-194 Trehalose-6-phosphate 
phosphatase

[go:5992] trehalose biosynthesis
[go:9507] chloroplast

[go:4805] trehalose-phosphatase 
activity

Yes

AK100589 Yes Yes Yes 398 398 100 1.1e-215 AdoMetDC [go:6596] polyamine biosynthesis
[go:5694] chromosome

Yes

AK073303 Yes Yes Yes 257 257 100 1.6e-141 Acyl-CoA independent 
ceramide synthase

[go:6672] ceramide metabolism
[go:16020] membrane

[go:3824] catalytic activity
[go:16811] hydrolase activity

Yes

AK072868 Yes Yes Yes 443 443 100 3.6e-238 uncharacterized protein 
(probable CBL-interacting 

serine/threonine-protein kinase 
15)

[go:6468] protein phosphorylation
[go:7165] signal transduction

[go:5524] ATP binding
[go:4672] protein kinase activity

Yes

AK072649 Yes Yes Yes 480 488 76 9.6e-199 Ribosomal protein S6 Kinase [go:45946] positive translation
[go:6468] protein phosphorylation

[go:9507] chloroplast
[go:16301] kinase activity

Yes

AK066145 No Yes Yes 119 119 100 1.3e-59 Membrane-anchored ubiquitin-
fold protein

[go:6464] protein modification Yes

AK064792 Yes Yes 197d 109 108 57 8.4e-26 F9L1.29 protein Not available Yes
AK060523 Yes Yes Yes 166 166 100 1.9e-88 uncharacterized protein 

(probable ankyrin-3)
[go:9507] chloroplast

[go:5515] protein binding
Yes

a Used rice cDNA in blastn search against "NCBI EST_Others" database (rice) to search for longer 5' ESTs.
b Used rice cDNA in blastn search against "TIGR Rice Genome Annotation DB: Coding Sequences" database to verify the cDNA ORF.
c Translated the rice cDNA in the same frame as the main open reading frame identified by uORFSCAN (include translations upstream of predicted start Methionine). The resulting protein sequence was 
used in a blastp search against "The UniProt Knowledgebase (UniProt)" database.
d The genome annotation for the CDS is longer by the indicated number of base pairs.
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within their 5'-UTRs we found that there was no posi-
tional preference with the exception that they were not
positioned too closely to the start of their individual 5'-
UTR and coding region (Figure 2). For example, all of the
uORFs conserved in five orthologous cereals (5/5 result
set) and in Arabidopsis were at least positioned 20 nucle-
otides from the start of their 5'-UTR, which is thought to
be the minimum number of nucleotides required for a
functional uORF [18]. We noticed that the intercistronic
distances for these uORFs were generally shorter than the
pre-orf distance. We also found seven uORFs, which
included the functional small AdoMetDC uORF, that
occupied greater than 20% of their individual 5'-UTR.

The length distribution of uORFs
Since earlier reports showed that plant uORFs can vary in
length from 6 to 156 nucleotides [7,9,29-31,46], we
examined the length distribution of the cereal uORFs.
There are two peaks in the distribution that were found
between 1 to 40 nucleotides, and 81 to 120 nucleotides
(Figure 3). The uORFs found in the first peak are tiny with
9 (out of 14) uORFs having a length of nine nucleotides.
Some of these tiny uORFs could be artefactual as a result
of point mutations that insert an in-frame start and/or
stop codon in the 5'-UTR. If these artefactual uORFs were
removed then the uORF length distribution would move
towards a normal distribution. Seventy six percent of the
uORFs in the length distribution are shorter than 100
nucleotides, and 48% are shorter than 40 nucleotides. The
shortest conserved uORF found in four independent
cDNAs was nine nucleotides, even though the cut-off
length used by uORFSCAN to identify uORFs was six
nucleotides (a start and a stop codon). One of the nine
nucleotide uORFs was the 5' tiny uORF found in the S-
adenosylmethionine decarboxylase cDNA [9], and three
new uORFs, two found in a cDNA encoding alkaline phy-
toceramidase, and one in a cDNA encoding oxidoreduct-
ase, (Table 1). Two long conserved uORFs (>181
nucleotides) were found in cDNAs encoding protein
kinases that included one uORF found in a cDNA encod-
ing a CBL-interacting protein kinase and another uORF
found in a cDNA encoding a ribosomal protein S6 kinase.

Sequence conservation in uORFs
The level of amino acid sequence conservation in cereal
uORFs was generally high, as expected, based on our
approach of reporting similar length orthologous uORFs
that shared sequence similarity. For example, in the 5 out
of 5 dataset the median value is 50% sequence similarity.
When the two main datasets were included (uORFs con-
served in all five cereals and uORFs conserved between
rice and Arabidopsis), the median value is 36% sequence
similarity. The uORFs conserved between the cereals (rice
and at least two others) and Arabidopsis (median value of
36% sequence similarity) generally had a higher amino

acid sequence similarity than those uORFs conserved
between rice and Arabidopsis (median value of 28%
sequence similarity). Given that the uORFs from ortholo-
gous genes were selected to be within a given length inter-
val for alignment purposes, the high amino acid sequence
similarity may suggest that these uORFs have a functional
role (e.g., ribosomal stalling) that is mediated by the
encoded uORF peptide.

Start codon context and codon usage of uORFs
The presence of uORFs does not mean that they will be
translated. The sequence context of some plant uORFs has
been shown to be sub-optimal for efficient initiation
[47,48]. We therefore examined the sequence context of
our cereal uORF AUG codons to see if there was any
sequence conservation that may aid in their ribosome ini-
tiation. We found that there were no informative posi-
tions in the uORF consensus sequence context (see
Additional file 6 – Tran_FigureS1.eps) based on the
observed number of positions that showed sequence con-
servation was not greater than expected by chance alone.
However when the context of the AUGs demarcating the
conserved uORFs were compared with the context of the
AUG at the main ORF it was evident that the main ORF
generally had a better sequence context denoted by a
purine in the -3 position and a guanine in the +4 position
(Table 5).

Recent work showed that ribosome stalling could occur at
rare codons [49-53]. We therefore examined the codon
usage of the identified uORFs to determine if they con-
tained an increased number of rare codons. We showed
that the frequencies of some codons had a p-Value less
than <0.05 in the rice uORF codon usage compared to the
rice main coding region based on a significant deviation
of observed from expected numbers of uORF codons
(Equations 1 and 2); however, the number of codons that
had these p-Values were not greater than expected by
chance (see Additional file 7 – Tran_FigureS2.eps).

Discussion and conclusion
Conserved uORFs are rare
This study provides a method to identify conserved uORFs
from large assembled EST datasets. We developed a pipe-
line that used a modified reciprocal best hit method to
identify putative orthologous sequences that were then
analysed by a comparative R-nomics program called
uORFSCAN to find conserved uORFs. We showed that
this pipeline was successful in identifying 29 rice uORFs
that are conserved at the amino acid level (median value
of 36% sequence similarity) in wheat, barley, maize, sor-
ghum, and in some cases (33%) Arabidopsis.

The number of conserved uORFs that share sequence sim-
ilarity in the transcriptome of cereals appears to be low.
Page 8 of 17
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This is consistent with reports of conserved uORFs in dis-
tantly related plants (i.e., rice and Arabidopsis) [12] and
in Drosophila melanogaster [14]. One explanation is that
genes controlled at the level of translation by uORFs have
low levels of transcription [27] and therefore are under-
represented in cDNA and assembled EST databases.
Another explanation for the low numbers of conserved
cereal uORFs is that the uORFs have evolved in both
length and sequence such that they no longer share
sequence similarity across minor taxonomic groups (i.e.,
within the cereals) (Table 2 and 4). Furthermore, if the
codon usage of cereal uORFs rather than the uORF-
encoded peptide were a major controlling mechanism
then amino acid sequence may not be conserved.

Cereal uORFs conserved in Arabidopsis
It has been shown that the amino acid sequence of uORFs
in monocot and dicot plants can be similar [46]. Sequence
similarity was observed at the amino acid level across the
major taxonomic groups (e.g., Arabidopsis and rice)
(Table 3). We identified 11 rice genes that contained

uORFs conserved in Arabidopsis, of which nine were also
conserved in additional cereals (at least two others). For
example, a rice cDNA encoding Ankyrin-3 contains an
uORF that is conserved in the cereals and Arabidopsis, but
it contains a nested uORF that appears to be conserved
only in rice and Arabidopsis. Therefore, it is likely that
after the split between the two major groups of
angiosperms (monocots and dicots), the rice gene has
gained an additional in-frame and internal start codon,
that is not present in the other cereals, making a nested
uORF that is shorter by 33 nucleotides. It would be of
interest to determine if the nested uORF is still functional.

Conservation of uORF sequence within the cereals might
simply reflect a relatively recent ancestor, rather than con-
servation of function, therefore it is difficult to predict
whether these uORFs are likely to be sequence dependent
or sequence independent uORFs [18,19]. However,
uORFs that are conserved across both monocots and
dicots suggest that these uORFs have a role in a sequence
dependent manner. Indeed, six rice uORFs (out of 15,

Table 3: Rice uORFs predicted by uORFSCAN that are conserved in Arabidopsis

Rice Arabidopsis Avg. A.A. similarity (%) Putative functionb

Identifier 5'-UTRa Identifier 5'-UTRa

AK101100 142_12_21c,d AT1G51690.1 555_12_1160 33 Protein phosphatase 2a
AK066952 365_66_182 AT3G13225.1 364_63_431 27 WW domain containing protein

368_63_182e 364_63_431 29
503_51_59 553_51_254 1

AK119592 304_90_148c,d AT3G01470.1 162_87_120 36 Homeodomain leucine zipper protein
AK100589 248_156_179c,d AT3G02470.3 222_156_154 82 S-Adenosylmethionine decarboxylase
AK103391 176_30_148c,d,f AT4G22590.1 254_30_137 44 Trehalose-6-phosphate phosphatase

205_75_74g 283_75_63g 71
AK069534 813_9_432 AT4G12770.1 41_9_108 50 Auxilin-like protein
AK069526 214_126_544c AT4G19110.2 255_126_527 44 GAMYB-binding protein

690_9_185c 603_9_296 50
820_36_28 398_36_474 17

AK072868 338_90_96c,d AT5G58380.1 11_87_295 17 CBL-interacting protein kinase
AK060523 173_123_185c AT5G07840.1 289_117_250 36 Ankyrin-3

313_93_250e 44
206_90_185e 313_93_250e 33

AK067412 222_84_49c,h AT5G50180.1 357_84_79 4 Protein kinase ATN1
AK102277 228_117_150c AT1G68550.1 309_96_95 21 Hypothetical protein
AK100332 1174_21_883 AT5G44800.1 359_21_3 14 Helicase

1618_21_439 359_21_3 17
1810_21_247 359_21_3 17

AK059639 1_45_784c ATCG00920.1 55_45_844 86 40S ribosomal protein S15

a Pre-uORF distance_uORF length_intercistronic distance.
b Functional annotation based on "the UniProt Knowledgebase (uniProt)" database.
c Rice uORF is conserved in at least two orthologous cereal and Arabidopsis genes.
d Rich in serine (at least 20%).
e Nested uORF.
f One of several genes (identifiers) that are in multiple tables because different conserved uORFs were identified in the different datasets.
g Overlapping uORF.
h Rice in arginine (at least 20%).
Ribosomal rRNA genes have been removed.
Rows in italics are false positive predictions (see Table 4. Criteria for verifying rice uORFs that are conserved in Arabidopsis)
Page 9 of 17
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Table 4: Criteria for verifying rice uORFs that are conserved in Arabidopsis

Accession FL- cDNAa Upstream & In-
frame stop codon

Agreement with 
genome 
annotationb

Alignment of uORFSCAN identified main proteins with UniProt proteinsc uORF valid

UniProt protein 
length (AA)

Align length (AA) Identities (%) Expect Annotation GO classication 
(Arabidopsis thaliana)

AK101100 Yes Yes Yes 525 525 100 5.0e-287 Protein phosphatase 
2A

[go:6470] protein dephosphorylation
[go:166] nucleotide binding

Yes

AK066952 Yes Yes Yes 860 694 99 0 WW domain 
containing protein

Not available Yesd

AK119592 Yes Yes Yes 343 343 100 6.8e-187 Homeodomain 
leucine zipper 
protein

[go:6355] regulation of transcription
[go:3677] DNA binding

Yes

AK100589 Yes Yes Yes 398 398 100 1.1e-215 S-
Adenosylmethionine 
decarboxylase

[go:6596] polyamine biosynthesis
[go:5694] chromosome

Yes

AK103391 Yes Yes Yes 371 371 100 3.3e-194 Trehalose-6-
phosphate 
phosphatase

[go:5992] trehalose biosynthesis
[go:9507] chloroplast

Yes

AK069534 Yes Yes 1066e 485 413 61 7.6e-117 Auxilin-like protein Not available Yesf

AK069526 Yes Yes Yes 483 483 83 5.8e-256 GAMYB-binding 
protein

[go:6468] protein phosphorylation
[go:5524] ATP binding
[go:16301] kinase activity

Yes

AK072868 Yes Yes Yes 443 443 100 3.5e-238 CBL-interacting 
kinase 15

[go:6468] protein phosphorylation
[go:5524] ATP binding
[go:16301] kinase activity

Yes

AK060523 No Yes Yes 166 166 99 8.2e-88 Ankyrin-3 [go:5515] protein binding Yes
AK067412 Yes Yes Yes 353 353 72 1.2e-136 Protein kinase ATN1 [go:6468] protein phosphorylation

[go:5524] ATP binding
[go:16301] kinase activity

Yes

AK102277 Yes Yes Yes 338 338 99 4.9e-179 Hypothetical protein Not available Yes
AK100332 Yes Yes 4092e 2192 872 30 5.3e-28 Helicase [go:3676] nucleic acid binding

[go:6355] regulation of transcription
[go:5515] protein binding

Nog

AK059639 No Yes Yes 154 154 100 2.6e-77 40S ribosomal s15 
protein

[go:3735] structural part of ribosome
[go:6412] protein biosynthesis

Noh

a Used rice cDNA in blastn search against "NCBI EST_Others" database (rice) to search for longer 5' ESTs.
b Used rice cDNA in blastn search against "TIGR Rice Genome Annotation DB: Coding Sequences" database to verify the cDNA ORF.
c Translated the rice cDNA in the same frame as the main open reading frame identified by uORFSCAN (include translations upstream of predicted start Methionine). The resulting protein sequence was used in a blastp search against "The 
UniProt Knowledgebase (UniProt)" database.
d The protein data suggests that the main open reading frame predicted by uORFSCAN extends further upstream, but does not overlap the predicted uORFs and so the uORFs are still valid.
e The genome annotation for the CDS is longer by the indicated number of base pairs.
f A shorter protein was identified, but does not overlap the predicted uORFs and so the uORFs are still valid.
g A longer protein was identified indicating the main open reading frame extends further upstream, and does overlap the predicted uORFs and so the uORFs are not valid.
h Possibly not functional because pre-orf distance is less than 20 nucleotides that is thought to be required for translation initiation.
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excluding nested uORFs, Table 3) that were conserved in
Arabidopsis had a notable amino acid composition that
was rich in serine or arginine (at least 20%). It has been
suggested that uORF peptides that are rich in serine could

either promote or inhibit ribosomal stalling through their
phosphorylation [12,54], while arginine rich motifs can
be involved in RNA binding [55]. Interestingly, of these
six rice uORFs two (AK101100 and AK067412) are found
in genes involved in phosphorylation, a function that
appears to be over-represented in this dataset (Table 3).
We hypothesize that the main protein of these genes
could have dual functions, the primary function is as a
trans-acting factor in an unknown signalling cascade, and
a secondary function as a regulator of mORF expression
whereby the mORF protein phosphorylates the serine-rich
uORF peptides, resulting in a conformational change that
allows the uORF peptides to bind and stall ribosomes
[16].

There are uORFs previously identified in Arabidopsis that
were not identified in this study. For example, the Arabi-
dopsis auxin response factor (ARF) genes [35]ETTIN
(ETT) and MONOPTEROS (MP) contain uORFs and
while orthologues of these genes were found in the rice,
sorghum and wheat assembled EST datasets, the uORFs
showed no sequence similarity (by ClustalW) and were of
different lengths (data not shown). Similarly, uORFs
found in Arabidopsis genes AtMHX and AtNMT1 encod-
ing encoding a tonoplast transporter [56] and a phos-
phoethanolamine N-methyltransferase [57] respectively
were not identified because the uORFs were not conserved
in rice and at least two other cereals. Finally, the gene con-
taining the uORF in Arabidopsis sac51 encoding a bHLH-
type transcription factor [58] could not be identified in
our rice dataset as we could not identify a clear ortho-
logue. Therefore, it will be of interest to monitor new rice
full-length cDNAs and high quality sequences for cereals
as they become available to see if more conserved uORFs
can be found.

Recently, a pair-wise comparative approach was used to
identify conserved uORFs within homology groups that
also included paralogs and ohnologs (homologous genes
arising by whole-genome duplication) using rice and Ara-
bidopsis full-length cDNAs [12]. Compared to the 11
genes we had identified Hayden and Jorgensen [12]
reported that 19 genes contained conserved uORFs
between rice and Arabidopsis. Interestingly only four
genes (S-Adenosylmethionine decarboxylase, Trehalose-
6-phosphate phosphatase, Auxilin-like protein, and
Ankyrin-3) were in common highlighting the benefits of
complementary search methods. For example, we used
the modified reciprocal best hit method to find putative
orthologues. It is likely that some of the homologue
groups identified by Hayden and Jorgensen [12] may not
be true orthologues. For example, homologue group 12
identified by Hayden and Jorgensen [12] were not recip-
rocal best hit pairs according to our analysis, and therefore
are likely to be paralogues. Our approach is deliberately

Tran_Figure2.epsFigure 2
Tran_Figure2.eps. 'The position of conserved uORFs 
within their 5'-UTRs'. It contains rice uORFs conserved in 
four other cereals and in Arabidopsis.
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conservative, eliminating paralogues, to maximise the
finding of all conserved uORFs independent of their
length.

One possible criticism of our approach is that we have
included uORFs as short as 9 nt. However, there are two
independent reports that showed that the tiny uORF of
SAMDC is functional [27,59], although there is contro-
versy regarding the type of effect and conditions under
which the tiny uORF of SAMDC exerts its affect on down-
stream translation. Therefore, there is insufficient data to
conclude one way or the other, and as such we have
elected to be conservative. This has allowed us to find sev-
eral genes (e.g. protein phosphatase 2a, a protein contain-
ing a ww domain, and GAMYB-binding protein) that were
not found by Hayden and Jorgensen's 'uORF-Finder' pro-
gram [12] because it only detected conserved uORFs
greater than 63 codons.

Better quality assembled EST data is needed
One unavoidable limitation of using incomplete assem-
bled EST data for orthology determination is that ortho-
logues could be falsely assigned in situations where
sequences have multiple protein domains. This will
increase the number of putative orthologues identified
prior to the prediction of uORFs, which is not necessarily
harmful as these predictions are manually curated. How-
ever, to minimise this problem, we used a sequence cov-
erage cutoff of at least 70% of any of the protein sequences
in the alignment (see Methods). We also grouped the
orthologues into several datasets representing the number
of orthologues that could be found for each gene. For
example, the datasets included rice genes that had ortho-
logues in four other cereals (5 out of 5 dataset), in three
other cereals (4 out of 5 dataset), and in two other cereals
(3 out of 5 dataset). This grouping of orthologues will also
help minimise the effects of missing, incomplete, or erro-
neous assembled EST data.

Tran_Figure3.epsFigure 3
Tran_Figure3.eps. 'A frequency distribution of the length (nt) of rice uORFs conserved in four other cereals and in Arabi-
dopsis.
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There are reports of conserved uORFs in monocots and
dicots that share high sequence similarity that were not
found by our pipeline, due to either lack of sequence con-
servation or due to limitations in the assembled ESTs cur-
rently available. For example, the uORF found in the basic
region leucine zipper (bZIP)-type transcription factor
AtB2/AtbZIP11 was found to be conserved in rice and bar-
ley [32], but not in the other cereals included in this study

because the sequences are not represented in the other
datasets. Current limitations include incomplete data
(i.e., not all sequences are represented) and poor quality
sequence data, leading to frame-shifts and incorrect pre-
diction of uORFs. Therefore, it is possible to obtain higher
numbers of conserved uORFs if the cluster size was
relaxed to two out of five, but this approach would reduce

Table 5: Comparison of conserved cereal uORFs and their main ORF start context'

In five cereals

Identifier uORF1 uORF2 uORF3 uORF4 uORF5 Main ORF

AK10609
5

131_9_17a 

CCGATGCb
157_1179 
CCCATGG

AK10339
1

205_75_74 
TTGATGA

354_1116 
CAAATGG

AK10058
9

240_9_334 
TGGATGT

248_156_179 
CTAATGG

296_108_179 
TTGATGT

583_1197 
CCAATGG

AK07330
3

67_9_142 
TCCATGC

135_9_74 
CTCATGA

218_774 
AGCATGG

AK07286
8

249_27_248 
GGAATGC

259_195_70 
AAGATGT

269_39_216 
TGCATGC

338_90_96 
TTCATGA

392_36_96 
ACTATGG

524_1332 
GTGATGG

AK07264
9

100_192_117 
CTCATGA

409_1443 
AAGATGG

AK06614
5

178_12_58 
GCTATGG

248_360 
GAGATGG

AK06479
2

276_15_187 
CGGATGC

478_330 
GGAATGG

AK06052
3

173_123_185 
ACTATGG

481_501 
CGGATGG

In rice and arabidopsis

Identifier uORF1 uORF2 uORF3 uORF4 uORF5 Main ORF

AK10110
0

142_12_21 
GCCATGG

175_1578 
AAGATGG

AK06695
2

365_66_182 
CCAATGA

368_63_182 
ATGATGA

503_51_59 
CTGATGA

613_2085 
GGGATGC

AK11959
2

304_90_148 
CCGATGA

542_1032 
GCGATGG

AK10058
9

248_156_179 
CTAATGG

583_1197 
CCAATGG

AK10339
1

176_30_148 
AACATGA

205_75_74 
TTGATGA

354_1116 
CAAATGG

AK06953
4

813_9_432 
TCGATGA

1254_1602 
GAGATGC

AK06952
6

214_126_544 
GATATGG

690_9_185 
TTGATGG

820_36_28 
CATATGA

884_1455 
AAAATGG

AK07286
8

338_90_96 
TTCATGA

524_1332 
GTGATGG

AK06052
3

173_123_185 
ACTATGG

206_90_185 
CCGATGC

481_501 
CGGATGG

AK06741
2

222_84_49 
CTGATGC

355_1059 
GGGATGG

AK10227
7

228_117_150 
TCTATGC

495_1017 
GAAATGG

a Pre-orf distance_uORF length_intercistronic distance.
b uORF or mainORF sequence context from -3 position to +4.
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the power of comparative R-nomics, and would require
significant manual curation.

Sequence dependent and independent uORF
The cereal uORFs identified here are likely to encode bio-
active peptides as selection has occurred at the peptide
level. Those cereal uORFs that showed sequence conserva-
tion at the amino acid level with Arabidopsis are likely to
be classified as sequence-dependent, as the encoded uORF
peptide has remained conserved across the angiosperms,
suggesting the peptide is directly involved in translational
control [9] or has some other biological activity [12-15].
Some identified uORFs were conserved only within the
cereals, indicating a relative recent origin or selective loss
of the uORFs in Arabidopsis. We cannot rule out the pos-
sibility that some conserved cereal uORFs could also act in
a sequence-independent manner, as a recent paper
reported a conserved uORF in human and mouse ribos-
omal protein S6 kinase genes (the same finding by our
analysis in cereals, Table 1), and suggested that the uORF
translational control of the main ORF was through reini-
tiation [26]. Experiments are needed to confirm the bio-
logical activity of the uORF in ribosomal protein S6 kinase
gene.

The sequence context surrounding an uORF (ignoring sec-
ondary structure) does not appear to play a major role in
its recognition and initiation of translation at an uORF.
We hypothesize that this sub-optimal uORF sequence
context (compared to optimal Kozak consensus [47]
sequence for the main coding region) would allow for
leaky scanning [48,60] of the uORF, and preferential ini-
tiation at the downstream main coding region. An opti-
mal uORF sequence context would provide rigid control
in the translational regulation of the main coding region,
as initiation would predominantly start at the uORF
resulting in reduced availability of initiation factors, such
as eIF2, for re-initiation at the downstream main open
reading frame.

Sequence-independent uORFs allow for low-level transla-
tion of the downstream main coding region [61]. Low-
level translation is possible, as sequence-independent
uORFs do not cause ribosomal stalling as seen in
sequence-dependent uORFs. The regulatory mechanism
of the sequence-independent uORF involves other factors
(uORF recognition, length, stop codon environment, and
the downstream intercistronic sequence) that influence
reinitiation efficiency [18,19], and more recently leaky
scanning [48], to regulate downstream translation. We
analysed the codon usage of conserved uORFs and found
no preferential usage of rare codons in the uORFs. There-
fore, it is unlikely that the uORF codon usage could con-
tribute to low-level translation as seen for certain rare

codons in Xenopus laevis [50] and Eschericia coli [51] that
can reduce translation.

In conclusion, this study showed that the uORFSCAN
pipeline is a useful tool for identifying conserved uORFs
in closely related species. This pipeline has allowed us to
identify 29 conserved uORFs in cereals. Possibly more
conserved uORFs will be identified once the cDNA and
assembled EST datasets become more comprehensive.
These conserved rice uORFs will be useful for future func-
tional analyses that should provide some perspective into
downstream translational regulation by uORFs.

List of abbreviations
5'-UTR: five prime untranslated region; uORF: upstream
open reading frame; EST: expressed sequence tag; RBH:
reciprocal best hit; CDS: coding sequence.

Authors' contributions
MT conducted the research, analysed the data and drafted
the manuscript. UB and CJS designed the research, partic-
ipated in the study design, coordinated the study and con-
tributed to the final manuscript. All authors read and
approved the final manuscript.

Additional material

Additional file 1
TRAN_TableS1. 'The uORFs predicted by uORFSCAN in 4 out of 5'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S1.doc]

Additional file 2
TRAN_TableS2. 'The uORFs predicted by uORFSCAN in 3 out of 5'
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S2.doc]

Additional file 3
TRAN_TableS3. 'The uORFs predicted by uORFSCAN in 4 out of 4'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S3.doc]

Additional file 4
TRAN_TableS4. 'The uORFs predicted by uORFSCAN in 3 out of 4'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S4.doc]

Additional file 5
TRAN_TableS5. 'The uORFs predicted by uORFSCAN in 3 out of 3'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S5.doc]
Page 14 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S5.doc


BMC Genomics 2008, 9:361 http://www.biomedcentral.com/1471-2164/9/361
Acknowledgements
The authors thank Julian Schwerdt for high performance computing sup-
port at the South Australian Partnership for Advanced Computing 
(SAPAC), Andreas Schreiber for statistical support, and Rodney Davies for 
helpful discussions. This work was supported by the Australian Centre for 
Plant Functional Genomics (ACPFG) funded by Grains Research and Devel-
opment Corporation (GRDC), Australian Research Council (ARC), the 
University of Adelaide, and the Government of South Australia. Michael 
Tran is the recipient of an ACPFG Postgraduate Scholarship.

References
1. Clote P: RNALOSS: a web server for RNA locally optimal sec-

ondary structures.  Nucleic acids research 2005, 33(Web Server
issue):W600-4.

2. Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger
M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR 3rd,
Winzeler EA: Global analysis of transcript and protein levels
across the Plasmodium falciparum life cycle.  Genome Res 2004,
14(11):2308-2318.

3. Mignone F, Gissi C, Liuni S, Pesole G: Untranslated regions of
mRNAs.  Genome Biol 2002, 3(3):reviews0004.1–reviews0004.10.

4. Holcik M, Sonenberg N, Korneluk RG: Internal ribosome initia-
tion of translation and the control of cell death.  Trends Genet
2000, 16:469-473.

5. Kozak M: An analysis of 5'-noncoding sequences from 699 ver-
tebrate messenger RNAs.  Nucleic Acids Res 1987,
15(20):8125-8148.

6. Raney A, Baron AC, Mize GJ, Law GL, Morris DR: In vitro transla-
tion of the upstream open reading frame in the mammalian
mRNA encoding S-adenosylmethionine decarboxylase.  J Biol
Chem 2000, 275(32):24444-24450.

7. Wang L, Wessler SR: Role of mRNA secondary structure in
translational repression of the maize transcriptional activa-
tor Lc(1,2).  Plant Physiol 2001, 125(3):1380-1387.

8. Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, Koromilas AE,
Zhou L, Snider MD, Scheuner D, Kaufman RJ, Hatzoglou M: The zip-
per model of translational control: a small upstream ORF is
the switch that controls structural remodeling of an mRNA
leader.  Cell 2003, 113(4):519-531.

9. Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin
D, Michael AJ: Characterization of monocot and dicot plant S-
adenosyl-l-methionine decarboxylase gene families including
identification in the mRNA of a highly conserved pair of
upstream overlapping open reading frames.  Biochem J 2001,
353(Pt 2):403-409.

10. Jin X, Turcott E, Englehardt S, Mize GJ, Morris DR: The two
upstream open reading frames of oncogene mdm2 have dif-
ferent translational regulatory properties.  J Biol Chem 2003,
278(28):25716-25721.

11. Lovett PS, Rogers EJ: Ribosome regulation by the nascent pep-
tide.  Microbiol Rev 1996, 60(2):366-385.

12. Hayden CA, Jorgensen RA: Identification of novel conserved
peptide uORF homology groups in Arabidopsis and rice
reveals ancient eukaryotic origin of select groups and prefer-
ential association with transcription factor-encoding genes.
BMC Biol 2007, 5:32.

13. Crowe ML, Wang XQ, Rothnagel JA: Evidence for conservation
and selection of upstream open reading frames suggests
probable encoding of bioactive peptides.  BMC Genomics 2006,
7:16.

14. Hayden CA, Bosco G: Comparative genomic analysis of novel
conserved peptide upstream open reading frames in Dro-
sophila melanogaster and other dipteran species.  BMC
Genomics 2008, 9:61.

15. Iacono M, Mignone F, Pesole G: uAUG and uORFs in human and
rodent 5'untranslated mRNAs.  Gene 2005, 349:97-105.

16. Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS:
Physical evidence for distinct mechanisms of translational
control by upstream open reading frames.  EMBO J 2001,
20(22):6453-6463.

17. Luo Z, Sachs MS: Role of an upstream open reading frame in
mediating arginine-specific translational control in Neu-
rospora crassa.  J Bacteriol 1996, 178(8):2172-2177.

18. Vilela C, McCarthy JE: Regulation of fungal gene expression via
short open reading frames in the mRNA 5'untranslated
region.  Mol Microbiol 2003, 49(4):859-867.

19. Meijer HA, Thomas AA: Control of eukaryotic protein synthesis
by upstream open reading frames in the 5'-untranslated
region of an mRNA.  Biochem J 2002, 367(Pt 1):1-11.

20. Hemmings-Mieszczak M, Hohn T, Preiss T: Termination and pep-
tide release at the upstream open reading frame are
required for downstream translation on synthetic shunt-
competent mRNA leaders.  Mol Cell Biol 2000, 20(17):6212-6223.

21. Ruiz-Echevarria MJ, Peltz SW: The RNA binding protein Pub1
modulates the stability of transcripts containing upstream
open reading frames.  Cell 2000, 101(7):741-751.

22. Vilela C, Ramirez CV, Linz B, Rodrigues-Pousada C, McCarthy JE:
Post-termination ribosome interactions with the 5'UTR
modulate yeast mRNA stability.  EMBO J 1999,
18(11):3139-3152.

23. Wu C, Amrani N, Jacobson A, Sachs MS: The use of fungal in vitro
systems for studying translational regulation.  Methods Enzymol
2007, 429:203-225.

24. Spevak CC, Park EH, Geballe AP, Pelletier J, Sachs MS: her-2
upstream open reading frame effects on the use of down-
stream initiation codons.  Biochem Biophys Res Commun 2006,
350(4):834-841.

25. Selpi, Bryant CH, Kemp GJL, Cvijovic M: A first step towards
learning which uORFs regulate gene expression.  J Int Bioinfor-
matics 2006, 3(2):31-44.

26. Kochetov AV, Ahmad S, Ivanisenko V, Volkova OA, Kolchanov NA,
Sarai A: uORFs, reinitiation and alternative translation start
sites in human mRNAs.  FEBS Lett 2008, 582(9):1293-1297.

Additional file 6
Tran_FigureS1. 'The pattern of nucleotide sequence conservation calcu-
lated for the decanucleotide surrounding the uORF AUG triplet using 
WebLogo [62]'. The overall height of each stack indicates the nucleotide 
sequence conservation at that position (measured in bits), whereas the 
height of nucleotide symbols (A, T, G, C) within the stack reflects the rel-
ative frequency of the corresponding nucleotide at that position. (B) Posi-
tions showing detectable nucleotide sequence conservation were 
magnified.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S6.eps]

Additional file 7
Tran_FigureS2. 'Relative frequencies of codons showing significant devi-
ation in codon usage between rice uORFs and rice main coding regions'. 
Rice uORF codon usage calculated from http://www.bioinformatics.org/
sms/codon_usage.html.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S7.eps]

Additional file 8
TRAN_TableS6. 'ClustalW alignment of uORFs identified by uORFS-
CAN in 5 out of 5 cereals and in Arabidopsis'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S8.doc]

Additional file 9
uORFSCAN. 'uORFSCAN program'.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-361-S9.zip]
Page 15 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S6.eps
http://www.bioinformatics.org/sms/codon_usage.html
http://www.bioinformatics.org/sms/codon_usage.html
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S7.eps
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S8.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-361-S9.zip
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15520293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3313277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3313277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10829027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10829027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10829027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12757712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12757712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12757712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11139406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11139406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11139406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12730202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17663791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16438715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16438715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16438715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237443
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15777708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8636015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12890013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117416
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10938098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10938098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10938098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10892745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17913625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17913625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18358843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18358843


BMC Genomics 2008, 9:361 http://www.biomedcentral.com/1471-2164/9/361
27. Hu WW, Gong H, Pua EC: The pivotal roles of the plant S-ade-
nosylmethionine decarboxylase 5' untranslated leader
sequence in regulation of gene expression at the transcrip-
tional and posttranscriptional levels.  Plant Physiol 2005,
138(1):276-286.

28. Tassoni A, Franceschetti M, Tasco G, Casadio R, Bagni N: Cloning,
functional identification and structural modelling of Vitis vin-
ifera S-adenosylmethionine decarboxylase.  J Plant Physiol 2007,
164(9):1208-1219.

29. Locatelli F, Magnani E, Vighi C, Lanzanova C, Coraggio I: Inhibitory
effect of myb7 uORF on downstream gene expression in
homologous (rice) and heterologous (tobacco) systems.
Plant Mol Biol 2002, 48(3):309-318.

30. Lohmer S, Maddaloni M, Motto M, Salamini F, Thompson RD: Trans-
lation of the mRNA of the maize transcriptional activator
Opaque-2 is inhibited by upstream open reading frames
present in the leader sequence.  Plant Cell 1993, 5(1):65-73.

31. Wang L, Wessler SR: Inefficient reinitiation is responsible for
upstream open reading frame-mediated translational
repression of the maize R gene.  Plant Cell 1998,
10(10):1733-1746.

32. Wiese A, Elzinga N, Wobbes B, Smeekens S: A conserved
upstream open reading frame mediates sucrose-induced
repression of translation.  Plant Cell 2004, 16(7):1717-1729.

33. Ng DW, Chandrasekharan MB, Hall TC: The 5' UTR negatively
regulates quantitative and spatial expression from the ABI3
promoter.  Plant Mol Biol 2004, 54(1):25-38.

34. Ditzer A, Bartels D: Identification of a dehydration and ABA-
responsive promoter regulon and isolation of corresponding
DNA binding proteins for the group 4 LEA gene CpC2 from
C. plantagineum.  Plant Mol Biol 2006, 61(4-5):643-663.

35. Nishimura T, Wada T, Yamamoto KT, Okada K: The Arabidopsis
STV1 protein, responsible for translation reinitiation, is
required for auxin-mediated gynoecium patterning.  Plant Cell
2005, 17(11):2940-2953.

36. Pesole G, Gissi C, Grillo G, Licciulli F, Liuni S, Saccone C: Analysis
of oligonucleotide AUG start codon context in eukaryotic
mRNAs.  Gene 2000, 261(1):85-91.

37. Pavesi G, Zambelli F, Pesole G: WeederH: an algorithm for find-
ing conserved regulatory motifs and regions in homologous
sequences.  BMC Bioinformatics 2007, 8:46.

38. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y,
Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C,
Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li
J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu
M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X,
Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong
J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W,
Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P,
Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G,
Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen
S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H: A draft
sequence of the rice genome (Oryza sativa L. ssp. indica).  Sci-
ence 2002, 296(5565):79-92.

39. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N,
Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki
T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo
Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y,
Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Nari-
kawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki
J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R,
Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K,
Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K,
Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N,
Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T,
Yoshino M, Hayashizaki Y, Yasunishi A: Collection, mapping, and
annotation of over 28,000 cDNA clones from japonica rice.
Science 2003, 301(5631):376-379.

40. Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Dis-
telfeld A, Dubcovsky J: Construction and characterization of a
half million clone BAC library of durum wheat (Triticum tur-
gidum ssp. durum).  Theor Appl Genet 2003, 107(5):931-939.

41. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith
HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P,
Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng
XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor

Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA,
Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M,
Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern
A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington
K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill
M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di
Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W,
Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z,
Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov
GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nussk-
ern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang
A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J,
Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W,
Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik
A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead
M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML,
Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K,
Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes
C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C,
Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D,
McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nel-
son K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rod-
riguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C,
Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S,
Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-
Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ,
Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T,
Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V,
Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu
A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang
YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D,
Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A,
Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S,
Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C,
Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J,
Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck
J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T,
Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu
D, Wu M, Xia A, Zandieh A, Zhu X: The sequence of the human
genome.  Science 2001, 291(5507):1304-1351.

42. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool.  J Mol Biol 1990, 215(3):403-410.

43. Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y:
Predicting function: from genes to genomes and back.  J Mol
Biol 1998, 283(4):707-725.

44. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on
protein families.  Science 1997, 278(5338):631-637.

45. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice.  Nucleic Acids Res 1994,
22(22):4673-4680.

46. Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ:
Abrogation of upstream open reading frame-mediated
translational control of a plant S-adenosylmethionine decar-
boxylase results in polyamine disruption and growth pertur-
bations.  J Biol Chem 2002, 277(46):44131-44139.

47. Joshi CP, Zhou H, Huang X, Chiang VL: Context sequences of
translation initiation codon in plants.  Plant Mol Biol 1997,
35(6):993-1001.

48. Wang XQ, Rothnagel JA: 5'-untranslated regions with multiple
upstream AUG codons can support low-level translation via
leaky scanning and reinitiation.  Nucleic Acids Res 2004,
32(4):1382-1391.

49. Fernandez J, Yaman I, Huang C, Liu H, Lopez AB, Komar AA, Caprara
MG, Merrick WC, Snider MD, Kaufman RJ, Lamers WH, Hatzoglou
M: Ribosome stalling regulates IRES-mediated translation in
eukaryotes, a parallel to prokaryotic attenuation.  Mol Cell
2005, 17(3):405-416.

50. Meijer HA, Thomas AA: Ribosomes stalling on uORF1 in the
Xenopus Cx41 5' UTR inhibit downstream translation initia-
tion.  Nucleic Acids Res 2003, 31(12):3174-3184.

51. Chumpolkulwong N, Sakamoto K, Hayashi A, Iraha F, Shinya N, Mat-
suda N, Kiga D, Urushibata A, Shirouzu M, Oki K, Kigawa T,
Yokoyama S: Translation of 'rare' codons in a cell-free protein
Page 16 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15821146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16982115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11855732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8439744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8439744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8439744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9761799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9761799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9761799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16897481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16227452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16227452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16227452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11164040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11164040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11164040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17286865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17286865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17286865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11935017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11935017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12830387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11181995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9381173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12205086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12205086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12205086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9426620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9426620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14990743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694341
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12799445


BMC Genomics 2008, 9:361 http://www.biomedcentral.com/1471-2164/9/361
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

synthesis system from Escherichia coli.  J Struct Funct Genomics
2006, 7(1):31-36.

52. Shu P, Dai H, Gao W, Goldman E: Inhibition of translation by
consecutive rare leucine codons in E. coli: absence of effect
of varying mRNA stability.  Gene Expr 2006, 13(2):97-106.

53. Col B, Oltean S, Banerjee R: Translational regulation of human
methionine synthase by upstream open reading frames.  Bio-
chim Biophys Acta 2007, 1769(9-10):532-540.

54. Wang X, Proud CG: A novel mechanism for the control of
translation initiation by amino acids, mediated by phosphor-
ylation of eukaryotic initiation factor eIF2B.  Mol Cell Biol 2008,
28(5):1429-1442.

55. Bayer TS, Booth LN, Knudsen SM, Ellington AD: Arginine-rich
motifs present multiple interfaces for specific binding by
RNA.  Rna 2005, 11(12):1848-1857.

56. David-Assael O, Saul H, Saul V, Mizrachy-Dagri T, Berezin I, Brook E,
Shaul O: Expression of AtMHX, an Arabidopsis vacuolar
metal transporter, is repressed by the 5' untranslated region
of its gene.  J Exp Bot 2005, 56(413):1039-1047.

57. Tabuchi T, Okada T, Azuma T, Nanmori T, Yasuda T: Posttran-
scriptional regulation by the upstream open reading frame
of the phosphoethanolamine N-methyltransferase gene.  Bio-
sci Biotechnol Biochem 2006, 70(9):2330-2334.

58. Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi
T: The dwarf phenotype of the Arabidopsis acl5 mutant is
suppressed by a mutation in an upstream ORF of a bHLH
gene.  Development 2006, 133(18):3575-3585.

59. Hanfrey C, Elliott KA, Franceschetti M, Mayer MJ, Illingworth C,
Michael AJ: A dual upstream open reading frame-based
autoregulatory circuit controlling polyamine-responsive
translation.  J Biol Chem 2005, 280(47):39229-39237.

60. Smith E, Meyerrose TE, Kohler T, Namdar-Attar M, Bab N, Lahat O,
Noh T, Li J, Karaman MW, Hacia JG, Chen TT, Nolta JA, Muller R,
Bab I, Frenkel B: Leaky ribosomal scanning in mammalian
genomes: significance of histone H4 alternative translation
in vivo.  Nucleic Acids Res 2005, 33(4):1298-1308.

61. Child SJ, Miller MK, Geballe AP: Translational control by an
upstream open reading frame in the HER-2/neu transcript.  J
Biol Chem 1999, 274(34):24335-24341.

62. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a
sequence logo generator.  Genome Res 2004, 14(6):1188-1190.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16703415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17017124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17017124
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17683808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18160716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18160716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18160716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16314457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16314457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16314457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15710632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16936072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15741183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10446211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10446211
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173120
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Data material
	Orthologue searches
	Verification of main ORF
	Statistical analysis of codon usage

	Results
	The uORFSCAN pipeline for discovering uORFs
	Conserved upstream open reading frames appear to be rare
	Position and occupation of uORFs in 5'-UTRs
	The length distribution of uORFs
	Sequence conservation in uORFs
	Start codon context and codon usage of uORFs

	Discussion and conclusion
	Conserved uORFs are rare
	Cereal uORFs conserved in Arabidopsis
	Better quality assembled EST data is needed
	Sequence dependent and independent uORF

	List of abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

