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Abstract
Background: Transcription factors (TFs) have multiple combinatorial forms to regulate the
transcription of a target gene. For example, one TF can help another TF to stabilize onto regulatory
DNA sequence and the other TF may attract RNA polymerase (RNAP) to start transcription;
alternatively, two TFs may both interact with both the DNA sequence and the RNAP. The different
forms of TF-TF interaction have different effects on the probability of RNAP's binding onto the
promoter sequence and therefore confer different transcriptional efficiencies.

Results: We have developed an analytical method to identify the thermodynamic model that best
describes the form of TF-TF interaction among a set of TF interactions for every target gene. In
this method, time-course microarray data are used to estimate the steady state concentration of
the transcript of the target gene, as well as the relative changes of the active concentration for each
TF. These estimated concentrations and changes of concentrations are fed into an inference
scheme to identify the most compatible thermodynamic model. Such a model represents a
particular way of combinatorial control by multiple TFs on a target gene.

Conclusions: Applying this approach to time-course microarray dataset of embryonic stem cells,
we have inferred five interaction patterns among three regulators: Oct4, Sox2 and Nanog on ten
target genes.
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Background
Quantitative models describing gene expression in terms
of quantity, speed and timing in different environmental
contexts are essential for the study of many biological
processes. Thermodynamic models are based on the
assumption that the level of gene expression is propor-
tional to the equilibrium probability that RNA polymer-
ase (RNAP) is bound to the promoter of the interested
gene; and these probabilities can be computed in a statis-
tical mechanics framework. In prokaryotes under well
studied assumptions, a function is available to relate each
particular form of interaction among transcription factors
(TFs) and RNAP to the level of the expression of the target
gene [1-3]. Such functions are termed “regulation factors”
[1]. There are to date few discussions on the extent to
which these regulation factors hold for eukaryotes [3].

In this paper we propose a method to select regulation fac-
tors, i.e. to infer the form of TF-TF and TF-RNAP interac-
tions for each target gene. This method enables the
investigation of regulation factors from empirical data in
eukaryotic systems. Applying this method to a time course
microarray dataset of retinoid acid induced differentiation
of mouse embryonic stem cells (ESCs) [4], we clearly dis-
tinguish different interaction forms among Oct4, Sox2
and Nanog, and their roles as activators, repressors and
helpers on each target gene. The detailed characterization
of interaction forms among multiple transcription factors
allows us to build a core transcription network in ESCs
using a bottom-up approach.

ESCs are derived from early mammalian embryos and can
be propagated through apparently unlimited, undifferen-
tiated proliferation (self-renewal) in cultured cell lines
(mouse: [5,6], human: [7]). ESCs possess several notable
properties that account for their exceptional scientific and
medical importance. ESCs have remarkable potential to
develop into many different cell types in the body (known
as pluripotency [8]) and therefore they may be used to
study both normal and abnormal body developments. A
major challenge in the study of ESCs is to explain how the
complex gene network is wired to control their properties
of pluripotency and self-renewal. Transcriptional control
is thought to be a key control mechanism for ESCs to
maintain their undifferentiated state [9-16]. Regulatory
proteins and relevant genomic sequences work together to
precisely tune the expression levels of thousands of target
genes in ESCs. The interactions among these regulatory
proteins and their interactions with particular genomic
sequences collectively define a transcription network.
Understanding of the part of the network at work in ESCs,
i.e. the functional state of the transcription network in
ESCs, can reveal how the undifferentiated state of ESCs is
maintained, and how it can be disrupted to initiate differ-
ent routes of differentiation.

Results
Simulation data
We use three regulatory patterns to test our new algorithm
(Figure 1). Under the first regulatory pattern (Row 1, Fig-
ure 1), we do two simulations . First, TF's expression
increases linearly over time. real_TF_exp = 500+500T,
where T=2, 4, 8, 16, 32, 64 and 128. In the second simu-
lation the TF's expression increases exponentially over
time. real_TF_exp = 500+200logT, where T=2, 4, 8, 16, 32,
64 and 128. Because there is only one TF in consideration,
there are only two candidate regulatory models, either
repression (Model 1) or activation (Model 2). In both
simulations our method correctly picks Model 2 (Row 1,
Figure 1). Two simulations are performed under the sec-
ond regulatory pattern (Row 2, Figure 1). For each simu-
lation, our method consistently identifies the correct
regulatory model out of five candidate models (Row 2,
Figure 1). Under the third regulatory pattern, we do a two-
step analysis. In the first step, we apply the method to
identify the regulatory relationship between TFs A and B
(Row 3, Figure 1), i.e. one TF controls the expression of
another TF. After a regulatory model is determined
between A and B, we use the expression pattern of B
derived from the Step 1 to identify the interaction form
between TFs B and C. There are two candidate models for
Step 1 and five candidate models for Step 2. Altogether 10
potential regulatory models exist among the four genes. In
two independent simulations, our method has both iden-
tified the correct regulatory models (Row 3, Figure 1).

Sensitivity analysis
We check to what extent the choices of parameters affect
the method performance. Regulatory model 7 (the regula-
tory pattern between B, C, D in Row 3, Figure 1) is chosen
to perform the sensitivity analysis. We vary KTF, Kg, Kd and
qp in very wide ranges, for example an 10000 fold range
for KTF, and re-run our algorithm. Results in Table 1 show
that the method can robustly identify the correct regula-
tory model even if the parameters are off-set by 100 fold.
The only exceptions are the cases where the synthesis rates
of mRNA are set to be too slow – below 1 mRNA molecule
per 10 minute, as compared to the default of 10 mRNA
per minute from empirical data. We therefore do not sug-
gest using a very small synthesis rate.

Interaction models for Oct4 and Nanog in mouse 
embryonic stem cells
Oct4, Sox2 and Nanog are the key transcription factors to
maintain pluripotency ESCs. Nanog is known to be
jointly regulated by Oct4 and Sox2.

Time course microarray data have been generated for
retinoid acid induced differentiation of mouse ESCs [4].
Genes that are jointly regulated by Oct4 and Nanog have
been reliably identified [13]. Among these target genes,
Page 2 of 11
(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 1):S18 http://www.biomedcentral.com/1471-2164/9/S1/S18

Page 3 of 11
(page number not for citation purposes)

Results from synthetic data using the Interaction-Identifier algorithmFigure 1
Results from synthetic data using the Interaction-Identifier algorithm. The concentration of A was simulated using 
either a linear function: [TF] = 500+500T, or an exponential function [TF] = 500+200logT, where in both equations, T is the 
time.
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nine genes (Jarid2, Sall4, Rif1, Gbx2, REST, Zin3, Foxc1,
Smarcad1 and Atbf1) are represented on the Affymetrix
U133 microarray and therefore their time course data are
available [4]. We first apply the Interaction-Identifier
method to identify the regulatory model for Nanog fol-
lowing the same procedure as we did for the synthetic
data. The time course expression data suggest that Oct4
and Sox2 help each other to stabilize onto the regulatory
sequence and attract the RNAP (Figure 2). We then iden-
tify the regulatory models for the Oct4 and Nanog regu-
lated genes. Although these nine genes are all regulated by
Oct4 and Nanog in ESCs, they are not regulated under the
same mechanism. Jarid2, Sall4, Rif1 and Gbx2, are regu-
lated under model 7 (Figure 3), where Oct4 and Nanog
are synergistic activators. REST and Zic3 are both regu-
lated under model 3, with one TF being an activator and
the other a helper (Figure 4). Atbf1 is regulated under
model 5 where Oct4 and Nanog are independent repres-
sors (Figure 5A). Foxc1 is regulated under model 4 where
Nanog is a helper and Oct4 is a repressor (Figure 5B).
These results suggest that Atbf1 and Foxc1 are probably

involved in lineage differentiation and therefore need to
be repressed by key transcription factors in ESCs. Indeed,
Foxc1 is involved in ocular development [17] and Abf1
mRNA is found to be abundant in prostate [18]. Finally,
none of the models being considered derives an expres-
sion pattern similar to the observed expression pattern of
Smarcad1 (All Pearson correlations are smaller than 0.5).
This may suggest that besides Oct4 and Nanog, there are
other mechanisms responsible for the transcriptional con-
trol of Smarcad1.

Discussion
New algorithms combining the strengths of both mecha-
nistic modeling and statistical inference approaches to
identify genetic regulatory network are in demand. The
methodology proposed in this study is one step towards
this goal. This new method integrates three pieces of infor-
mation together to infer a genetic regulatory network: a)
mechanistic models of transcription factor binding and
RNA transcription [3], b) prior knowledge of network
components based on ChIP-chip data, c) time course

Table 1: Sensitivity test for KTF , Kg , qp, Kd and H. Numbers in bold represent the highest correlations under each parameter set. The 
results indicate that the correct model can be identified even with drastic variation in parameters used in the model.

T KTF* Pearson Kg Pearson Kd Pearson qp Pearson H Pearson

D 1 10 60/36 0.05 2
model 3 0.01 0.950042 1/60 0.967087 60/24 0.967081 1/35 0.967742 1 0.971055

0.1 0.950513 1/6 0.967081 60/30 0.967081 0.05 0.967081 2 0.967081
1 0.967081 10 0.967081 60/36 0.967081 0.10 0.966161 3 0.963737
10 0.957063 600 0.967081 60/42 0.967081 1 0.964237 4 0.964052
100 0.956187 1000 0.967081 60/48 0.967081 10 0.963906 5 0.968799

model 4 0.01 -0.95142 1/60 -0.96956 60/4 -0.96954 1/35 -0.96947 1 -0.97152
0.1 -0.95166 1/6 -0.96953 60/30 -0.96954 0.05 -0.96954 2 -0.96954
1 -0.96954 10 -0.96954 60/36 -0.96954 0.10 -0.96969 3 -0.96932
10 -0.95665 600 -0.96954 60/42 -0.96954 1 -0.97154 4 -0.97191
100 -0.95622 1000 -0.96954 60/48 -0.96954 10 -0.97186 5 -0.97484

model 5 0.01 -0.88219 1/60 -0.79531 60/24 -0.79529 1/35 -0.79534 1 -0.92423
0.1 -0.97198 1/6 -0.7953 60/30 -0.79529 0.05 -0.79529 2 -0.79529
1 -0.79529 10 -0.79529 60/36 -0.79529 0.10 -0.79518 3 -0.59358
10 -0.61602 600 -0.79529 60/42 -0.79529 1 -0.79363 4 -0.40171
100 -0.6125 1000 -0.79529 60/48 -0.79529 10 -0.78977 5 -0.2617

model 6 0.01 0 1/60 -0.96681 60/24 -0.96681 1/35 -0.96684 1 -0.96778
0.1 -0.97196 1/6 -0.9668 60/30 -0.96681 0.05 -0.96681 2 -0.96681
1 -0.96681 10 -0.96681 60/36 -0.96681 0.10 -0.96674 3 -0.95978
10 -0.66535 600 -0.96681 60/42 -0.96681 1 -0.96544 4 -0.93539
100 -0.61378 1000 -0.96681 60/48 -0.96681 10 -0.95794 5 -0.8747

model 7 0.01 0.96079 1/60 0.969306 60/24 0.969321 1/35 0.969576 1 0.97157
0.1 0.961556 1/6 0.96932 60/30 0.969321 0.05 0.969321 2 0.969321
1 0.969321 10 0.969321 60/36 0.969321 0.10 0.96904 3 0.968987
10 0.709205 600 0.96932 60/42 0.969321 1 0.968629 4 0.973865
100 0.614337 1000 0.96932 60/48 0.96932 10 0.968572 5 0.98013

model 8 0.01 -0.97205 1/60 -0.92839 60/24 -0.9284 1/35 -0.92828 1 -0.94378
0.1 -0.97213 1/6 -0.9284 60/30 -0.9284 0.05 -0.9284 2 -0.9284
1 -0.9284 10 -0.9284 60/36 -0.9284 0.10 -0.92855 3 -0.86111
10 -0.95055 600 -0.9284 60/42 -0.9284 1 -0.92884 4 -0.73939
100 -0.95336 1000 -0.9284 60/48 -0.9284 10 -0.92888 5 -0.68121

* The unit number of KTF is the maximum expression value /10.
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expression data. Furthermore, this method combines two
methodologies together, kinetic modelling and correla-
tion analysis. In the following, we further compare this
new method with previous efforts in the same vein and
explain the rationale and assumptions of this new
approach.

We choose to represent the expression levels as continu-
ous instead of discrete variables in this study. Reverse
engineering approaches have been developed to infer
boolean networks underlying changes in the gene expres-
sion levels assuming that expression levels of different
genes can be categorized into different states [19]. In real-
ity, gene expression levels reflected by microarray data
tend to be continuous rather than discrete. Furthermore,
continuous signals have a greater capacity over discrete
signals in implementing different control functions, such
as signal transformation and transduction, precise feed-
back and feed forward loops and maintaining homeosta-
sis [20]. An implicit assumption of using continuous
concentrations of the chemical species (mRNA and pro-
tein) is that the stochastic fluctuations due to single mol-
ecules are ignored. In both prokaryotic and eukaryotic
cells, noises in gene expression levels have been observed
and suggested to be an evolvable trait, which possibly
plays a role in cellular phenotypic variation and cellular
differentiation [21-24]. Both stochasticity inherent in the
biochemical process of gene expression (intrinsic noise)
and fluctuations in other cellular components (extrinsic
noise) contribute substantially to overall phenotypic vari-
ation [21]. In this study, the mRNA signals obtained are
effectively averages of pooled populations of cells; where
the influence of stochastic noise of single molecules on
chemical concentration (mRNA and protein) are presum-
ably effectively decreased.

Three other assumptions are made in the methodological
framework. First the form of the interaction among TFs
and RNAP are assumed to be invariant for the different
conditions under which the gene expression data are
obtained. This assumption can be violated when the
experimental conditions are dramatically different from
each other, for example, under different stress conditions.
This assumption is better satisfied by using data from one
biological process, for example, a developmental process.
For this reason we suggest using time course gene expres-
sion data rather than data generated from different exper-
imental conditions. Even for time course data, the users
should exercise caution, because the regulation factor can
still change in some circumstances, such as when the cell
goes through different phases of the cell cycle [25,26]. The
second assumption is that the transcriptome is at equilib-
rium state at each time point when the gene expression is
measured. This assumption is satisfied by most of the time
course microarray data that the authors are aware of, and
users can check this assumption by examining the repro-
ducibility of the data among biological replicates. The
third and the biggest assumption is that the thermody-
namic models derived and tested for prokaryotes can be
applied to eukaryote systems. This is essentially ignoring
a number of transcriptional regulatory mechanisms that
eukaryotes utilize, such as chromatin modification and
enhancer effects. However as an approximation, the Inter-
action-Identifier method is still useful to analyze the bio-
physical properties of the known TFs. Another point in
favor of the validity of the this method is that the absolute
value of the model-derived gene expression level does not
influence the correlation calculation. Only the pattern of
change of the expression levels over time influence the
correlation calculation. Many of the eukaryotic specific
regulatory features, such as the distance between the
enhancer and the promoter, are invariant for the target
gene over the time course, and therefore such features
should not affect the selection of the corrected model.

Previously, models were developed to infer genetic regula-
tory networks from time series data that are generated
before the equilibrium is reached [27,28]. There are, how-
ever, a lot more experiments generating gene expression
data at steady states in a time series manner. In this paper
we demonstrate that steady state time series data can be
utilized to effectively characterize the interaction forms
among multiple transcription factors. The Interaction-
Identifier method should therefore be applicable to ana-
lyze a larger number of biological processes where steady
state time course data are available. 

Conclusions
We developed Interaction-Identifier methods for identify-
ing interaction forms of TFs. We applied it to analyze the
combinatorial control of the key transcription factors in

The identified interation form of Oct4 and Sox2 on NanogFigure 2
The identified interation form of Oct4 and Sox2 on 
Nanog.
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mouse ESCs. ESCs are pluripotent cells derived from the
inner cell mass of the mammalian blastocyst. They are
capable of indefinite self-renewing expansion in culture.
Depending on culture conditions, these cells can differen-
tiate into a variety of cell types [29]. The ability to steer
ESC differentiation into specific cell types holds great
promise for regenerative medicine [13,30-32]. A few tran-
scription factors have shown to be key transcriptional reg-
ulators in ESCs. These include Oct4, Sox2, Nanog and
others [4,13]. Large scale genomic data have been gener-

ated for these regulators, including ChIP-PET (a technol-
ogy close to ChIP-chip) [13] and time course microarray
data [4]. Albeit the availability of the high-throughput
genomic data, the regulatory circuit in ESC still await
quantitative and realistic models to be described. We
regard a realistic model for quantifying the effect of com-
binatorial control of multiple ESC regulators as a firm
building block towards understanding the whole net-
work. In this paper we explored Interaction-Identifier
method to infer the interaction patterns between multiple

Forms of TF-RNAP interactions and their corresponding parameters for modeling the probability of RNAP bindingFigure 3
Forms of TF-RNAP interactions and their corresponding parameters for modeling the probability of RNAP 
binding. A1 and A2 are transcription factors acting as activators of genes. R1 and R2 are transcription factors acting as repres-
sors of genes. A box without label represents RNAP. A curve with a bar at the end represents a repression effect; a curve with 
an arrow at the end indicates either cooperation between transcription factors or activation of a gene by a transcription factor.
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ESC regulators. In particular, Interaction-Identifier
method identifies that Oct4 and Sox2 help each other to
stabilize onto DNA and attract the RNAP. This indicates
that the DNA-bound Oct4 will be less in Sox2 knock-
down ESCs, and vice versa. This is in line with the fact that
the knock-down of either of the two transcription factors
will decrease the expression levels of the mutual target
genes and start the differentiation process [4]. We have

subsequently categorized the mutual targets of Oct4 and
Nanog according to the pattern of their combinatorial
effect. Although Oct4 and Nanog often serve as activators
for maintaining the expression of ESC specific genes, they
also inhibit genes for lineage specific differentiation. Little
is known about how Oct4 and Nanog switch their tasks
between activators and repressors. Among all the identi-
fied regulatory patterns, Oct4 and Sox2 generally do not
attract RNAP at the same time, but rather one serves as the
helper to the other (Figures 4, 5). Only in one case Oct4
and Nanog both interact with RNAP, where both serve as
repressors (Figure 5A). This result suggests that when both
of the two transcription factors interact with RNAP, they
perform an inhibition task.

Methods
We propose an Interaction-Identifier method to identify
the candidate form of interaction among the TFs and RNA
polymerase (RNAP) on the promoter of a target gene. This
method begins by using a thermodynamic function,
termed regulation factor, to predict the equilibrium prob-
ability that RNAP binds to the promoter of its targeted
gene (PRNAP) based on concentrations of associated TFs
and interaction forms among TFs and RNAP. Next, it uses
systems of ordinary differential equations to simulate the
dynamics of expression interested genes, assuming a) the
transcription rate is proportional to the PRNAP; b) mRNA
degradation rate is linearly dependent on the RNA con-
centration; c) the concentration changes of TF factor can
be inferred from the changes in the mRNA levels of TFs.
Thirdly, using measured time course gene expression data
from microarray experiments, we compute the Pearson
correlation coefficient and Euclidean distance between
the observed expression pattern and the predicted expres-
sion pattern. Since different interaction forms among TFs
and RNAP will lead to different regulation factors, Interac-
tion-Identifier method conducts these first three steps for
all interaction forms between TFs and promoters. Finally,
the regulation factor that predicts an expression pattern
with highest correlation to the observed expression pat-
tern is identified as most plausible interaction form that
TFs take to regulate this target gene (Figure 6).

Thermodynamic models for RNAP binding
Cells receive a wide variety of cellular and environmental
signals, which are often processed combinatorially to gen-
erate specific genetic responses. We follow Buchler et al
(2003) to integrate combinatorial signal at the level of cis-
regulatory transcription control. Also see Bintu et al for
review [1-3]. In this section this theoretical framework [1-
3] is briefed.

RNAP binds to promoter of a target gene to initiate gene
transcription. The promoter of a given gene can only take
one of the two states in a given time in a cell: with or with-

The different regulatory networks of different groups of tar-get genes identified using Interaction-Identification algorithmFigure 4
The different regulatory networks of different groups 
of target genes identified using Interaction-Identifica-
tion algorithm. The directed arrows represent activation 
and the dotted line represents the function of a helper. The 
relationship between Nanog and Oct 4 with these target 
genes follows the model 3 in Figure 3.

The different regulatory networks of different groups of tar-get genes identified using the Interaction-Identifier algorithmFigure 5
The different regulatory networks of different groups 
of target genes identified using the Interaction-Iden-
tifier algorithm. (a) model 5 (Figure 3) (b) model 4 (Figure 
3), where the dotted line represents the function of a helper; 
a line with an arrow at the end represents the effect of an 
activator; a line with a solid dot at the end represents the 
effect of a repressor.
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out RNAP binding. We denote the ratio of the probability
of promoter bound by RNAP to unbound by RNAP as qp
(Table 2).

It follows that the percentage of the promoter of the target
gene being bound with an RNAP is

.

If we consider there is an TF interacting with RNAP, a pro-
moter can then take one of the four possible states: (1)
both the TF and the RNAP bind to the promoter; (2) Only

the RNAP binds to the promoter; (3) Only the TF binds to
the promoter; (4) neither the TF nor the RNAP binds to
the promoter (Table 3).

Let Pi denote the probability of a promoter in the ith state.
It follows that the probability of the promoter of the target
gene being bound with an RNAP is

P RNAPbinding

qp
qp

[ ] =
+1

P RNAPbinding
P P

P P P P

qp wTFpqTFqp

qp qTF wTFpq
[ ] =

+
+ + +

=
+

+ + +
2 4

1 2 3 4 1 TTFqp

Table 2: The Bernoulli distribution for the two states of a 
promoter.

State RNAP Weight

1 0 1
2 1 qp

The weight qp denotes the ratio between the probabilities of the two 
states of promoter.

Flowchart of the Interaction-Identifier algorithmFigure 6
Flowchart of the Interaction-Identifier algorithm.

Table 3: The multinomial distribution of a promoter with one TF 
and its RNAP.

State TF RNAP Weight

1 0 0 1
2 0 1 qp
3 1 0 qTF
4 1 1 wTFpqpqTF

The weights qp, qTF and wTFpqpqTF denote the ratios between the 
probabilities of States 2,3,4 respectively assuming the weight of 
promoter with no RNAP or TF is 1.
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, where 

A TF can serve as either an activator or a repressor, or sim-
ply does not interact with the RNAP, represented by differ-
ent wTFp (Table 3). If w is set to 1, it represents that RNAP
and the TF bind independently to the promoter. If w is set
to 10~100, it represents that the TF helps to recruit RNAP
to the promoter. The larger w is the higher the synergism
is. If w is set to 0 or close to 0, it represents that the TF
blocks the RNAP binding, and thus the TF is a repressor.

Similar expressions can be derived for genes with two reg-
ulatory TFs capable of binding to a promoter together
with RNAP (Table 4). The parameter wTF1TF2 is used to
simulate the interaction between the two TFs. A large
wTF1TF2 (10~100) represents that the two TFs stabilize each
other onto the promoter. If the two TFs have no interac-
tion, wTF1TF2 should be set to 1. If the two TFs compete for
the binding, wTF1TF2 should be set to 0 or close to 0. The
other two parameters, wTF1 p and wTF2 p, represent the inter-
action between each TF and RNAP, respectively. They can
be set to reflect the nature of these interactions similar to
wTF1TF2.

The marginal probability of RNAP binding to the pro-
moter is:

By adjusting the parameters wTF1 p, wTF2 p, and wTF1TF2, we
can obtain an analytical form for the probability of RNAP
binding under different forms of interactions among
RNAP and the two TFs. Figure 3 summarizes the parame-
ter choices for two forms of simple interactions and six
forms of three-way interactions.

Linking TF concentration to the probability of promoter 
occupancy

In this section we describe the influence of TF concentra-
tion on the probability of TF binding to the promoter of
its target gene. In other words, we seek a function f such
that qTF=f([TF]). This function will be used to predict

changes in the transcription rate upon changes in TF con-
centration. Let  represent the promoter bound
by TF, and the binding process can be denoted as:

At equilibrium the concentrations of the substrates are
described using the Hill equation:

Where KTF is the concentration required for half of the TF

binding to the promoter and n is the Hill coefficient.

Recall the percentage of promoter bound by TF can also be
described using qTF, the ratio of the probabilities of the
promoter in the bound and free states,

Therefore, we can obtain: 

We use the unit of [TF] and KTF as the number of TFs per
cell. There have been a few efforts to estimate KTF from
empirical data [33]. In this study, we assume at each time
point in the time course, [TF] is linearly related to the
expression level of the TF, as did in earlier module net-
work studies [34]. It follows that [TF] peaks at the same
time as its gene expression peaks. We further assume qTF is
maximized at the maximum [TF] (see sensitivity analysis
for further discussion on this assumption). In this study,
we assume that KTF equates the maximum [TF] and it is a
linear transformation of the maximum expression value
of the gene coding this TF. We adopt the value 1/20 for qp
from Buchler et al [1-3].

A kinetic model for the quantity of the mRNA of the target 
gene
Assuming the expression level of a gene is proportional to
the probability of RNAP binding to its promoter [1-3], we

wTFp =
⎧
⎨
⎪

⎩⎪

1

10 100

0

~

no interaction         

activation

repressioon

P RNAPbinding

qp wTF pqpqTF wTF pqpqTF wTFwpTF wpTF
[ ] =

+ + + +( )1 1 2 2 1 2 11 2 1 2
1 1 2 1 2 1 1 2

TF qTF qTF qp

qTF qTF wqTF qTF qp wTF pqpqTF wpTF q+ + + + + + ppqTF wTF TF qTF qTF qpwpTF wpTF2 1 2 1 21 2+ +( )

TF DNA−

TF DNA TF DNA+ → −

P TFbinding
TF n

TF n KTF
n

TF KTF
n

TF KTF
n( )

[ ]
[ ] [ ]

([ ] / ])

([ ] / ])
,=

+
=

+1

P TFbinding
TF KTF

n

TF KTF
n

qTF
qTF

( )
([ ] / ])

([ ] / ])
=

+
=

+1 1

qTF
TF

KTF

n= (
[ ]

)

Table 4: The multinomial distribution of a promoter with its RNAP and two regulatory TFs.

(TF1, TF2) RNAP (0, 0) (1, 0) (0, 1) (1, 1)

0 1 qTF1 qTF2 wTF1TF2 qTF1 qTF2
1 qp wTF1 p qTF1 qp wTF2 p qTF2 qp (wTF1 p+ wTF2 p) wTF1TF2 qTF1 qTF2 qp

The state of the promoter is represented by the row name and the column name. For example, the first row and the second column has RNAP=0 
and (TF1, TF2)=(1,0), which means the promoter is bound by TF1 only. The quantity in a cell represents the ratio between the probability of a 
particular state and the probability of the base state (no RNAP binding and no TF binding).
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use a differential equation to model the dynamic changes
in RNA expression level.

, where G is the concentration (number per cell) of the
transcript; Kg is the maximum number of transcripts syn-
thesized per minute per cell and Kd is the degradation rate
of transcripts (per minute per cell).

The maximum rate of mRNA synthesis rate has been esti-
mated to be about one mRNA per 6-8 seconds [35]. Fol-
lowing previous estimates [36,37], we assume that the
rate of degradation around 1/6 of the maximum transcrip-
tion rate. Therefore, we use Kg =10 counts per minute and
Kd =10/6 counts per minute in this study.

Test with synthetic data
As a proof of principle, we first use synthetic data to show
the validity of the method. We choose three commonly
seen regulatory patterns (Figure 1). These regulatory pat-
terns are: 1. a target gene is activated by one TF (Model 2
in Figure 3); 2. RNAP is blocked by a TF (repressor), and
this TF is stabilized to DNA by a helper TF (Model 4 in Fig-
ure 3); 3 a target gene is regulated by two interacting acti-
vators (Model 7 in Figure 3), and one of the two activators
is transcriptionally repressed by a third TF. For each of
these three regulatory patterns, we do simulations as fol-
lows. First, we simulate the concentration change of each
TF over time, which we call real_TF_exp using equation:
EA = aA+bAlog t +ε, where aA and bA are background gene
expression index and coefficient describing changes of
expression index with time. The ε represents the variabil-
ity of expression index for gene A. Different patterns of
transcription factor expression can be obtained by using
different parameters of aA, bA and ε. Assuming that the
concentration of TF is a linear transformation of EA, we
feed these simulated concentrations of the TFs into a cho-
sen regulatory pattern described in Figure 1 and derive the
expression pattern of the target gene (real_target_exp)
according to equations 1 and 2. Noises (normal(0,1)) are
added to all the real expression patterns for both TFs and
the target gene. We assume only the noise-added expres-
sion patterns are observed, and we denote the observed
expression values as obs_TF_exp and obs_target_exp. The
obs_TF_exp for all TFs in consideration are used to derive
expression pattern for the target gene under each model in
Figure 3. The model derived expression patterns are
termed model_target_exp. For each model,
obs_target_exp is compared to model_target_exp in terms
of Pearson correlation. To test the robustness of the
model, we have assessed the effects of choices of parame-
ters on method performance (see Sensitivity analysis).

Model fitting
For each target gene, we identify its TF from either litera-
ture survey or ChIP-chip data. In this study we focus on
genes regulated by two key transcription factors in ESCs:
Oct4 and Nanog [13]. For each interaction form in Figure
3, we use the differential equation (eq. 1) to simulate the
steady state level of mRNA expression level using a) the
estimated [TF] and KTF based on measured mRNA levels.
We simulate a series of steady state mRNA concentrations
corresponding to measured expression profile of the tar-
get gene. We then compute the Pearson correlation
between the simulated concentrations of target genes over
time and the observed concentrations from the time
course microarray data. The interaction form that predicts
a concentration dynamics with a largest correlation to the
measured expression level is regarded as the model-iden-
tified interaction form.
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