(omc

Genomics

Transcriptome analysis of Panax vietnamensis
var. fuscidicus discovers putative ocotillol-type
ginsenosides biosynthesis genes and genetic
markers
Zhang et al.

() BioMed Central Zhang et al. BMC Genomics (2015) 16:159

DOI 10.1186/512864-015-1332-8



Zhang et al. BMC Genomics (2015) 16:159

DOI 10.1186/512864-015-1332-8
BMC

Genomics

RESEARCH ARTICLE Open Access

Transcriptome analysis of Panax viethamensis
var. fuscidicus discovers putative ocotillol-type
ginsenosides biosynthesis genes and genetic
markers

Guang-Hui Zhang', Chun-Hua Ma', Jia-Jin Zhang, Jun-Wen Chen, Qing-Yan Tang, Mu-Han He, Xiang-Zeng Xu,
Ni-Hao Jiang” and Sheng-Chao Yang

Abstract

Background: P. vietnamensis var. fuscidiscus, called “Yesangi” in Chinese, is a new variety of P. vietnamensis, which
was first found in Jinping County, the southern part of Yunnan Province, China. Compared with other Panax plants,
this species contains higher content of ocotillol-type saponin, majonoside R,. Despite the pharmacological
importance of ocotillol-type saponins, little is known about their biosynthesis in plants. Hence, P. vietnamensis var.
fuscidiscus is a suitable medicinal herbal plant species to study biosynthesis of ocotillol-type saponins. In addition,
the available genomic information of this important herbal plant is lacking.

Results: To investigate the P. vietnamensis var. fuscidiscus transcriptome, lllumina HiSeq™ 2000 sequencing platform
was employed. We produced 114,703,210 clean reads, assembled into 126,758 unigenes, with an average length of
1,304 bp and N50 of 2,108 bp. Among these 126,758 unigenes, 85,214 unigenes (67.23%) were annotated based on
the information available from the public databases. The transcripts encoding the known enzymes involved in
triterpenoid saponins biosynthesis were identified in our lllumina dataset. A full-length cDNA of three Squalene
epoxidase (SE) genes were obtained using reverse transcription PCR (RT-PCR) and the expression patterns of ten
unigenes were analyzed by reverse transcription quantitative real-time PCR (RT-gPCR). Furthermore, 15 candidate
cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely to involve in triterpenoid
saponins biosynthesis pathway were discovered from transcriptome sequencing of P. vietnamensis var. fuscidiscus.
We further analyzed the data and found 21,320 simple sequence repeats (SSRs), 30 primer pairs for SSRs were
randomly selected for validation of the amplification and polymorphism in 13 P. vietnamensis var. fuscidiscus
accessions. Meanwhile, five major triterpene saponins in roots of P. vietnamensis var. fuscidicus were determined
using high performance liquid chromatography (HPLC) and evaporative light scattering detector (ELSD).

Conclusions: The genomic resources generated from P. vietnamensis var. fuscidiscus provide new insights into the
identification of putative genes involved in triterpenoid saponins biosynthesis pathway. This will facilitate our
understanding of the biosynthesis of triterpenoid saponins at molecular level. The SSR markers identified and
developed in this study show genetic diversity for this important crop and will contribute to marker-assisted
breeding for P. vietnamensis var. fuscidiscus.
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Background

Ginsenosides are triterpenoid saponins found exclusively
in Panax species belong to Araliaceae family. The Panax
genus comprises approximately 14 species, more than
150 naturally occurring ginsenosides have been isolated
from different parts of plants [1] and most of the sapo-
nins possess four types of aglycone moieties, i.e. proto-
panaxadiol, protopanaxatriol, ocotillol, and oleanolic
acid types. The most widely used Panax species, such as
P. ginseng, P. quinquefolium, and P. notoginseng mainly
contain protopanaxadiol-type and protopanaxatriol-type
saponins, the other species like P. japonicus and P. zingi-
berensis, contain a large amounts of oleanolic acid sapo-
nins [2,3], all of them do not have or only a small
amount of ocotillol-type saponins. Up to now, only one
species, P. vietnamensis have been found particularly ac-
cumulates surprisingly high content of ocotillol-type sa-
ponins, mainly majonoside R,, which is as high as 5.3%
of the dried rhizome and exhibited anti-tumor and hepa-
tocytoprotective activities [4-6].

2,3-oxidosqualene (OS), a precursor of terpenoids is
synthesized via the mevalonic acid (MVA) pathway [7].
After the cyclization of 2,3-oxidosqalene by oxidosqualene
cyclase (OSC), the triterpene skeletons are modified by hy-
droxylation and glycosidation that leads to the production
of various ginsenosides, that are further catalyzed by cyto-
chrome P450 monoxygenases (CYP450s) and uridine di-
phosphate (UDP)-dependent glycosyl-transferases (UGTSs)
[8] (Figure 1). The biosynthesis of protopanaxadiol, proto-
panaxatriol and oleanolic acid has been studied well,
many genes involved in this pathway have been cloned
and identified [9-17]. Recently, many putative triterpene
saponin-biosynthetic genes in Panax species were de-
tected using de novo sequencing and transcriptome ana-
lysis, especially in P. ginseng, P. quinquefolius, and P.
notoginseng [18-22]. Despite the pharmacological im-
portance of ocotillol-type saponins, little is known
about their biosynthesis [1]. P. vietnamensis is the only
species found in the narrow habitat in central Vietnam
with high content of ocotillol-type saponins, which is
also in the list of endanger species.

There are two kinds of pathways that form ocotillol. In
pathway A, ocotillol might be biosynthesized via epoxi-
dation of the double bond at C-24-C-25 of protopanaxa-
triol [1]. The enzyme catalyzes this reaction could be the
ortholog of squalene epoxidase (SE) gene, because they
epoxidized the similar double bonds of squalene or pro-
topanaxatriol (Figure 1). In pathway B, OS is further ep-
oxidized to 2, 3; 22, 23- dioxidosqualene (DOS) by SE
[23], followed by cyclization and hydroxylation to pro-
duce ocotillol, catalyzed by OSC and CYP450, respect-
ively (Figure 1). In Arabidopsis, OSC, lupeol synthase
(LUP1), directly converts DOS to oxacyclic triterpenoid
epoxydammarane [23], so there might be similar OSC in
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P. vietnamensis, which catalyzed the cyclization of DOS
(Figure 1).

P. vietnamensis var. fuscidiscus, called “Yesanqi” in
Chinese, is a new variety of P. vietnamensis, which was
first found in Jinping County, the southern part of
Yunnan Province, China [24]. P. vietnamensis var. fusci-
discus contains a higher content of majonoside R, than
other genotypes of P. vietnamensis [2]. Therefore, P.
vietnamensis var. fuscidiscus is a perfect plant species for
studying the biosynthesis mechanism of ocotillol-type
saponins. Interestingly, P. vietnamensis var. fuscidiscus
was also found in Yuanyang and Lvchun County,
Honghe prefecture of Yunnan Province and some of
them are found for more than 15 years and exhibited re-
markable disease resistance under the high temperature
and rainy conditions in this district, suggested that this
specie could be used to improve disease resistance of P.
notoginseng, an important cultivated Panax species in
Yunnan Province of China.

Our goal of this study is to characterize the transcrip-
tome of P. vietnamensis var. fuscidiscus using Illumina
HiSeq™ 2000 sequencing platform, to discover the candi-
date genes that encode enzymes in the triterpene sap-
onin biosynthetic pathway, especially in ocotillol-type
saponins biosynthesis, and produce information on SSR
markers to facilitate the marker-assisted breeding of this
species.

Results and discussion

lllumina sequencing and de novo assembly

P. vietnamensis var. fuscidiscus root tissue was used for
transcriptome sequencing and analysis because root or-
gans have been used for medicinal purpose. A ¢cDNA li-
brary was constructed from total RNA of P. vietnamensis
var. fuscidiscus roots, and sequenced using Illumina
paired-end sequencing technology. After removal of
adaptor sequences, ambiguous reads and low-quality reads
(Q20 < 20), a total of 114,703,210 clean reads were ob-
tained. The Q20 percentage (sequencing error rate < 1%)
and GC percentage were 97.23% and 43.25%, respectively.
An overview of the sequencing and assembly statistics are
shown in Table 1. The high quality reads obtained in this
study have been deposited in the NCBI SRA database
(accession number: SRA146484).

All the clean reads (114,703,210) were de novo assem-
bled using the Trinity program into 161,443 contigs con-
sisting of 218,944,221 bp. The size of the contigs ranged
from 201 to 15,880 bp, with a mean length of 1,356 bp
and N50 length of 2,087 bp. Among these contigs,
82,699 (51.23%) were longer than 1000 bp, and 46,915
(29.06%) contigs were shorter than 500 bp. Using
paired-end joining and gap-filling methods, these contigs
were further assembled into126,758 unigenes with an
average length of 1,304 bp and an N50 length of
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Figure 1 Putative pathway for triterpene saponin biosynthesis. Putative pathway for triterpene saponin biosynthesis in P. viethamensis var.
fuscidicus. Two proposed pathways (A and B) for the biosynthesis of ocotillol-type saponins, mainlymajonoside R, in the horizontally grown
rhizome (C) of P. vietnamensis var. fuscidicus (D). Enzymes found in this study are boxed. Abbreviations: AACT, acetyl-CoA acetyltransferase; B-AS,
B-amyrin synthase; DMAPP, dimethylallyl diphosphate; DS, dammarenediol-Il synthase; FPP, farnesyl diphosphate; FPPS, farnesyl diphosphate
synthase; Glc, glucose; GPP, geranyl pyrophosphate; GGPP, geranylgeranyl diphosphate; GGPPS, geranylgeranyl pyrophosphate synthase; GT,
glycosyltransferase; HMG-CoA, 3-hydroxy-3-methylglutaryl coenzyme A; HMGR, HMG-CoA reductase; HMGS, HMG-CoA synthase; IPP, isopenteny!
diphosphate; IPPI, IPP isomerase; MVD, mevalonate diphosphate decarboxylase; MVK, mevalonate kinase; P450, cytochrome P450; PMK,
phosphomevalonate kinase; SE, squalene epoxidase; SS, squalene synthase.

2,108 bp. There were 60,741 unigenes (47.92%) longer
than 1,000 bp, and 28,676 unigenes (22.62%) longer than
2,000 bp (Figure 2). In this study, the coding sequences
(CDS) from all P. vietnamensis var. fuscidiscus unigene
sequences were also detected and a total of 84,004 CDSs
were obtained, among them, 24,580 CDSs (29.26%) were
longer than 1,000 bp (Figure 2).

To evaluate the quality of the assembled unigenes, all
the usable sequencing reads were realigned to the uni-
genes using SOAPaligner [25], with up to 2 mismatches
allowed. The sequencing depth ranged from 0.0173 to
50,534 fold, with an average of 50.67 fold. About 86.73%
of the unigenes were realigned by more than 10 reads,
31.60% were supported by more than 100 reads, and
7.73% were supported by more than 1,000 reads
(Additional file 1). In order to assess the extent of tran-
script coverage provided by unigenes and to evaluate
how coverage depth affected the assembly of unigenes,
we plotted the ratio of assembled unigene length to P.
notoginseng orthologs length against coverage depth
(Additional file 2A). Although many of the deeply se-
quenced P. vietnamensis var. fuscidiscus unigenes failed
to cover the complete coding regions of their P. notogin-
seng orthologs, most of P. notoginseng orthologs coding

Table 1 Summary of lllumina Paired-end sequencing and
assembly for P. vienamensis var. fuscidiscus

Database Number Total length(bp)
Total Clean reads 114,703,210 11,470,321,000
Q20 percentage 97.23%

GC percentage 43.25%

Number of contigs 161,443 218,944,221
Average length of contigs (bp) 1,356

Max length of contigs (bp) 15,880

Min length of contigs (bp) 201

Contig size N50 (bp) 2,087

Number of unigenes 126,758 165,291,103
Average length of unigenes (bp) 1,304

Max length of unigenes (bp) 15,896

Min length of unigenes (bp) 201

Unigene size N50 (bp) 2,108

region can be covered by corresponding unigenes. To
certain extent, increased coverage depth can result in
higher coverage of the coding regions. The percentage of
P. notoginseng orthologs coding sequence covered by all
P. vietnamensis var. fuscidiscus unigenes was also per-
formed. We found that 14,892 of the orthologs were
covered by with a percentage of more than 80% and
3,252 of the orthologs were covered by unigenes with a
percentage from 40% to 80%. Furthermore, 326 ortho-
logs were covered with only 20% or lower (Additional
file 2B).

Due to the lack of P. vietnamensis var. fuscidiscus ref-
erence geneome availability, the reads produced by
[lumina HiSeq™2000 were assembled using the de novo
assembler Trinity. In this study, the assembly results in-
dicated that the length distribution pattern and mean
length of contigs and unigenes was similar to those in
the previous Illumina-transcriptome studies [26-28],
suggesting that the transcriptome sequencing data from
P. vietnamensis var. fuscidiscus are assembled well.
Compared to previous transcriptomic studies in Panax
species [18-22], we produced more numbers of unigenes,
indicating that P. vietnamensis var. fuscidiscus genome is
gene rich in comparison to Panax species.
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Figure 2 The length distribution of contigs, unigenes and CDSs.
Overview of the P. vietnamensis var. fuscidiscus transcriptome
assembly and the length distribution of the CDS.
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Functional annotation

A total of 85,214 unigenes (67.23%) were annotated
based on the information available from public databases
including NCBI non-redundant protein (Nr), Swiss-Prot
protein, Cluster of Orthologous Groups (COG), and the
Kyoto Encyclopedia of Genes and Genomes (KEGQ)
(Table 2). Among them, 16,602 unigenes showed signifi-
cant matches to all four databases. Unigenes that were
annotated as unique in public databases are as follows:
16,097 unigenes in the Nr database, 157 unigenes in the
SwissProt database, 1 unigenes in the COG database,
and 67 unigenes in the KEGG database (Additional file
3). Furthermore, about 32.77% of unigenes (41,544) did
not show any matches to known genes, these remaining
unaligned unigenes may be considered as novel tran-
scripts and specific genes from P. vietnamensis var.
fuscidiscus.

Our results showed that approximately 95% of uni-
genes over 1,000 bp in length had BLAST matches
against the Nr database, whereas only 41% of unigenes
with lengths shorter than 1,000 bp generated BLAST
matches (Additional file 4A). The same tendency was
also observed in BLAST results against the SwissProt
database (Additional file 4B). The e-value distribution of
the top hits in the Nr database revealed that 62.34% of
the mapped unigenes showed significant homology (e-
value < 107°°), and 21.35% unigenes had high similarity
(greater than 80%) (Additional file 5A and C). The e-
value and similarity distributions of the top hits in the
Swiss-Prot database had a comparable pattern with
47.51% and 13.48% of the sequences possessing signifi-
cant homology and similarity, respectively (Additional
file 5B and D). Our results also showed that 39.04% of
the unigenes showed significant homology with gene se-
quences from Vitis vinifera (9,011, 19.07%), followed by
Arabidopsis thaliana (11.60%), Glycine max (10.97%),
and Medicago truncatula (9.14%) (Additional file 6).

Gene ontology classification
Based on the Nr annotation, Gene Ontology (GO) classi-
fication was used to classify the functions of all unigenes.

Table 2 Summary of the annotation percentage of
P. vienamensis var. fuscidiscus as compared to public
database

Database Number Annotation
of unigenes percentage (%)

Nr 84,983 67.04

SwissProt 66,471 5244

KEGG 26,730 21.09

COG 34918 27.55

All annotated unigenes 85,214 67.23

Total unigenes 126,758
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A total of 43,163 unigenes were assigned to one or more
gene ontology categories, 88,984 unigenes were from the
cellular component, 79,483 unigenes from the biological
process, and 51,542 unigenes from the molecular func-
tion. Under the biological process category: GO classifi-
cation belongs to metabolic process (21,803, 27.43%),
cellular process (20,747, 26.10%), and response to stimu-
lus (6,352, 7.99%). In the cellular component group,
unique sequences related to cell (28,886, 32.46%), cell
part (28,886, 32.46%), organelle (19,977, 22.45%), and or-
ganelle part (5,339, 6.00%) were found. For the molecu-
lar function category, binding (22,925, 44.48%) and
catalytic activity (22.836, 44.30%) represented the major-
ity of unique sequences (Figure 3; Additional file 7).

Conserved domain annotation and COG classification

The conserved domains/families of the assembled uni-
genes encoding proteins were searched against the Pfam
database (version 26.0) using Pfam_Scan program. A
total of 3,602 conserved domains/families were identified
from 46,649 unigenes (36,80% of all unigenes)
(Additional file 8). Among these protein domains/fam-
ilies, pentatricopeptide repeat domain (PPR) is the most
abundant domain type, found in 2,822 unigenes. The
PPR containing proteins are commonly found in the
plants and although its function is still unclear, the PPR
domain has been found in proteins involved in RNA
editing in a number of recent studies [29-32]. Other
highly represented domains/families were, WD repeat
(2,520 unigenes), Protein kinase domain (2,468 uni-
genes), and Leucine Rich Repeat (2,449 unigenes). The
WD repeat and Leucine Rich Repeat are involved in
protein-protein interactions [33,34]. The role of protein
kinase domain is found in signal transduction pathways,
development, cell division, and metabolism in higher or-
ganisms [35,36]. Other domains identified abundantly
included PPR repeat family (2,354 unigenes), RNA rec-
ognition motif (1,188 unigenes), Protein tyrosine kinase
(1,035 unigenes), ABC transporter (488 unigenes),
Mitochondrial carrier protein (462 unigenes), and Myb-
like DNA-binding domain (459 unigenes). For perspec-
tive, we have listed the top 20 most abundant protein
domains/families in (Additional file 9).

All unigenes were subjected to a search against the
COG database for functional prediction and classifica-
tion. In total, 34,918 unigenes were annotated and
grouped into 25 COG classifications. However, some of
these unigenes were assigned to multiple COG classifi-
cations, altogether 63,521 COG functional annotations
were obtained. Among the 25 COG categories, the clus-
ter for general function prediction was the largest group
(11,382, 17.92%), followed by replication, recombination
and repair (6,561, 10.33%), transcription (6,223, 9.80%),
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Figure 3 Gene Ontology classification of assembled unigenes. The unigenes were categorized into three main categories biological process,
cellular component and molecular function.

and signal transduction mechanisms (5,338, 8.40%)
(Figure 4).

Functional classification by KEGG
To elucidate the active biochemical pathways in P. viet-
namensis var. fuscidiscus, unigenes were compared

against the KEGG using BLASTx with an e-value < 1e”

10

and the corresponding pathways were established.
KEGG pathway analysis is helpful for predicting poten-
tial genes and their functions at a whole transcriptome
level. A total of 26,730 unigenes (21.09%) were anno-
tated with KEGG and were assigned to 269 KEGG

pathways (Additional file 10). RNA transport had the
largest number of unigenes (825), followed by spliceo-
some (812 unigenes), protein processing in endoplasmic
reticulum (697 unigenes), plant hormone signal trans-
duction (684 unigenes), ubiquitin mediated proteolysis
(679 unigenes), glycolysis/gluconeogenesis (636 uni-
genes), and purine metabolism (616 unigenes). KEGG
metabolic pathways presented in our dataset include
carbohydrate metabolism (3,809 unigenes), amino acid
metabolism (2,352 unigenes), nucleotide metabolism
(1,137 unigenes), lipid metabolism (2,023 unigenes), en-
ergy metabolism (1,782 unigenes), glycan biosynthesis
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Figure 4 COG function classification of P. vienamensis var. fuscidiscus.
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and metabolism (1,282 unigenes), metabolism of cofac-
tors and vitamins (1,053 unigenes), metabolism of other
amino acids (710 unigenes), metabolism of terpenoids
and polyketides (497 unigenes), biosynthesis of other
secondary metabolites (457 unigenes), and xenobiotics
biodegradation and metabolism (485 unigenes)
(Figure 5A). In the metabolism of terpenoids and poly-
ketides category, the most represented subcategories
were terpenoid backbone biosynthesis (162 unigenes),
followed by carotenoid biosynthesis (120 unigenes), lim-
onene and pinene degradation (75 unigenes), tetracycline
biosynthesis (36 unigenes), zeatin biosynthesis (30 uni-
genes), diterpenoid biosynthesis (23 unigenes), sidero-
phore group nonribosomal peptides (19 unigenes),
brassinosteroid biosynthesis (14 unigenes), geraniol deg-
radation (11 unigenes), ansamycins biosynthesis (5 uni-
genes), and polyketide sugar unit biosynthesis (2
unigenes) (Figure 5B). These annotations will be a valu-
able resource for further research on specific pathways,
structures and functions of genes in P. vietnamensis var.
fuscidiscus.

SSR marker discovery

The potential SSRs were detected in all of the 126,758
assembled unigenes using MISA software. A total of
21,320 SSRs were identified in 17,780 unigenes
(Table 3). Of all the SSR containing unigenes, 2,918 se-
quences contained more than one SSR, and 1,207 SSRs
were present in compound form. The information of
SSRs derived from all unigenes is shown in Additional
file 11. Among these SSRs, the most frequent repeat mo-
tifs were di-nucleotides (11,197, 52.53%), followed by tri-
nucleotides (5,987, 28.08%), tetra-nucleotides (2,352,
11.03%), penta-nucleotides (924, 4.33%), and hexa-
nucleotides (860, 4.03%). Among the SSR with tandem
repeats, SSRs with six tandem repeats (5,657, 26.53%)
were most prevalent, followed by five tandem repeats
(3,988, 18.71%), seven tandem repeats (3,466, 16.26%),
and four tandem repeats (3,356, 15.74%) (Table 4). The
di-nucleotide repeat AG/CT (26.7%) was the most com-
mon motif, followed by the motif AT/AT (19.6%), AAG/
CTT (7.5%), and AC/GT (6.2%). Our findings indicated
that unigenes containing SSR markers were abundant in
P. vietnamensis var. fuscidiscus. Based on those SSRs,
39,336 primer pairs were successfully designed using
Primer3 (Additional file 12). The unigene derived
markers generated in this study represent a valuable
genetic resource for SSR mining and will aid future ap-
plications in research of this important herb crop.

Validation of SSR markers

Thirty SSR primer pairs were randomly selected and
synthesized to evaluate the amplification efficiency and
polymorphism in 13 P. vietnamensis var. fuscidiscus
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accessions from different countries and different genetic
backgrounds. Twenty-nine (96.67%) of the primer pairs
successfully amplified clear and repeatable bands.
Among the 29 successful primer pairs, 24 (80.00%) pri-
mer pairs produced PCR amplicons at the expected size,
and 4 (13.33%) primer pairs generated PCR fragments
longer than expected. We also found 15 (50.00%) primer
pairs exhibited polymorphisms (Additional file 13)
among the 13 P. vietnamensis var. fuscidiscus accessions.
The observed number of alleles (No) ranged from 0.25
to 0.52, with an average value of 0.42; the effective num-
ber of alleles (Ne) ranged from 0.20 to 0.41, with a mean
level of 0.34; Shannon’s information index (I) varied
from 0.16 to 0.33, with an average value of 0.27; the
number of polymorphic loci (NP) ranged from 0.80 to
4.40, with a mean level of 2.5; the percentage of poly-
morphic loci (PPB) ranged from 8.89 to 48.89, with a
mean level of 28.15; and polymorphism information
content (PIC) values ranged from 0.29 to 0.50 with an
average of 0.44. These results indicated that there is a
good genetic diversity existed among 13 P. vietnamensis
var. fuscidiscus accessions.

The dendrogram constructed based on UPGMA (un-
weighted pair group method with arithmetic average)
clustering method was used to perform genetic correl-
ation analysis among the 13 P. vietnamensis var. fuscidis-
cus accessions (Figure 6). The coefficients of genetic
similarity among the 13 P. vietnamensis var. fuscidiscus
accessions ranged from 0.82 to 0.94, indicating a high
genetic similarity among them. UPGMA cluster analysis
grouped these individuals into two groups at the similar-
ity level of 0.836. According to the dendrogram, all the 3
accessions from Laos were clustered into cluster 1. In
cluster II, all the 10 accession of P. vietnamensis var. fus-
cidiscus from China were clustered into one group. The
results of the cluster analysis showed that the individuals
from the same area tend to clustered together.
Therefore, the UPGMA cluster analysis based on SSR
data was closely related to the geographical origins.
Meanwhile, these results demonstrate that SSRs primer
pairs derived from P. vietnamensis var. fuscidiscus uni-
genes can distinguish varieties without morphological di-
versities, and will be a powerful tool for genetic
applications in this herb crop.

Candidate genes encoding enzymes involved

in ginsenosides biosynthesis

The transcripts encoding all the known enzymes in-
volved in triterpenoid saponin pathway were discovered
from this Illumina transcriptome dataset, including
AACT (acetyl-CoA acetyltransferase), HMGS (HMG-
CoA synthase), HMGR (HMG-CoA reductase), MVK
(mevalonate kinase), PMK (phosphomevalonate kinase),
MVD (mevalonate diphosphate decarboxylase), GGPPS
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Table 3 Summary of SSR searching results

Item Number
Total number of sequences examined 126,758
Total size of examined sequences (bp) 165,291,103
Total number of identified SSRs 21,320
Number of SSR containing Sequences 17,780
Average number of SSRs per 10 kb 1.29
Number of sequences containing more than 1 SSR 2918
Number of SSRs present in compound formation 1,207

(geranylgeranyl pyrophosphate synthase), FPPS (farnesyl
diphosphate synthase), IPPI (isopentenyl diphosphate
isomerase), SS (squalene synthase), SE, B-AS (B-amyrin
synthase), DS (dammarenediol-II synthase), D12H (dam-
marenediol 12-hydroxylase), P6H (protopanaxadiol 6-
hydroxylase), and f-A280 (B-amyrin 28-oxidase)
(Table 5, Additional file 14). The discovery of many
genes related to triterpenoid pathway may help us to in-
vestigate the cause of high content of protopanaxadiol-
type and protopanaxatriol-type saponins, such as Rb1,
Rd and Rg; in P. vietnamensis var. fuscidiscus.
Majonoside R, is the main ginsenoside in P. vietna-
mensis var. fuscidiscus, so we focused on the discovery
of the putative genes that might be involved in ocotillol-
type ginsenoside biosynthesis. As mentioned above, the
formation of ocotillol needs SE and OSC with “new”
functions. Generally, SE catalyzes the epoxidation of
squalene to OS in terpenoid biosynthesis, but in P. viet-
namensis var. fuscidicus, SE might catalyze the epoxida-
tion of terminal olefin of protpanaxatriol or OS
(Figure 1). Moreover, 15 unigenes matched to SE of
other plants were discovered in our Illumina dataset.
Using the primers designed based on the sequences of
these SE unigenes, a full-length cDNA of three SE genes
were obtained using reverse transcription PCR (RT-
PCR), named Pv{SE1, PvfSE2, and PVv{SE3, respectively
(GenBank: KJ946467, KJ946468 and KJ946469). The
three cloned SE genes may play different roles in sterol
or ginsenoside biosynthesis in this new variant (data not
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shown), and a series of relevant studies are currently un-
derway to determine the function of them. Many genes
encoding OSCs have been isolated in plants; including
those encode B-AS, DS, lupeol synthase (LUS), and
cycloartenol synthase (CAS) [16,37-39]. Except for B-AS
and DS, no unigene matched to LUS and CAS was
found (Table 5). Characterizing the functions of these
unigenes will help us for understanding the molecular
mechanism of biosynthesis of ocotillol-type ginsenoside.

The cytochrome P450 monooxygenases and
UDP-glycosyltransferase genes
Identification of specific CYP450 enzymes responsible for
the production of particular metabolites is difficult due to its
large numbers [40]. However, only a few CYP450s have been
identified in plants, which involved in triterpenoid saponins
biosynthesis. The CYP716A subfamily members in M. trun-
catula (CYP716A12) and V. vinifera (CYP716A15 and
CYP716A17) are multifunctional oxidases, with -A280, «-
amyrin 28-oxidase and lupeol 28-oxidase activities [41,42].
In P. ginseng, three CYP716A subfamily members have been
isolated and characterized functionally, encode P6H
(CYP716A47), D12H (CYP716A53v2) and B-A280
(CYP716A52v), respectively [13-15]. Licorice (Glycyrrhiza
uralensis) CYP88D6 catalyze C-11 oxidation of f-amyrin in
glycyrrhizin biosynthesis [43], while GuCYP72A154 and M.
truncatula CYP72A63 catalyze C-30 oxidation of B-amyrin
[44]. Both G. max CYP93EIL, licorice CYP93E2 and
CYP93E3 catalyze the C-24 hydroxylation of B-amyrin and
sophoradiol in soyasaponin biosynthesis [43,45,46]. Oat
(Avena strigosa) CYP51H10 is able to catalyze both hydrox-
ylation and epoxidation of $-amyrin to produce 12, 13f-
epoxy-3p, 16B-dihydroxy-oleanane [47-49]. Arabidopsis
CYP708A2 and CYP705A5 were identified as a thalinol hy-
droxylase and thaliana-diol desaturase, respectively [50]. M.
truncatula CYP72A61v2 and CYP72A68v2 catalyze C-22 of
24-OH-B-amyrin and C-23 of oleanolic acid, respectively
[46].

For discovering the candidate CYP450s involved in ginse-
nosides biosynthesis in the transcriptomic data of P. vietna-
mensis var. fuscidicus, 251 unigenes which is annotated to

Table 4 Distribution of identified SSRs using the MISA software

Motif Repeat numbers Total %

4 5 6 7 8 9 10 11 >11
Di- 0 0 4,030 2,480 1,576 1,240 1,230 627 14 11,197 52.52
Tri- 0 3,433 1,448 966 126 2 0 3 9 5,987 28.08
Tetra- 1,789 446 96 12 0 6 0 0 3 2,352 11.03
Penta- 812 94 10 7 0 0 0 0 1 924 433
Hexa- 755 15 73 1 9 0 4 2 1 860 4.03
Total 3,356 3,988 5,657 3,466 1,711 1,248 1,234 632 28 21,320 100
% 15.74 18.71 26.53 16.26 8.03 5.85 5.79 2.96 0.13 100
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be CYP450 (Additional file 15) were compared with
CYP450s mentioned above. As shown in Figure 7, the
orthologous genes of PgCYP716A52v2 (unigene 0046586),
PgCYP716A53v2 (unigene0016477), and PgCYP716A47
(unigene0036796, unigene0036797, unigene0036795, and
unigene0036798) were found. Besides, one unigene (uni-
gene0027571) is also belong to CYP716A subfamily, indi-
cate this unigene may has different functions from other
CYP716A subfamily in P. ginseng. Furthermore, 4 unigenes
(unigene0044841, unigene0044844, unigene0145860, and
unigene0006105) are highly homologous to A. thaliana
thalianol hydroxylase (AtCYP708A2). Unigene0038 is hom-
ologous to AsCYP51H10, unigene0042080 is homologous
to GuCYP93E3 and AtCYP705A5, unigene0039295 and

unigene0039296 are homologous to MtCYP72A67v2 and
MtCYP72A8v2 (Figure 7). Two unigenes (unigene0039295
and unigene0039296) are the orthologous gene of 11-oxo-
B-amyrin 30-oxidase and highly homologous to
GuCYP72A154, MtCYP72A63, MtCYP72A61v2, and
MtCYP72A68v2 [44,46]. Unigene00402080 is highly hom-
ologous to GuCYP93E3 and MtCYP93E2 [43,51], may en-
code enzyme catalyze C-24 hydroxylation of f-amyrin.
UGTs catalyze the glucosylation of C-3, C-12, C-20 hy-
droxyl, and C28-carboxyl for the biosynthesis of ginse-
nosides in P. vietnamensis var. fuscidicus. Even though
UGTs catalyze the last committed step of ginsenoside
biosynthesis; no UGT was functionally characterized
from Panax species, only one putative UGT gene

Table 5 Transcripts involved in triterpene saponin biosynthesis in P. vietnamensis var. fuscidiscus

Gene name EC number Unigene number
AACT, acetyl-CoA acetyltransferase 2319 8
HMGS, hydroxymethylglutaryl-CoA synthase 233.10 7
HMGR, hydroxymethylglutaryl-CoA reductase 1.1.1.34 4
MVK, mevalonate kinase 2.7.1.36 3
PMK, phosphomevalonate kinase 2742 10
MVD, mevalonate diphosphate decarboxylase 4.1.1.33 2
GGPPS, geranylgeranyl pyrophosphate synthase 25.1.29 64
FPPS, farnesyl diphosphate synthase 25.1.10 34
IPPI, isopentenyl diphospate isomerase 5332 1
SS, squalene synthase 25121 6
SE, squalene epoxidase 1.14.99.7 15
DS, dammarenediol-Il synthase 421125 1
B-AS, B-amyrin synthase 54.99.39 11
B-A280, B-amyrin 28-oxidase (CYP716A52v2 in P. ginseng) 1.14.13-- 1
D12H, dammarenediol 12-hydroxylase (CYP716A47 in P. ginseng) 1.14.13.183 4
P6H, protopanaxadiol 6-hydroxylase (CYP716A53v2 in P. ginseng) 1.14.13.184 1
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(PnUGT1) was cloned from P. notoginseng [52], which had
relative close relationship to the triterpene UDP-
glucosyltransferase of M. truncatula UGT71G1 [53]. In
cDNA library of P. vietnamensis var. fuscidicus, 282 uni-
genes were found to encode UGTs (Additional file 16). The
phylogenetic relationship between UGTs from P. vietna-
mensis var. fuscidicus and characterized UGTs from other
plants was depicted in Figure 8. Except the orthologous
genes of PnlUGT1 (unigene0045236), unigene0071620 is
highly homologous to Barbarea vulgaris UGT73C11 and
UGT73C10, which catalyze sapogenin 3-O-glucosylation
[54], suggested that unigene0071620 has the same function
in P. vietnamensis var. fuscidicus. Besides, unigene005064,
unigene0031030, and unigene0031036 have close relation-
ship to Solanum aculeatissimum steroidal saponin UDP-
glucosyltransferase SaGT4A [55], M. truncatula UGT73F3
[56], MtUGT73K1, MtUGT71G1 [53], and soybean

UGT73F4 [57], indicated that those unigenes are also in-
volved in ginsenoside biosynthesis. Furthermore, 2 uni-
genes (unigene0063740 and unigene0063744) have close
relationship to Saponaria vaccaria UGT74M1, which is a
triterpene carboxylic acid glucosyltransferase [58], sug-
gested that these unigenes may catalyze the glucosylation
of C28-carboxyl for the biosynthesis of ginsenoside Ro.

RT-qPCR analysis of the ginsenoside synthesis related
genes

The RT-qPCR analysis was used to investigate the
tissue-specific expression patterns of 10 unigenes related
to ginsenoside biosynthesis in this species. The expres-
sion pattern of these genes is shown in Figure 9. The
unigenes encoding HMGS, MVK, MVD, and IPPI were
expressed at much higher level in young stems than in
other tissues (lateral roots, root and leaves). The gene
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Figure 8 Phylogenetic tree of UGTs. Phylogenetic tree constructed based on the deduced amino acid sequences for the P. vienamensis var.
fuscidiscus UGTs (bold letters) and other plant UGTs. Accession numbers in the NCBI GenBank database are as follows: Barbarea vulgaris
BVUGT73C11 (AFN26667) and BvUGT73C10 (AFN26666); Arabidopsis thaliana AtUGT73C1 (NP_181213.1), AtUGT82A1 (NP_188864.1), AtUGT76B1
(NP_187742.1), AtUGT71B1 (NP_188812.1), AtUGT89B1 (NP_177529.2), AtUGT75B2 (NP_172044.1), AtUGT75C1T (NP_193146.1), AtUGT74C1
(NP_180738.1), AtUGT79B4 (Q9LJAE.1) and AtUGT79B1 (QILVW3.1); Solanum aculeatissimum SaGT4A (BAD89042); Medicago truncatula MtUGT73K1
(AAW56091), MtUGT73F3 (ACT34898) and MtUGT71G1 (AAW56092); Glycine max GmUGT73F4 (BAM29363); Panax notoginseng PnUGT1 (JX018210);

Oryza sativa OsUGT709A4 (Q7XHR3); Saponaria vaccaria SVUGT74M1 (ABK76266); Linum usitatissimum LuUGT71A24 (AFJ52909), LUUGT82A2
(AFJ52979), LUUGT709D1 (AFJ53007), LUUGT75N1 (AFJ52962), LUUGT94G1 (AFJ53037.1), LUUGT79A3 (AFJ52973.1).

encoding SS was highly expressed in the leaves and
stems. The HMGR gene showed very high expression in
the leaf tissue. All genes mentioned above play a role in
upstream biochemical reactions of the ginsenoside path-
way, and showed high expression in leaves and young
stems, which indicates that leaves and young stems are
the main factories for synthesizing the precursors of

ginsenosides. SE gene was involved in the formation of
2,3-oxidosqualene, a precursor of various ginsenosides.
To further identify the potential candidates from SE ho-
mologs involved in ginsenoside biosynthesis, the expres-
sion levels of three putative SE genes (SE1, SE2, and
SE3) in different organs were analyzed. SE1 and SE3
genes were expressed much higher in young stems and
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Figure 9 qRT-PCR analysis of unigenes involved in triterpene saponin biosynthesis. Validation of candidate P. vietnamensis var. fuscidiscus
unigenes involved in triterpene saponin biosynthesis by gRT-PCR. Bars represent the mean (+ SD) of four experiments.
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leaves than in other tissues, respectively (Figure 9).
Whereas the expression level of SE2 was higher in the
roots as compared to that of SE1 and SE3. These three
putative SE genes have different expression patterns in
different tissues, similar to what was found in previous
studies [59]. Thus, we supposed that these three putative
SE genes play different roles in ginsenosides biosyn-
thesis. The gene encoding P6H was highly expressed in
leaves and young stems than in roots and hairy roots.
The P6H was predicted to catalyze protopanaxadiol to
protopanaxatriol. A higher expression of P6H observed
in leaves and young stems but protopanaxatriol-type gin-
senosides accumulated mainly in roots and hairy roots,
again indicating that leaves and young stems were the
main synthesis site of the triterpene skeletons. The re-
sults demonstrate that several genes involved in ginseno-
side biosynthesis showed diverse expression patterns in
different tissues. The analysis of the expression patterns
of these genes in different tissues will be helpful to fur-
ther understand the mechanism of ginsenoside
biosynthesis.

Quantitative analysis of five major triterpene saponins

in roots of P. vietnamensis var. fuscidicus

The content of main component is the most widely used in-
dicator to measure the quality of herb, so quantitative ana-
lysis of main component has important practical
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significance. According to previous research [2], majonoside
R2, ginsenoside Rgl, Rb1, Rd and notoginsenoside R1 are
considered as the five main components of P. vietnamensis
var. fuscidicus. Herein, the content of five major triterpene
saponins in roots of P. vietnamensis var. fuscidicus was de-
termined. High performance liquid chromatography with
evaporative light scattering detector (HPLC-ELSD) was
employed for quantitative analysis of majonoside R2, due to
its low UV absorptivity. As shown in Figure 10A and B, the
peak of majonoside R2 was identified by direct comparing
the retention times of the peaks with those of the standard
majonoside R2 eluted under the same conditions. The con-
tent of majonoside R2 in in roots of P. vietnamensis var. fus-
cidicus is about 68 mg/g, indicated that majonoside R2 were
rich in the roots of this species. Quantitative analysis of
other four triterpene saponins in the roots of this herb were
performed using high performance liquid chromatography
(HPLC). As shown in Figure 10C and D, the investigated sa-
ponins were well separated within 55 min. The content of
ginsenoside Rgl, Rb1, notoginsenoside R1, and ginseno-
side Rd in the roots of this herb were approximately
52.7,17.9, 17.8 and 3.2 mg/g, respectively. The above
results were approximately in accordance with previous
studies [2], indicated that our quantitative results are
reliable. We believe that these data will be useful for
pharmacological evaluation and quality control of this
new variety.
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Figure 10 Typical chromatograms of triterpenoid saponins in roots. Typical chromatograms of triterpenoid saponins in P. viethamensis var.
fuscidiscus roots. (A) HPLC-ELSD chromatograms of majonoside R2 in P. vietnamensis var. fuscidiscus roots; (B) HPLC-ELSD chromatograms of
authentic majonoside R2. (C) HPLC chromatograms of ginsenoside Rg1, Rb1, notoginsenoside R1, and ginsenoside Rd in P. vietnamensis var.
fuscidiscus roots. (D) HPLC chromatograms of ginsenoside Rg1, Rb1, notoginsenoside R1, and ginsenoside standards.
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Conclusions

P. vietnamensis var. fuscidiscus exhibited remarkable dis-
ease resistance, and contains higher levels of ocotillol-
type saponins. Thus, P. vietnamensis var. fuscidiscus is a
suitable material for the study of ocotillol-type saponins
biosynthesis and improvements of Panax plants.
Because of the fact that P. vietnamensis var. fuscidiscus
is a newly discovered variety of P. vietnamensis, no gen-
omic information was available for this species. This is
the first study performed on transcriptome sequencing
of P. vietnamensis var. fuscidiscus using Illumina next-
generation sequencing. In total, 126,758 unigenes were
obtained. The large number of transcripts provided in
this study not only facilitates the study of ocotillol-type
saponins biosynthesis but also could provide opportun-
ities to engineer microorganisms for the de novo produc-
tion of active ingredients. Furthermore, numerous SSRs
were identified and will be very useful for marker-
assisted selection breeding of this herb.

Methods

Ethics statement

No specific permits were required for the described field
studies. No specific permissions were required for these
locations and activities. The location is not privately-
owned or protected in any way and the field studies did
not involve endangered or protected species.

Plant material

Four-year-old P. vietnamensis var. fuscidiscus plants
were collected from Jinping County, Yunnan province,
southwest of China (Latitude: 22° 47" 38 "N, Longitude:
103° 2" 22"E, Altitude: 1690 m), in May 2013. After
morphological and molecular identification according
the reference [24], the root tissues samples were col-
lected separately from four randomly selected plant indi-
viduals. All samples were separately cut into small
pieces, and parts of each sample were mixed with
equivalent fresh weight (2 g) for RNA isolation. The
remaining materials were used for SE gene cloning and
RT-qPCR analysis. All samples were frozen immediately
in liquid nitrogen and stored at —80°C until use.

RNA library construction and sequencing

The total RNA was extracted from the mixed sample by
using Trizol reagent (Invitrogen, Camarillo, CA, USA),
following RNA purification by RNeasy MiniElute
Cleanup Kit (Qiagen, Hilden, Germany), according to
the manufacture’s protocol. The RIN (RNA integrity
number) values of the isolated RNA were determined by
using Agilent 2100 Bioanalyzer (Santa Clara, CA, USA).
Samples with RIN of more than 8 were used for further
analysis. The construction of the libraries and the RNA-
Seq were performed by CapitalBio Corporation (Beijing,
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China). Firstly, poly (A) mRNA was purified from 20 pg
of total RNA using Oligo(dT) magnetic beads. Then,
mRNA was fragmented into smaller pieces (200-
700 bp), which were used for first-strand cDNA synthe-
sis with reverse transcriptase and random hexamer-
primer. The second-strand cDNA was synthesized using
buffer, ANTPs, RNaseH and DNA polymerase. The short
double-stranded cDNA fragments are purified with
QiaQuick PCR extraction kit (Qiagen, Hilden, Germany)
and resolved with EB buffer. These cDNA fragments
underwent an end-repair process and poly(A) was added
and then ligated with the Illumina paired-end sequen-
cing adaptors. Subsequently, Ligation products were
purified with magnetic beads and separated by agarose
gel electrophoresis. A range of cDNA fragments (200 +
25 bp) were excised from the gel and selected for PCR
amplification as templates. The cDNA library was con-
structed with a fragment-length range of 200 bp
(+25 bp). Final, the cDNA library was sequenced on a
paried-end flow cell using Illumina HiSeq™ 2000
platform.

Transcriptome data processing and assembly

Before assembly, raw reads with adaptors and unknown
nucleotides above 5% or those that were of low quality
(containing more than 50% bases with Q-value < 20)
were removed to obtain clean reads using a custom Perl
script. Then the clean reads were de novo assembled
using Trinity program [60] with default parameters.
First, clean reads with a certain length of overlap were
combined to form longer fragments without N, which
were called contigs. These clean reads were then
mapped back to corresponding contigs with paired-end
reads to detect contigs from the same transcript as well
as the distances between contigs, and their paired-end
information was also used to fill gaps or to extend the
sequences. Finally, these resultant sequences were clus-
tered to remove redundant sequences using the TIGR
gene Indices clustering tools (TGICL) [61] to form lon-
ger sequences without N and cannot be extended on ei-
ther end. Such sequences are defined as unigenes.

Functional annotation and prediction of CDS

Functional annotations were performed by sequence
comparison with public databases included the NCBI
non-redundant nucleotide database (NT, by June 2012),
non-redundant protein database (NR, by June 2012)
(http://www.ncbi.nlm.nih.gov/), Swiss-Prot database
(http://www.expasy.ch/sprot) and the Clusters of
Orthologous Groups database (http://www.ncbi.nlm.nih.
gov/COG/) [62] using BLASTN and BLASTX (http://
blast.ncbi.nlm.nih.gov/Blast.cgi), respectively, with an e-
value of 1e . A Perl script was written to assign the
functional class to unigenes. Unigenes were also
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compared with KEGG [63] using BLASTX at an e-
values of less than 1e '°. A Perl script was used to re-
trieve KEGG Orthology (KO) information from blast re-
sult and then established pathway associations between
unigenes and database. Based on the results of Nr data-
base annotation, we use Blast2GO program [64] to per-
form GO annotation of unigenes. After acheiving GO
annotation for every unigene, WEGO [65] software was
used to perform GO classification and to draw GO tree.
Moreover, the conserved domains/families of the assem-
bled unigenes encoding proteins were searched against
the Pfam database (version 26.0) [66] using Pfam_Scan
script.

The coding sequence (CDS) for unigene was predicted
by BlastX and ESTscan. The unigene sequences were
searched against the Nr, COG, KEGG and Swiss-Prot
protein databases using BLASTX (e-value <107°).
Unigenes aligned to a higher priority database will not
be aligned to lower priority database. The best alignment
results were used to determine the sequence direction of
unigenes. When a unigene could not be aligned to any
database, ESTScan [67] program was used to predict
coding regions and determine sequence direction.

SSR detection and primer design

Potential SSR markers were detected among the 126,758
unigenes using the MISA tool (http://pgrc.ipk-gatersle-
ben.de/misa/). We searched for SSRs with motifs ran-
ging from mono- to hexa-nucleotides in size. The
minimum of repeat units were set as follows: ten repeat
units for mono-nucleotide, six for di-nucleotides, and
five for tri-, tetra-, penta- and hexa-nucelotides. Primer
pairs were designed using Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0/primer3/) with default parameters.

Survey of SSR polymorphism

A total of 30 primer pairs (Additional file 17) were ran-
domly selected to evaluate their application and the
polymorphism across 13 P. vietnamensis var. fuscidiscus
accessions (Additional file 18). Total DNA was isolated
from P. vietnamensis var. fuscidiscus leaves using the
CTAB method. PCR amplifications were conducted in a
final volume of 20 pL containing 1 pL 2.5 mM dNTPs,
1 pL EasyTaq DNA polymerase (Beijing TransGen
Biotech Co., Ltd. China), 2 puL 10 x EasyTaq buffer, 1 pL
of each primer (10 pM), 13 pL ddH,0O, and 1 pL tem-
plate DNA (approx. 10 ng/puL). PCR was performed as
follows: initial denaturation at 94°C for 2 min, followed
by 35 cycles of denaturation for 30 s at 94°C, annealing
for 30 s at different Tm depending on the gene, exten-
sion for 30 s at 72°C, and a final step of elongation at
72°C for 5 min. The separation of alleles was performed
on 8% polyacrylamide gel. PCR products were mixed
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with an equal volume of loading buffer. The mixture was
denatured at 95°C for 5 min before loading onto the gel.

Data collection and analysis

The presence of each single band was coded as 1 and its
absence as 0 in a data matrix. Base on the binary data
matrix, popgene program version 1.32 [68] was use to
calculate genetic variation parameters, including ob-
served number of alleles (No), effective number of alleles
(Ne), Shannon’s information index (/), number of poly-
morphic loci (NP) and percentage of polymorphic loci
(PPB). Allelic data were used to calculate the poly-
morphism Information Content (PIC) of each SSR
marker by using the formula: PIC =1-Xpi* (pi is the fre-
quency of it" allele for each locus) [69]. By NTSYS pc
2.1 program [70], Jaccard's genetic similarity coefficients
were calculated and dendrogram of the 13 P. vietnamen-
sis var. fuscidiscus accessions was constructed by the
UPGMA (un-weighted pair group method with arith-
metic mean) clustering method.

Full-length cDNA cloning of putative SE genes

Total RNA was reverse transcribed to synthesize first
strand ¢cDNA using oligo dT primer and a
PrimeScript"™II 1st Strand cDNA Synthesis Kit
(TaKaRa, Dalian, China) according to the manufacturer’s
instructions. The RT-PCR products were used as tem-
plate for cloning of PvfSE1, PvfSE2 and Pv{SE3. The
full-length ¢cDNA sequences of PvfSE1, PvfSE2 and
PvfSE3 were obtained from our transcriptome data. The
specific primers (Additional file 19) used for the amplifi-
cation of these genes were designed using primer3 pro-
gram based on based on the predicted cDNA sequences
and were then synthesized. PCRs were conducted in a
total reaction volume of 25 pL, containing 1 pL of
c¢cDNA, 0.5 pM of each of the forward and reverse
primers, 200 uM of dNTPs, 5 uL of 5 x Q5 Reaction
Buffer, and 0.25 pL of Q5 High-Fidelity DNA polymer-
ase (NEB, Beijing, China). The PCR conditions are as
follows: 94°C for 3 min, followed by 35 cycles of 94°C
for 1 min, 59°C for 1 min, 72°C for 5 min, with a final
10 min extention at 72°C. The PCR products were elec-
trophoretically separatedon a 1% agarose gel, ligation
into the pMD19-T vector (TaKaRa, Dalian, China) and
were then subjected to automated DNA sequencing
using the ABI 3730XL sequencer(Applied Biosystems,
Foster City, USA).

Phylogenetic analysis

Phylogenetic analysis was performed based on the de-
duced amino acid sequences of Cytochrome P450
(CYP450) and UDP-glycosyltransferase (UGT) from P.
vietnamensis var. fuscidiscus and other plants. All of the
deduced amino acid sequences were aligned with Clustal
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X using the default parameters: gap opening penalty, 10;
gap extension penalty, 0.1; and delay divergent cutoff,
25%, and evolutionary distances were computed using
MEGAS5.10 with the Poisson correction method. For the
phylogenetic analysis, a neighbor-joining tree was con-
structed using MEGAS.0. Bootstrap values obtained after
1000 replications are indicated on the branches. The
scale repesents 0.1 amino acid substitutions per site.

RT-qPCR analysis

Ten unigenes with potential roles in ginsenoside biosyn-
thesis were chosen for validation using RT-qPCR with
gene specific primers designed with Primer3 software.
All the primers sequences used for the RT-qPCR ana-
lysis are shown in Additional file 20. Total RNA from
different organs (roots, hairy roots, stems and leaves) of
P. vietnamensis var. fuscidiscus were extracted individu-
ally using Trizol Kit (Promega, USA) following the man-
ufacturer’s protocol. Subsequently, RNA was treated
with 4 x gDNA wiperMix at 42°C for 2 min to remove
DNA. The purified RNA (1lug) was reverse transcribed
to ¢cDNA using HiScript QRT SuperMix for qPCR
(Vazyme, Nanjing, China). The qPCR reactions were
performed in a 20 pl volume composed of 2 ul of
c¢DNA, 0.4 pl of each primer, and 10 pl 2 x SYBR Green
Master mix (TaKaRa) in Roche LightCycler 2.0 system
(Roche Applied Science, Branford, CT). PCR amplifica-
tion was performed under the following conditions: 30 s
at 94°C, followed by 45 cycles of 94°C for 20 s, 55°C for
20 s, and 72°C for 30 s. Three technical replications were
performed for all quantitative PCRs. The phosphomeva-
lonate kinase (PMK) gene, which was found in our tran-
scriptome database, was chosen as reference gene
control for normalization after the expressions of three
reference genes (actin, GAPDH, and PMK) were com-
pared in different tissues. The relative changes in gene
expression levels were calculated using the 27°°¢"
method.

HPLC- ELSD analysis of majonoside R2

The dried powder of P. vietnamensis var. fuscidiscus
roots (0.11 g) were extracted by sonication with 50 ml of
methanol for 45 min, let cool, then weighed and the
weight of methanol to complement the weight loss,
shake, with 0.45 pm microporous membrane filtration,
and 10 pL of filtrate was analyzed by HPLC-ELSD. For
majonoside R2 determination, a Shimadzu LC 20A
HPLC system (Shimadzu, Kyoto, Japan) with a Sedex 75
evaporative light scattering detector (Sedere, Alfortville,
France) was used. Chromatographic separation was per-
formed on an Waters symmetry shield"RP;q (4.6 mm x
250 mm, 5.0 um, Milford, MA, USA) column maintained
at 30°C. The mobile phase was acetonitrile-water
(19.5:80.5, v/v), and the flow rate was 1 pL/min. The drift
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tube temperature of ELSD was set at 40°C and nebulizer
nitrogen gas flow-rate was 1.5 I/min and gain of 9.
Authentic majonoside R2 was provided by Yunnan
Institute for Food and Drug Control (Kunming, Yunnan,
China).

HPLC analysis of other four triterpene saponins
In brief, the dried powder of P. vietnamensis var. fusci-
discus roots (0.6 g) were extracted with 40 mL of 100%
MeOH for 30 min and sonicated for 60 min and then di-
luted to 50 mL with MeOH. The methanol extract was
filtered through a 0.45 pm membrane filter and 10 pL of
filtrate was directly injected into the HPLC system.
Quantitative analysis of the remaining four triterpene
saponins (ginsenoside Rgl, Rb1, notoginsenoside R1,
and ginsenoside Rd) in the roots of this herb was per-
formed on Agilent 1260 HPLC systems (Agilent
Technologies, Santa Clara, CA, USA). The chromato-
graphic column Agilent Zorbar SB-C;g (250 mm x
4.6 mm, 5 um, Agilent Technologies, Santa Clara, CA,
USA) was used and the column temperature was main-
tained at 30 °C. The flow rate was fixed at 1 mL/min,
and the mobile phase consisted of acetonitrile (A) and
water (B) and separation was achieved using the follow-
ing gradient system: 85% B at 0 min, 80% B at 5 min,
77% B at 30 min, 60% B at 50 min, and 60% B at
55 min. Detection was performed at 203 nm for the
remaining four triterpene saponins. Authentic ginseno-
side Rgl, Rb1, notoginsenoside R1, and ginsenoside Rd
were purchased from J&K Scientific Ltd (Beijing, PR
China).
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