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Abstract

Background: With the development of inexpensive, high-throughput sequencing technologies, it has become feasible
to examine questions related to population genetics and molecular evolution of non-model species in their ecological
contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to
examine population dynamics and signatures of selection across the genome using several well-established tests,
including FST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees
(Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be
localized to distinct ecological regions.

Results: We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout
Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply
several computational procedures to study population structure and the evolutionary relationships among the
populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow
among the sampled populations, there are clear distinctions between populations from the northern desert
region and those from the temperate, savannah region. We identified several genes showing population genetic
patterns consistent with positive selection within African bee populations, and between these populations and
European A. mellifera or Asian Apis florea.

Conclusions: These results lay the groundwork for future studies of adaptive ecological evolution in honey bees,
and demonstrate the use of new, freely available web-based tools and workflows (http://usegalaxy.org/r/kenyanbee)
that can be applied to any model system with genomic information.
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Background
Understanding the molecular mechanisms regulating in-
dividual variation and how selection operates on these
mechanisms to drive adaptive evolutionary change are
fundamental goals in evolutionary ecological genetics [1, 2].
However, studies of the molecular mechanisms mediating
intra- and interpopulation differences in non-model organ-
isms in their ecological habitats have traditionally been

limited by the relatively low number of genetic markers
available and the high cost of full genomic sequencing. The
introduction of inexpensive, high-throughput sequencing
technologies presents the unparalleled opportunity to rap-
idly analyze the structure of populations in ecologically
relevant systems and begin to examine the evolutionary
forces underpinning adaptive variation within and among
populations and species [3, 4].
There are a large number of well-established compu-

tational procedures and statistical techniques to detect
signatures of selection along the genome at different
evolutionary time periods (see Sabeti, et al. 2006 [5]).
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However, the majority of these methods are computa-
tionally intensive for genome-wide analyses and diffi-
cult to execute for researchers not accustomed to
working with population genomic data and the associ-
ated statistical techniques. Recently, we developed a
user-friendly, open-access, web-based platform on the
Galaxy web-server to investigate genetic variation and
population structure [6]. In this study, we expand upon
this existing platform through the development of add-
itional tools and reproducible workflows to specifically
scan the genome for signatures of selection and adap-
tive evolution. This interface allows scientists to easily
and efficiently examine the evolutionary processes act-
ing on population-genomic data sets and readily share
their results with the scientific community, ensuring
transparency and reproducibility.
Here, we demonstrate an application of this platform

in the study of evolutionary relationships among popula-
tions of Apis mellifera honey bees in East Africa, and
search for signs of adaptive evolution across the genome.
Honey bees are a fascinating model system in which to
study the molecular mechanisms underpinning adaptive
evolution. Apis mellifera honey bees are one of the most
broadly dispersed animal species in the world, occupying
every continent except Antarctica. A. mellifera originally
evolved in tropical Africa, and subsequently migrated to
and became established in temperate Europe and western
Asia on two occasions, forming two distinct genetic line-
ages from their African ancestors [7–9]. Within Kenya
alone there is substantial genetic diversity, with previous
studies identifying five distinct subspecies in different
ecological niches: A.m. scutellata in the central savannah,
A.m. monticola in the mountains, A.m. litorea on the
coast, A.m. yemenitica and A.m. simensis in the northern
desert [7, 9–11]. However, previous studies using a limited
number of mitochondrial and nuclear markers have indi-
cated substantial gene flow among these putative subspe-
cies, and thus there may not be clear distinctions among
these populations [12, 13].
Adaptation to different environmental conditions in

honey bees involves both behavioral and physiological
changes. Honey bees establish large colonies with tens of
thousands of individuals which are active year-round
[14]. In tropical regions, colonies must deal with both
wet and dry seasons, while in temperate regions, col-
onies must survive extreme cold conditions. Winter in
temperate regions and either (depending on the condi-
tions) wet or dry seasons in tropical regions are typically
associated with reduced floral resources and reduced nu-
trient intake, which results in reduced production of
new bees (brood). In temperate regions, this nutrient-
deprived, broodless condition has been shown to trigger
the production of “overwintering bees” [15], which ex-
hibit reduced activity, altered hormone profiles, higher

nutrient stores, and longer lifespans [16–18]. The bees
will also form a thermoregulating cluster when tempera-
tures drop below 18 °C [14]. The phenotype of bees ex-
periencing wet/dry conditions in the tropics has not
been characterized, but rendering temperate bees brood-
less in the summer months can result in a similar “over-
wintering” phenotype of altered hormone and nutrient
levels and increased lifespans [17, 19–21], and it has
been hypothesized that broodless conditions resulting
from a lack of resources can trigger similar phenotypes
under different environmental conditions [15, 22]. Fur-
thermore, in addition to these physiological parameters,
there are also clear behavioral adaptations to seasonal
changes: colonies of tropical A. mellifera subspecies
readily migrate over vast distances to find environments
with more plentiful resources [23].
With the sequencing of the honey bee genome [24],

and the development of high throughput genomic sequen-
cing technologies, it is now possible to readily examine
genome-wide signatures of selection in honey bees. Previ-
ous studies have examined the genetic structure of popula-
tions of bees in Africa, Europe and North America
allowing for inferences of the phylogenetic history of
worldwide honey bee populations and identifying signatures
of positive selection in protein coding regions of genes
between African/Africanized populations and European
populations [8, 25, 26]. Other studies demonstrated
that genes associated with differences in queen and
worker behavior have significantly higher numbers of
SNPs than uncorrelated genes [27], and identified sig-
natures of postive selection in genes associated with
worker behavioral traits [28].
In this study, we sequenced the full genomes of 11 in-

dividual worker bees sampled from different ecological
regions throughout Kenya. We expanded and used our
newly developed suite of web-based tools to examine
signatures of selection within this sample group using
six well established tests; each test is available as a tool
or reproducible workflow on the Galaxy website, http://
usegalaxy.org/r/kenyanbee. As with the experimental de-
sign of any population genetics analysis, large sample
sizes are always desired and lead to the greatest accuracy
in the estimation of population genetics parameters [29].
Despite the decreasing price of high throughput tech-
nologies, the costs of whole genome sequencing, sample
collection and international field work remain as limita-
tions to population based genomics studies. We acknow-
ledge the potential limitations our relatively small size of
11 individuals yield, yet demonstrate the powerful applica-
tion of publicly accessible, user-friendy tools developed on
the Galaxy platform to begin to identify the genes involved
in environmental adaptation in this species. Additionally,
our work provides the foundation and computational
framework for future population genomics studies in

Fuller et al. BMC Genomics  (2015) 16:518 Page 2 of 18

http://usegalaxy.org/r/kenyanbee
http://usegalaxy.org/r/kenyanbee


Kenyan honey bees, as well as other ecologically rele-
vant non-model organisms.

Methods
Sample collection
We collected honey bees from 11 apiaries across Kenya
(these bees were sampled as part of a larger study sur-
veying bee health in 24 apiaries across Kenya, described
in [12]. Detailed information about the location and
levels of parasites/pathogens in each apiary is supplied
in Additional file 1: Table S1. All samples were collected
at maintained apiaries and consent was given by the col-
laborating authority. In all cases the owner (in the case
of private land) or relevant authority (in the case of public
land, gave permission for collections). Honey bees were
maintained according to standard beekeeping practices.
One representative bee from one colony in each apiary
was sampled; collections of bees were carried out between
June-September 2010. A forager returning to the hive
entrance with pollen was collected in 95 % ethanol.
Bees were collected into individual 2 ml cryogenic vials
(VWR, Radnor, PA). Samples were collected on ice, stored
at -20 °C during field collections, and then shipped to The
Pennsylvania State University (University Park, PA) within
a month, where they were stored at 4 °C. Sample collec-
tion procedures were in accordance with standard prac-
tices for ethical handling of invertebrate samples [30].
Because A. mellifera is not a regulated invertebrate, no
ethical use or institutional review board approval was
required.

Whole genome sequencing and SNP identification
Heads of individual foragers were dissected and ho-
mogenized with a Fastprep instrument (Thermo Fisher,
Waltham, MA) for three cycles at maximum time and
speed. DNA was extracted using the Puregene Core
Kit (Qiagen, Valencia, CA) according to manufacturer’s
instructions.
Prior to library preparation, the quality of the gDNA

samples was assessed by running the samples on a Bioana-
lyzer DNA 12000 Chip (Agilent, Santa Clara, CA). Sample
quantitation was performed using Invitrogen’s Picogreen
assay. Next-generation sequencing library preparation was
performed on the Biomek FXp (Beckman, Brea, CA) using
the SPRIworks HT Reagent Kit (Beckman) and Illumina’s
TruSeq LT DNA adatpers (Illumina, San Diego, CA). For
each sample, 1ug of gDNA was used for library prepar-
ation. The samples were sheared on a Covaris S2 to
~300 bp, following the manufacturer’s recommendation
(Covaris, Woburn, MA). Size selection was performed
on the Biomek FXp using the SPRIworks HT Reagent
Kit. Each library was uniquely tagged with one of Illu-
mina’s TruSeq LT DNA barcodes to allow library pool-
ing for sequencing. Library quantitation was performed

using Invitrogen’s Picogreen assay and the average li-
brary size was determined by running the libraries on a
Bioanalyzer DNA 1000 chip (Agilent). Library concen-
tration was validated by qPCR on a StepOne Plus real-
time thermocycler (Applied Biosystems, Grand Island
NY), using qPCR primers, standards and reagents from
Kapa Biosystems (Wilmington, MA). Library quality was
assessed by running the samples on an Illumina MiSeq se-
quencer and high throughput sequencing was carried out
on an Illumina HiSeq 2000 sequencer at a read-length of
101 bp paired-end.
Paired-end sequences of length 101x100 bp were

aligned to the Apis mellifera reference genome sequence
(Amel_4.5) using BWA [31] version 0.5.9. The default
parameters were used, with the exception of the “-q 15”
option, which was applied to allow soft trimming of the
low-quality 3’ ends of reads prior to alignment. On aver-
age, we aligned 5.06 Gb of sequence data per individual
(SD 1.68 Gb), corresponding to an average of ∼ 20-fold
coverage of the 234-Mb honey bee reference genome se-
quence. We used the MarkDuplicates utility in the Picard
toolset (http://picard.sourceforge.net) to flag potential PCR
duplicate reads that could otherwise affect the quality of
the variant calls. Of each set of potential duplicate read
pairs, only the pair with the highest sum of base quality
scores for bases with quality ≥15 was used in the subse-
quent steps. Considering data from all individuals simul-
taneously, we used SAMtools [32] version 0.1.18 to identify
the locations of variants, using the option “-C 50” to re-
duce the mapping quality of the reads with multiple
mismatches. These locations in the nuclear genome
were filtered to maintain variants for which the total
coverage in the samples was between 4 and 500 reads
(to limit the erroneous calling of variant positions in re-
petitive or duplicated regions), and the RMS (root
mean square) mapping quality was greater than or
equal to 10. As a result, we identified 8,363,799 loca-
tions (6,735,513 SNPs, and 1,628,286 small indels) in
the nuclear genome, where more than one allele was
observed among the 11 samples and the reference se-
quence. Once the variant locations were identified, we
then used SAMtools (using the mpileup command) to
estimate genotypes at all SNPs for each individual, re-
gardless of sequence coverage for that SNP and individ-
ual. The final dataset of 3,643,069 putative SNPs was
constructed after filtering for a SAMtools-computed
quality score of at least 100. All sequences are depos-
ited on the short read archive (Accession Number:
SRP037570) and as a BioProject (Accession Number:
PRJNA237819) on NCBI.

Overall FST
Samples were collected from apiaries that had previously
been found to contain bees with mitochondrial haplotypes
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corresponding to four previously described subspecies (A.
m. litorea, A. m. yemenitica, A. m. scutellata and A. m.
monticola) though in some cases, multiple subspecies
were identified within an apiary (see Table 1, Additional
file 1: Table S1 and [12]). To determine if there were sig-
nificantly differentiated populations of honey bees within
our sample group using the whole genome information,
we generated 10,000 randomized groupings of individuals
to be compared using the Reich-Patterson estimator of
FST [33]. Two groupings were identified (see Results)
which we termed “Desert” and “Savannah”. Both the data
randomization and FST estimation were performed using
the “Overall FST” tool available in the “Genome Diversity”
toolset on Galaxy (http://usegalaxy.org).

Phylogenetic analysis
The complete nuclear and mitochondrial sequences
from the 11 individuals were used for phylogenetic ana-
lysis. The nuclear genome phylogeny was generated
using the filtered set of ~3.6 million SNPs with the
“Phylogenetic Tree” tool located under the “Genome Di-
versity” section on Galaxy (http://usegalaxy.org). “Phylo-
genetic Tree” constructs a neighbor-joining tree using
the QuickTree program [34].
Complete mitochondrial genome sequences were aligned

with the ClustalW package in BioEdit 7.6 [35] using the
mutiple alignment feature (BLOSUM62 matrix, gap open
penalty: 15.0, gap extension penalty: 6.66). A neighbor-
joining tree was constructed with MEGA5 [36] using the
Maximum Composite Likelihood model (2000 bootstrap
replicates), with uniform rates, and complete deletions.
There were 12 sequences in all, including the outgroup in-
dividual, with 16,051 nucleotides in the final data set of

which 456 were variable sites. The European subspecies
Apis mellifera ligustica (Accession Number: L06178) is used
as the outgroup to the African bees. The percentage of rep-
licate trees in which the associated taxa clustered together
in the bootstrap test are shown next to the branches [37].

pN/pS
Using the honey bee reference genome (Amel v4.5; [38])
we identified the annotated protein-coding exons for
each putative gene. For each protein coding region, we
analyzed all codons, other than the stop codon or those
that intersect a gap (run of the letter N) in the assembly.
We defined the counts of effective nonsynoymous and
synonymous sites using the approach of Nei [39]. We
then constructed a table containing the number of syn-
onymous and nonsynonymous polymorphsims for each
gene. A table based on all putative SNPs and the associ-
ated workflow is available on the Galaxy server (http://
usegalaxy.org/r/kenyanbee).

Fixed differences from the (European) reference genome
The number of nonsynonymous and synonymous SNPs
that are invariant among our samples and differ from
the Apis mellifera reference (which was derived from a
European honey bee subspecies), [24] can be computed
for each reference gene with Galaxy commands and we
provide a workflow at the Galaxy website, http://usega-
laxy.org/r/kenyanbee, that computes all of the values re-
ported herein as well as the related supplementary table.

McDonald-Kreitman test
We extracted intervals of the A. mellifera reference gen-
ome that include coding exons plus 10 flanking bases on

Table 1 Specimen location information

Site Geographic region Site Name Coordinates Elevation Individual ID Köppen-Geiger
classificationa

Parasites & Pathogensb

1S savannah Nairobi, Kasarani −1°13.3631, 36°53.7867 1602 m 1.4.15 Cfb-Aw VD

2S savannah Kitui, SEKU −1°18.3005, 37°45.9075 1150 m 2.2.15 Aw DWV

3S savannah Malewa −0°31.5024, 36°24.1969 1973 m 4.2.15 Csb VD, DWV

4S savannah Mt. Elgon, Chepkui 0°49.543, 34°42.1740 1869 m 21.3.15 Am VD, BQCV, DWV

1C coast Gete Ruins −3°18.3899, 40°1.0793 36 m 12.2.15 Aw VD, BQCV, DWV, N. apis

2C coast Oceanside −3°20.2514, 39°59.1495 15 m 13.4.15 Aw VD, DWV, ABPV, N. apis

3C coast Tanzania Border −4°31.7394, 39°9.2171 62 m 15.4.25 Aw VD

1D desert Mandera Town 1 3°56.2050, 41°52.0900 212 m 16.1.5 BWh No Pathogens

2D desert Mandera Town 2 3°56.1970, 41°52.0820 221 m 17.1.5 BWh No Pathogens

3D desert Mandera West 3°53.3790, 40°16.0440 894 m 18.1.5 BSh No Pathogens

1 M mountain Mt. Elgon, Moorland 0°57.2460, 34°36.2860 2956 m 22.2.5 Am BQCV
aAm-Tropical monsoon climate, Aw- Tropical savannah climate, Bsh- Subtropical steppe climate, Bwh- Subtropical desert climate, Cfb- Marine coastal climate,
Csb- Mediterranean climate
bABPV- Acute bee paralysis virus, BQCV- Black queen cell virus, DWV- Deformed wing virus, N.apis- Nosema apis, VD-Varroa destructor
The site number, geographic region, site name, coordinates, elevation, and identification numbers for individual specimens used in this study with Köppen-Geiger
classification (Peel et al. 2007) [106] and previous identified pathogens at each site (Muli, et al. 2014) [12]. The apiary, colony and individual identification (ID)
numbers were assigned based on our initial survey scheme (Muli, et al. 2014) [12]
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each side, which were then aligned to the A. florea reads
using BWA and default parameters [31]. This allowed
the McDonald-Kreitman test to be applied to all 15,314
annotated A. mellifera genes within our Kenyan samples.
The number of synonymous subsitutions (DS), the num-
ber of nonsynonymous substitutions (DN), the number of
synonymous polymorphisms (PS) and the number of non-
synonymous polymorphisms (PN) were counted using the
Galaxy “filter” and “count” commands; the Galaxy table of
bee genes that reports pN/pS (mentioned above) also con-
tains columns with the MK ratio, DS, DN, PS and PN. The
associated tools and workflow are available at the Galaxy
website, http://usegalaxy.org/r/kenyanbee.

Runs of homozygosity
Allele frequencies were calculated using the “filter”, “count”
and “text manipulation” tools available on the Galaxy
browser. For each defined population, either Desert or
Savannah, columns were appended to the data table
that summed the genotypes for all individuals specified.
Using the “compute” tool, a homozygosity score was
given for each site by taking the square of the difference
of the frequencies of the alternate and reference alleles.
In this way, any site that is homozygous within a popu-
lation will receive a score of 1.0. With the “Remarkable
Intervals” tool on the Galaxy Browser, intervals of con-
secutive homozygous genotypes, or runs of homozygos-
ity (ROH), were discovered by setting a cutoff of 0.9 (a
cutoff of 1.0 would not allow for the “Remarkable Inter-
vals” tool to extend intervals from a single site). We
used 1000 randomizations to determine which intervals
to report, so that for any interval reported, the prob-
ability is p < 0.001 for that interval’s score being equaled
or exceeded by chance. These intervals were then inter-
sected with and joined to known genes using the “inter-
sect” and “join” commands on Galaxy. A workflow
showing the steps and tools used is available on Galaxy
(http://usegalaxy.org/r/kenyanbee).

FST
We first selected individuals for either the Desert or
Savannah population using the “Specify Individuals” tool
on Galaxy. Using the “Per SNP FST’s” tool, we then cal-
culated the Reich-Patterson estimator of FST at each
SNP and used the “Remarkable Intervals” tool to locate
regions containing runs of consecutive SNPs with high
FST values. We used the highest scoring 10 % of FST
values as our cutoff. At these intervals, the Desert and
Savannah populations are more different from one an-
other than can be explained by chance alone (p < 0.001),
demonstrated by our randomization approach using
1,000 permuted replicates. These intervals were then
intersected with and joined to known genes using the
“intersect” and “join” commands on Galaxy. A workflow

showing the steps and tools used is available on Galaxy
(http://usegalaxy.org/r/kenyanbee).

Tajima’s D
Tajima’s D statistic was calculated according to the ori-
ginal definition [40]. D was calculated in 5 kb, non-
overlapping windows across the entire genome of all
individuals in the Kenyan sample using the “Tajima’s D”
tool on Galaxy. For each 5 kb window, we also estimated
the normalized version of Fay and Wu’s H statistic using
a custom Python script [41, 42]. To correct for multiple
testing, we used the experiment-wide simulation ap-
proach of Nielsen et al. (2005) [43]. Significance cutoffs
were obtained by repeatedly simulating data from a neu-
tral coalescence model using a value of θ estimated from
the data by taking the average number of segregating
sites in a window. Coalescent simulations were per-
formed using Hudson’s ms and Tajima’s D and normal-
ized Fay and Wu’s H values were estimated in sampled
windows using Zeng’s dh program [41, 44]. We then fil-
tered the data for windows with Tajima’s D scores more
negative than the simulated significance cutoff (-1.71). A
workflow showing the steps and tools used is available
on Galaxy (http://usegalaxy.org/r/kenyanbee).

Genomic intervals under selection
The methods that search for genomic intervals where
the SNPs reveal signs of positive selection all use the
Galaxy “Remarkable Intervals” tool and a workflow
showing the steps and tools used is available on Galaxy
(http://usegalaxy.org/r/kenyanbee). The tool avoids prob-
lems associated with a fixed window size and in essence
automatically determines the sizes of the intervals that it
finds. Certain genomic positions (e.g., SNPs) are assigned
a numerical value (e.g., FST), and the user specifies a
“cutoff value” or percentile that exceeds most of these
numbers. The tool subtracts the cutoff value from each
number, then finds “locally optimal” genomic intervals
where the sum of the subtracted values cannot be in-
creased by adjusting the interval’s end-points. Also, it
uses a randomization strategy to determine “empirical”
p-values for the intervals that it reports. Detailed de-
scriptions of the method are reported elsewhere [45].

Gene Ontology (GO) analysis
Where possible, GO analysis was performed in DAVID
for genes displaying patterns consistent with selection
[46, 47]. GO analysis was carried out on the genes with
Drosophila orthologs since DAVID software does not
support honey bee genome annotation. For the back-
ground list (see Additional file 1: Table S2), we used all
annotated A. mellifera genes with an available FlyBase
annotation (8443). Numbers of genes in the analyzed
gene lists with FlyBase orthologs were 39 for pN/pS, 102
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for McDonald-Kreitman, 506 for Tajima’s D, and 60 for
FST. If Bonferroni or Benjamini procedures are applied
to correct for multiple testing, no functional categories
are identified as significant.

Verification of SNPs in candidate genes
To validate our high throughput sequencing, selected
genes (Api m 6, FMRFamide receptor, NADH dehydro-
genase) were resequenced in the 11 individuals and in
two individuals derived from European subspecies (Apis
melifera ligustica and Apis mellifera carnica, obtained
from Glenn Apiaries, Fallbrook, CA). DNA was extracted
as above, and individual genes were amplified using PCR
(see Additional file 1: Table S3 for list of genes and
primers). PCR was performed on a Mastercycler Pro
(Eppendorf, Hauppauge, NY) using 25 ml reactions con-
sisting of 2.5 units of platinum Taq DNA Polymerase,
PCR buffer minus magnesium at a concentration of 1X,
0.2 mM dNTP mix, 1.25 mM MgCl2, 5 % DMSO, 0.2 mM
primers and 10 ng of extracted DNA; reagents were
purchased from Invitrogen (Carlsbad, CA). The PCR was
carried out using a touchdown protocol with the thermal
profile of 2 minute at 95 °C, followed by 10 cycles of
95 °C (30 s), 65 (30 s, decreasing by 1 °C each cycle),
and 72 °C (120 s). The program continued with

30 cycles of 95 °C (30 s), 55 °C (30 s) and 72 °C (120 s)
and a final extension at 72 °C for 8 minutes. No-
template controls were performed with each PCR run.
Products were visualized by electrophoresis on 1.0 %
agarose gels and were purified with a QIAquick PCR
Purification Kit (Qiagen, Valencia, CA) for sequencing.
Sequencing was performed by the Genomics Core Fa-
cility at Pennsylvania State University. Sequences were
aligned using ClustalW package in BioEdit 7.6.

Results and discussion
Evolutionary relationships among Kenyan honey bee
populations
We sequenced the genomes of 11 individual worker bees
from 11 different apiaries distributed throughout four dis-
tinct ecological regions in Kenya (savannah, coast, desert,
mountain; see Fig. 1a for a map of the locations of the
sampled individuals and Table 1 for details on the speci-
mens). These regions have been previously described as
areas of subspecies endemism [7, 9, 11]. Previous analyses
with commonly used mitochondrial markers indicated
that bees in these apiaries represented five different sub-
species of Apis mellifera: scutellata, monticola, littorea,
and yemenitica or simensis (see Additional file 1: Table S1
for further information about the precise sampling

Fig. 1 Geographic, phylogenetic, and principal component relationship of Kenyan honeybees. a) Geographic locations of sampled apiaries. Each
individual is designated according to the ecological region in which it was sampled, with S = savannah, C = coast, D = desert, and M =mountains.
Colors indicate Köppen-Geiger climate regions, see (Peel, et al. 2007) [106]. b) Neighbor-joining tree inferred from full mitochondrial sequences.
The evolutionary distances were computed using the Maximum Composite Likelihood method and are in the units of the number of base substitutions
per site. The tree is drawn to scale. c) Neighbor-joining tree inferred from full nuclear sequences. Numbers indicate the branch lengths
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locations, and Muli et al. (2014) [12]. Sites S1, S2, S3 and
S4 are within the described distribution of Apis mellifera
scutellata. The original description of this habitat is “thorn
woodland and tall grass savannah”, but A. m. scutellata is
found in more diverse habitats across eastern Africa [7].
Sites 1C, 2C, and 3C are located in tropical coastal habitat
where Apis mellifera litorea is said to occur. The apiary
(1C) at the Gete Ruins is in the Arabuko Sokoke Forest
Reserve, a remnant of the coastal tropical forest that sup-
ports a number of unique endemic species. Outside of this
region, along the coast, there has been extensive alteration
of the native habitat and potential incursion of A. m. scu-
tellata. Sites 1D, 2D and 3D are located in the hot, dry
Mandera district. At least two subspecies likely occur in
this region, A. m. yemenitica and A. m. simensis [7, 9, 11].
The final subspecies, A.m. monticola, has received con-
siderable attention in the literature (see Ruttner 1987,
Hepburn and Radloff 1998, Gruber et al 2013 [7, 9, 13]). It
has been described as “the bee of the rain forests of the
East African mountains found at altitudes of 2000-
3000 m” [7]. Only one site (1 M, Mt Elgon, Moorland)
in our study was above 2000 m where A. m. monticola
is said to occur. The bees were sampled during a 2010
survey of the health of Kenyan bee populations (see
Muli et al. 2014 [12]). Several parasites and pathogens
were identified in Kenyan bee colonies during this sur-
vey: Acute bee paralysis virus (ABPV), Black queen cell
virus, (BQCV), Deformed wing virus (DWV), Nosema
apis (a microsporidian gut parasite), and Varroa de-
structor (a parasitic mite); see Table 1 and Additional
file 1: Table S1 for a listing of the parasites and patho-
gens found at each site. Notably, the honey bee colonies
sampled at 1D, 2D, and 3D were free of all tested para-
sites and pathogens (see Table 1).
Across these 11 individuals, we identified ~3.6 million

putative SNPs in the nuclear genome after filtering by
quality score (see Additional file 2: Figure S1 for the fre-
quency spectrum of alternative and reference calls). Using
this set of variable sites, we first examined the evolution-
ary relationships among our sampled Kenyan honey bees
through a phylogenetic analysis of both the mitochondrial
and nuclear genomes (labeled mtDNA and nuDNA re-
spectively). A phylogenetic analysis using the full mtDNA
genome sequence (Fig. 1b) distinguishes between bees
sampled from the savannah, coastal, and desert. The four
savannah specimens (1S, 2S, 3S, 4S) all group together.
Two of the three coastal bee specimens (2C, 3C) form an
independent cluster. The three desert specimens (1D, 2D,
3D) are most distantly related to the savannah specimens,
and could be either A.m. yemenitica or the recently de-
scribed A. m. simensis [11]. Interestingly, one of the
coastal bees (1C) groups with the desert bees. As men-
tioned previously, this coastal bee was collected from a
remnant of the East African coastal tropical forest, and

may represent a population that was originally in contact
with the desert bee population. The single specimen from a
mountain region (1 M) groups together with the savannah
bees. Previous studies from Arias and Sheppard (1996) [10]
used part of the NADH dehydrogenase subunit 2 (ND2)
and the isoleucine transfer RNA (tRNA ILE) mtDNA re-
gion for phylogenetic analysis of the African honey bee
subspecies. The corresponding sequence from 1 M is
identical to that of Arias and Sheppard’s A. m. monticola
bee (MONTIC 1). The nuDNA phylogeny distinguishes
the desert individuals from a broad goruping of bees col-
lected from southern mountain, coastal and savannah api-
aries (Fig. 1c).
There are differences in both branch length and top-

ology between the phylogenies constructed from the nu-
clear and mitochondrial genomes. Similar patterns of
mito-nuclear discordance have been observed in other
animal systems [48, 49]. Distinguishing which type of
discordance is occuring is often difficult, but our results
suggest biogeographic discordance, although we cannot
completely rule out stochastic processes such as incom-
plete lineage sorting [50]. As described earlier, the mito-
chondrial tree (Fig. 1b) is roughly consistent with the
geographic distribution (Fig. 1a) of the representative in-
dividuals and all savannah bees cluster together. The
nuDNA-based tree however, distinguishes the desert
bees from a broad southern population suggesting gene
flow among the coastal, mountain and savannah bee
populations (Fig. 1c). Moreover, there is no indication of
stepwise ecoclines as described in Ruttner (1987) [7],
and the northern desert bees form a distinct cluster,
against the suggestion of Kerr [9]. The discordance be-
tween the mitochondrial and nuclear trees could be the
result of limited dipersal of honey bee queens and move-
ment of males over a larger geographic area. Unmated
honey bee queens fly to male congregation sites that are
delimited by topographic features and air flow turbu-
lence. Upon mating with multiple males the females will
leave the congregation site and found a colony. If female
honey bees show natal site fidelity or limited dispersal
similar to what has been found for the bumble bee Bom-
bus vosnesenskii, the mitochondrial lineage would show
biogeographical patterns [51]. If males come to congrega-
tion sites from a wide area then there would be greater
gene flow at the level of the nuclear genome (see Hepburn
& Randolff 1998 for a description of African honeybee
mating [9]). The northern desert bee population may be
relatively isolated given the arid climate (Fig. 1a, BWh)
separting these populations from the south.
One of the tests for adaptive evolution that we wanted

to apply uses an estimate of genetic differentiation, FST,
for two disjoint “populations” of individuals. We believed
an appropriate choice would be to group individuals in
geographically distinct populations and in accordance
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with the traditional definition of subspecies. One popu-
lation consists of 1D, 2D and 3D, which we call the
“Desert population”, and the other contains 2S, 3S, 4S,
2C and 3C, which we call the “Savannah population”.
We used the “Overall FST” tool on Galaxy to compare
their FST with the FST for 1000 randomly generated
choices of a set with three individuals and a disjoint set
of five individuals (using Reich’s FST estimator; [33]).
Overall, FST was estimated to be 0.02183 between these
two groupings. Only 24 of the 1000 pairs had an equal
or larger FST, indicating that the probability of such a
high score occurring by chance is p < 0.05 (see Additional
file 2: for a detailed description of the global properties of
FST between populations and comparisons to observations
of Zayed and Whitfield 2008 [25]). In addition, using the
“PCA” tool on Galaxy we performed a principal compo-
nents analysis (PCA) of the individuals in our two defined
populations, which further supports genetic differentiation
between the Desert and Savannah populations (Additional
file 2: Figure S2).

Signals of adaptive evolution
We applied six tests (Table 2) to scan the genome for
genes or genomic intervals showing signs of positive se-
lection (adaptive evolution). Each test is available as a
tool or reproducible workflow on the Galaxy website,
http://usegalaxy.org/r/kenyanbee. Three tests are limited
to SNPs observed in protein-coding regions, while three
consider all polymorphic sites across the genome (see
Table 2 for details). In broad terms, the protein-based
tests look for a high proportion of amino acid-altering
(and hence potentially function-altering) differences com-
pared to the “silent” (amino acid preserving, and hence
likely neutral) differences, and they can potentially detect
selection over a wide range of evolutionary times. Thus,
the protein-based tests include all Kenyan bees in our
sample and may detect selection not limited to local geo-
graphic subpopulations. The tests of allele frequencies that

include non-coding regions can in theory detect recent
selection, presumably affecting only some individuals.
The tools and workflows (Fig. 2) used to estimate the
numbers of fixed differences form the reference gen-
ome, McDonald-Kreitman scores, runs of homozygosity
(ROHs) and Tajima’s D values were specifically devel-
oped for the purpose of this study and are unreported
in the initial description of the Galaxy tools to study
genome diversity [6]. Most of the annotated genes that
were identified by these tests are uncharacterized, and
tests that considered genome-wide SNPs frequently found
regions that do not intersect any annotated genes; how-
ever, for each test we describe a well-characterized gene
that the test identified (see Table 2). We chose cutoff
values for each of the protein-based tests to highlight ex-
amples of genes with large scores using tools available on
the Galaxy platform. Future studies with a larger sample
size will standardize the false discovery rate across each
test for positive selection. For selected candidate genes
(Api m 6, FMRFamide receptor, NADH dehydrogenase)
where it was possible to design PCR primers, we validated
the SNP calls detected from high throughput sequencing
with Sanger sequencing. Because Sanger sequencing was
performed on the coding regions of three selected candi-
date genes, not enough sites were validated to accurately
estimate false positive and negative rates for the entire
data set.

Test 1: pN/pS
Polymorphisms that alter the amino acid encoded by a
codon are called nonsynonymous, while those that do
not are called synonymous, or “silent”. Under neutrality,
the majority of nonsynonymous mutations are expected
to be deleterious and removed through the action of
puryifying selection [52, 53]. Different modes of natural
selection, however, can cause the frequencies of particular
nonsynonymous mutations to increase within a population
[54]. Hence, by comparing the rate of nonysnonymous

Table 2 Descriptions of statistical genomic analyses used

Test Number Common name Brief description Region
examined

Protein Gene

1 pN/pS nonsynonymous vs synonymous
differences within Kenyan bees

Protein-coding Venom allergen Api m 6 GB45615

2 — nonsynonymous differences between
Kenyan and European Apis mellifera

Protein-coding FMRFamide receptor GB51916

3 McDonald-Kreitman test nonsynonymous differences between
Kenyan bees and Apis florea

Protein-coding NADH dehydrogenase
(ubiquinone) 1 beta subcomplex

GB51330

4 ROH runs of homozygosity Genome-wide FoxO GB48301

5 FST differences between two populations
of Kenyan bees

Genome-wide Neuroligin-3 GB42603

6 Tajima’s D allele frequency spectrum Genome-wide RpA70, ZFYVE26 GB44421 GB44416
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mutations to the rate of synonymous mutations, which are
not expected to be strongly affected by selection, insight
can be gained into the selective constraints of particular
protein coding regions. A common statistic used to infer
the type and magnitude of selection acting on a given se-
quence is known as dN/dS, which simply divides the fre-
quency of nonsynonymous differences per nonsynonymous
site by the frequency of synonymous differences per syn-
onymous site [39].
To investigate selection within a single species, this ra-

tio is denoted as pN/pS because the differences between
sequences are polymorphisms segregating within a popu-
lation, not fixed differences between lineages. Diversifying,
balancing or positive slection can be inferred when pN/
pS > 1, while purifying selection is suggested when pN/
pS < 1 [55–60]. It is important to be aware that inter-
pretations of pN/pS may be complicated by the pres-
ence of multiple alleles or recently diverged sequences
when analyzing within-species data. Recent theoretical
and empirical work using modifications from the codon
based phylogenetic substitution model of Goldman &
Yang (1994) [61] to estimate dN/dS has demonstrated
that in certain cases of positive selection, dN/dS < 1
when calculated from within-species data [62, 63]. Here,
we estimated pN/pS across the genome for our Kenyan
samples using the heuristic counting method of Nei &
Gojobori (1986) [39].
For each of the 15,314 annotated proteins, we parti-

tioned coding-region SNPs into non-synonymous and
synonymous, which permits pN/pS to be calculated for
proteins with at least one synonymous SNP (see Additional
file 1: Table S4A for a list of genes with pN/pS ≥ 2 and
Additional file 1: Table S4B for the results of a GO
analysis). Several genes found to have high pN/pS are

suggested to be under selection in other species, including
GB52930 (the honey bee ortholog of Drosophila gene
armitage) which appears to be under selection in Drosoph-
ila simulans. Furthermore, GB48792 (the ortholog of Dros-
ophila gene dunce), associated with learning and memory,
has been identified as one of the rapidly evolving genes in
primitively eusocial bees [64, 65].
One gene found to have a high pN/pS is venom aller-

gen Api m 6 (GB45615), with 8 nonsynonymous and 1
synonymous mutations, for which pN/pS was estimated
to be 2.48. Kettner, et al. (2001) [66] isolated this com-
ponent of honeybee venom and observed four protein
isoforms, which Peiren, et al. [67] attribute to a high
level of polymorphism at a single genomic locus. Im-
portantly, and somewhat disturbingly, our scan reported
the gene in two genomic locations (GB45615 in Group16.6,
and GB49510 in GroupUn3525), both with high pN/pS.
Peiren, et al. (2006) [67] had observed this situation with
an earlier A. mellifera genome assembly, and concluded
that a high level of polymorphism within and around the
gene caused the assembly algorithm to erroneously separ-
ate the two haplotypes. We concurred with their analysis
and sought to determine the correct numbers of nonsy-
nonymous differences in this gene.
By decreasing the gap penalty between the two haplo-

types, we created a single alignment of the reference region
around gene GB45615 that included the reads formerly
aligned to GB49510 to analyze the insertions and deletions.
SAMtools reported 7 nonsynonymous substitutions, i.e.,
one of the previously reported differences was lost [67]. In
an interval containing the gene and its immediate flanking
regions (positions 5100 to 6100 of Group16.6), we detected
10 short insertion/deletions, including a one-codon dele-
tion (relative to the European reference sequence) in the

Fig. 2 Example of a workflow using Galaxy commands. The workflow depicts the commands and tools used to carry out the test for genes
located in a “run of homozygosity” (ROH; see the section detailing Test 4). The workflows and command histories for each test are available
at https://usegalaxy.org/r/kenyanbee
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second exon, and a two-codon insertion immediately be-
fore the gene’s last (non-stop) codon, at a position where
Peiren et al. (2006) [67] also observed a two-codon inser-
tion (see their Fig. 1c).
We designed primers (Additional file 1: Table S3) to

amplify the Api m 6 region in our Kenyan samples as
well as in two individuals each of A. m. carnica and A.
m. ligustica ancestry derived from US bee populations.
Using Sanger sequencing, we confirmed the 2 nonsynon-
ymous polymorphisms contained in exon 1, the 2 nonsy-
nonymous polymorphisms present in exon 2 as well as the
3 nonsynonymous polymorphisms located across exon 3.
Furthermore, we were able to confirm the two-codon inser-
tion relative to the reference before the gene’s last non-stop
codon within the Kenyan samples (see Additional file 3:
Alignment S1).
Although the pN/pS ratio can provide insight into the

selective constraints of a genomic region, we cannot ex-
clude the potential influence of demography, population
structure and biased allele frequencies on our results.
However for the case of Api m 6, it is unlikely that
population structure strongly affects our conclusions.
Between the Savannah and Desert subpopulations, FST
over the locus is only .00836 and neither form mono-
phyletic clades in the phylogeny obtained from the re-
gion (Additional file 2: Figure S3). It is also unlikely that
incorrect gene models have inflated pN/pS values due to
the misclassifcation of sites. The Amel_4.5 assembly
gene annotation (OGSv3.2) we used here is a significant
improvement from the original annotation (OGSv1.0)
contained in the previous assembly. In the OGSv3.2 an-
notation, gene models were predicted de novo and in-
ferred from RNAseq and protein data [38]. Furthermore,
we recognize that pN/pS can be artificially inflated if a
gene contains a small number of polymorphic sites and
mutations occur at nonsynonymous sites more frequently
by chance. For genes with pN/pS ≥ 2, we consider this ef-
fect unlikely to impact our results, as the number of poly-
morphic sites per gene range from 7 to 50.

Test 2: Fixed differences from the (European) reference
genome
We looked for genes with an unusually large number of
fixed amino acid differences between our Kenyan sam-
ples and the Apis mellifera reference genome, which is
of European ancestry [24]. This property may indicate
adaptive evolution in one or both lineages since the separ-
ation of the European and African honey bees. Although
similar in nature to other tests, such as Mcdonald-
Kreitman (discussed later), here we are specifically
searching for sites that differ from the reference gen-
ome and have risen to complete fixation within the
Kenyan samples. Because we are only interested in
genes that contain amino acid differences that have

arisen to complete fixation, this test may not detect
genes with large numbers of high frequency nonsynon-
ymous polymorphisms that could be detected by other
methods, such as the Mcdonald-Kreitman test. Of the
SNPs reported on Galaxy, 290,445 are fixed in the 11
samples with an allele differing from the reference gen-
ome. These SNPs should be treated with some caution
because erroneous nucleotides in the reference se-
quence are highly likely to appear in this list.
Using Galaxy commands (available in a workflow de-

veloped at http://usegalaxy.org/r/kenyanbee), we found
that 4,934 of those SNPs create a putative amino acid
substitution, with 3,242 affected genes. Similarly we found
8,628 synonymous coding-region differences among the
290,445 SNPs, distributed among 4,638 genes. Among all
genes with a fixed difference, there was an average of 1.86
fixed synonymous differences and 1.52 fixed nonsynon-
ymous differences. We then searched for genes where
the frequency of fixed amino acid differences from the
European reference (EN) exceeds the number of amino
acids that are polymorphic within Kenyan bees (PN).
We sorted genes by the ratio EN/(PN + 1) (1 is added in
the denominator in order to include genes with no poly-
morphism; genes with a ratio of at least 2.0 are given in
Additional file 1: Table S5). Note that GO analysis was not
performed because only a small number of genes was as-
sociated with a FlyBase annotation and DAVID identifiers.
A gene tied for the second highest score was the

FMRFamide receptor (GB51916; Fig. 3). FMRFamides
are small molecules with neuropeptide-associated activ-
ity that play critical roles in several invertebrate physio-
logical processes such as vision, reproduction, feeding
and circulatory system regulation [68]. Since this gene
was independently cloned and sequenced (GenBank
Accession Number ACI90286), rather than a computa-
tional prediction based on the genome assembly, we
could confirm the assembly’s accuracy in this region. The
gene contains 5 nonsynonymous differences between the
reference and the Kenyan samples, along with 2 syn-
onymous differences. Within the Kenyan samples, 8
variant nucleotides were called, all synonymous. These
observations are consistent with a gene that has under-
gone positive selection in one of the lineages leading
from the split of the Kenyan and European populations.
It is also possible that these amino acid substitutions
could be a result of genetic drift and we cannot exclude
its influence. These amino acid differences are predicted
to lead to significant changes in protein structure. Specif-
ically, the extracellular domains differ between the Kenyan
and European protein structures (Fig. 3).
The analysis was complicated by the presence of an as-

sembly gap in the honeybee reference sequence (indicated
by a run of the letter N) in the FMRFamide receptor’s last
(i.e., fourth) exon, namely positions 498032-498531 of the
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sequence called Group3.3. We substituted the corre-
sponding sequence from ACI90286 for the run of Ns and
realigned with our sequence data. No new SNPs were pre-
dicted. However, manual inspection of the alignments
suggested that one of the automatic SNP calls of a syn-
onymous difference among the Kenyan samples might
be a false positive, but did not materially affect our con-
clusions. We designed primers (Additional file 1: Table
S3) to amplify across exon 2 and exon 3 of the gene
and through Sanger sequencing we confirmed the pres-
ence of the 3 fixed nonsynonymous differences between
the European reference and our Kenyan samples present
in this region (see Additional file 4: Alignment S2).

Test 3: McDonald-Kreitman test
Comparing the pattern of nonsynonymous and syn-
onymous polymorphism within a species to the pattern
of nonsynonymous and synoymous divergence between
species can potentially identify positive selection operat-
ing over long evolutionary time periods [69]. McDonald
and Kreitman (1991) [70] hypothesized that regions con-
taining an excess of nonsynonymous to synonymous di-
vergence relative to the nonsynonymous to synonymous
polymorphism may suggest positive selection and adaptive
evolution. For a given gene, the McDonald-Kreitman test
constructs a contingency table from the number of syn-
onymous subsitutions (DS), the number of nonsynon-
ymous substitutions (DN), the number of synonymous
polymorphisms (PS) and the number of nonsynonymous
polymorphisms (PN). Note PS and PN refer to the actual
counts of substitutions, and differ from the rates pN and
pS used in Test 1. Genes where the ratio of (DN/DS)/(PN/
PS) exceeds 1 may be where purifying selection has not
driven advantageous alleles to fixation within the species,

but has done so over the longer evolutionary time separat-
ing the species. Similar to Shapiro et al. (2007) [71], we
calculated this ratio, termed the Fixation Index (FI), for
each annotated gene along the genome.
For the second species used in this test, we chose the

dwarf honeybee, Apis florea, for which unassembled se-
quence is available in GenBank. A table that reports the
computed FI scores for each gene is available at the Galaxy
web server (https://usegalaxy.org/r/kenyanbee). In total,
we identified 810,794 putative inter-species nucleotide dif-
ferences. We note that high FI scores could be the result
of a poor alignment with the outgroup sequence. For indi-
vidual candidate genes, we manually inspected the A.
florea alignment and did not find any unusual patterns
(see Additional file 1: Table S6A for a list of genes with FI
scores ≥ 10 and Additional file 1: Table S6B for the results
of a GO analysis).
When we simply sorted the table by decreasing FI

score, the top genes were surprisingly dominated by
cases where the computed pN/pS was extremely small,
rather than cases where the nonsynonymous/synonym-
ous ratio for interspecies variants was unusually high.
For genes where we were able to estimate pN/pS, the
average value is 0.215, but genes with the highest com-
puted FI score typically had pN/pS around 0.01. Among
genes with pN/pS ≥ 0.2, the one with highest FI score is
that for NADH dehydrogenase (ubiquinone) 1 beta sub-
complex, subunit 2 (NDUFB2, GB51330). We observed 1
nonsynonymous and 1 synonymous differences in our A.
mellifera data (pN/pS = 0.237), but 17 nonsynonymous
and 1 synonymous interspecies difference, for an FI score
of 17. The 1 nonsynonymous and 1 synonymous differ-
ence found with the Kenyan individuals were confirmed
to be located in the first exon through Sanger sequencing

Fig. 3 Predicted FMRFamide receptor structures in European a and Kenyan b bees. Five residues in the extracellular domains (gray) were found
to differ at positions 33, 121, 219, 295, and 308 between these two populations. The configuration of the extracellular domains is altered despite
the fact that the mutations are not drastic. The transmembrane regions (cyan) follow the homologues positions of D. meloganogaster studied by
Merte and Nichols (2002) [107]. Red labels represent the position and amino acid of the structure altering mutation
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(see Additional file 5: Alignment S3). In a situation like
this, where the gene appears to be quite well conserved
within the species but quite divergent from a related spe-
cies, one needs to consider the possibility that the genes
being compared are paralogs not orthologs (i.e., they di-
verged because of a duplication event in a common ances-
tor of the two species). We consider that to be quite
unlikely for this gene, because A. mellifera and A. florea
genes are embedded in assembled sequences that align for
over a megabase without interruption. A second interest-
ing gene in this group, GB48492 (juvenile hormone bind-
ing protein 1, JHBP-1), is associated with adult feeding
behavior and is the ortholog of Drosophila takeout (to).
This gene encodes juvenile hormone binding protein and
in Drosophila is associated with circadian rhythm (reviewed
in Sokolowski, et al. (2001) [72]) and behavioral responses
to starvation [73, 74]. In honey bees, JHBP-1 might be
under selection allowing adaptation to the vastly different
environments these bees inhabit, possibly leading to differ-
ences in adult worker development and responses to food
availability and different food resources.

Test 4: Runs of homozygosity
As an allele rises in frequency within a population, nearby
variants can also rise in frequency, transforming the usual
patterns of genetic diversity for that region and creating
stretches of high homozygosity. Thus, stretches of the
genome containing reduced allelic diversity are potential
signs of a selective sweep and can be indicative of recent
positive selection [75]. Significant selective sweeps within
a population can result in extended tracts of homozygous
polymorphisms, known as runs of homozygosity (ROH)
[76, 77]. Here, we compared allele frequencies between
Savannah and Desert individuals to identify ROHs in ei-
ther population. Using tools on the Galaxy server (avail-
able in a workflow developed at http://usegalaxy.org/r/
kenyanbee), allele frequencies were estimated for each
population and the genome was scanned for intervals con-
taining consecutive homozygous genotypes. Furthermore,
we performed 1000 randomizations of the data, so that
any interval reported had a probability less than 0.001 of
being discovered purely by chance. We then intersected
these intervals with the coordinates of annotated genes
to create population-specific lists of candidate genes
containing ROHs (see Additional file 1: Table S7 for a
list of genes).
We observed one such region surrounding the Forkhead

Box Protein O (Foxo, GB48301) gene in the Desert popu-
lation (Fig. 4). Heterozygosity levels in the Desert popula-
tion are consistent with the Savannah bees around 500 kb
upstream and downstream of the region. However, hetero-
zygosity levels are strongly reduced in a 500 kb stretch
containing Foxo within the Desert population relative to
the Savannah population. The protein expressed by Foxo

is a transcription factor that is thought to play a major role
in caste differentiation and division of labor by regulating
insulin signaling [78, 79]. Foxo was also found in a QTL
that suppressed reproduction of Varroa destructor, a
major parasite of honey bees [80]. Interestingly, a re-
cent survey of honey bee populations in Kenya revealed
that Varroa destructor is present throughout the southern
and central honey bee populations but absent from the
northern desert regions [12]. However, Varroa was likely
introduced relatively recently (ie, with the last 10 years)
into Kenya [81] and thus likely does not account for this
population difference.
Besides selective forces, ROHs can also result from

high levels of inbreeding or appear as an artifact of
population history [82–84]. In our sample, inbreeding is
not expected to have a major effect as all individuals
were collected from wild populations where queens mate
with an average of 12 males and mating occurs between
colonies over a several kilometer radius. It is suggested
the purpose of this polyandrous behavior is to avoid the
accumulation of deleterious recessive mutations due to
inbreeding as well as to increase genetic diversity [85].
Furthermore, studies of populations of African bees
demonstrate that there is rapid colony turnover, with
more than 80 % of the queens in a particular site being
replaced by genetically unrelated queens [86]. We can-
not exclude past demographic events or low statistical
power resulting from our limited sample size as contrib-
uting factors to the ROHs we observe. However, the
Foxo locus shows a signal consistent with recent positive
selection in the Desert population and seems like a bio-
logical plausible candidate that future studies can pro-
vide further insight on.

Test 5: FST
Strong selective sweeps can create regions with differences
in allele frequencies and increased genetic differentiation
between populations [87]. Genomic intervals containing

Fig. 4 Evidence for a selective sweep near Forkhead Box Protein O
(Foxo) in Desert population. The average heterozygosity is shown for
all individuals sequenced in the Savannah and Desert populations
across a 1.5 Mb region on chromosome 7. The shaded area indicates
the location of Foxo. A marked reduction in heterozygosity for the
region surrounding Foxo is observed in the Desert population
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high levels of FST between two populations indicate re-
gions potentially under positive selection in one or both
lineages [45]. We identified several such genomic intervals
displaying signatures of positive selection between the
Desert and Savannah populations. First, at each SNP site
we calculated the Reich-Patterson estimator of FST be-
tween the two populations (see Additional file 2: Figure S4
for the distribution of FST). With a low-sample size, yet
a large number of SNP markers, the Reich-Patterson
method provides an unbiased and highly powerful esti-
mate of FST [88]. Negative FST values are the result of
higher genetic differentiation for individuals within a
population than between populations. To locate regions
of the genome with signatures of positive selection, we
then searched for areas with dense concentrations of
high scoring SNPs using the “Remarkable Intervals”
tool on Galaxy. Furthermore, we performed 1000 ran-
domizations of the data, so that any interval reported
had a probability less than 0.001 of being discovered
purely by chance. We located 184 such intervals with
an average length of 3,633 bp. 112 annotated genes
were found in the highest scoring intervals (see Additional
file 1: Table S8A for a list of genes and Additional file 1:
Table S8B for the results of a GO analysis). One of the
genes located in an identified interval was GB46429
(ortholog of Drosophila gene ebony), which is involved
in regulation of cuticle sclerotization and pigmentation
in Drosophila [89, 90]. Since insect cuticle functions as
the first line of defense against environmental stressors,
it is possible that in African honey bees these differ-
ences represent an adaptation to different climatic and
ecological conditions found between the Desert and
Savannah regions. Indeed, this gene was also found to
be under selection in African Drosophila melanogaster as a
likely adaptation to differences in altitude [91]. Additionally,
Foxo, identified previously in the ROH test, was found to
be located within a high scoring interval.
One of the genes identified with our FST test is GB42500,

an ortholog of the Drosophila Peptidoglycan recognition
protein-LC (PGRP-LC). Similarly, Viljakainen et al. (2009)
[92] found signatures of positive selection for a PGRP gene
in an ant genus Myrmica. We identified several other
immune genes including relish (GB55264) which is
implicated in honey bee immune response [93, 94].
Interestingly, previous studies have indicated that the
Savannah bee populations frequently are infected with
two common European viruses (Black queen cell virus
and Deformed wing virus) while the Desert bees were
virus-free (see Table 1 and Additional file 1: Table S1),
however, it is unclear if this difference is due to variability
in immune competence or exposure [12].
Another gene of interest is Neuroligin 3 (Nlg3, GB42603;

Fig. 5). Nlg3 is involved in central nervous system develop-
ment and is expressed in higher order processing centers

in the honey bee brain [95]. The interval with high FST
that intersects Nlg3 spans around 600 bp with the 202 kb
intron between exon 1 and exon 2 (Fig. 5b). Nlg3 has sev-
eral orthologs found within the insect class that also have
long first intron sequences, including the parasitoid wasp
(Nasonia vitrpennis, 130 kb), the red flour beetle (Tribo-
lium castaneum, 100 kb), the dwarf honeybee (Apis florea,
202 kb), the leafcutter bee (Megachile rotundata, 95 kb),
the pea aphid (Acrythosiphon pisum, 143 kb) and the bum-
ble bee (Bombus terrestris, 187 kb). The evolutionary con-
servation of a large intronic region hints at the presence of
essential regulatory elements.

Test 6: Tajima’s D
Selective sweeps often cause distortions in the observed
allele frequency spectrum at a given genomic region
[96–98]. Genetic variability is greatly reduced in the area
where a selective sweep has taken place, however, grad-
ually over time new mutations appear. These mutations
initially occur at low frequencies, creating regions with
an excess of rare polymorphic variants and deficiencies
of common variants [42]. Several methods exist for detect-
ing these regions where the frequency spectrum signifi-
cantly deviates from neutral expectations, such as Tajima’s
D statistic [40]. We calculated D on a genome-wide level
using 5 kb, non-overlapping, sliding windows to discover
genomic regions containing extended stretches of an ex-
cess of rare polymorphisms relative to the total number of
segregating sites, indicating positive selection. However, it

Fig. 5 FST analysis of the chromosomal region containing the
Neuroligin-3 gene. a) Plot of FST (Reich-Patterson formulation)
between Desert and Plains bees at 4,507 SNPs in a 200-kb interval
on Chromosome 9 (Group9.10) that spans the first two exons of the
Neuroligin-3 gene (GB42603; blue rectangles; transcribed right-to-left).
Orange rectangles indicate the two exons of annotated gene GB42882,
putatively transcribed on the opposite strand, though we find the
evidence for existence of a functional gene unconvincing. Genome-wide,
10 % of the FST values are larger than 0.20 — indicated with red.
Light blue bars represent non-significant FST values. b) The interval
3,143,154-3,143,747 has a statistically significant concentration of
SNPs with FST in the highest 10 %, meeting our criterion for putative
positive selection by the FST criterion
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is important to note that values of Tajima’s D can be af-
fected by population structure, demographic history and
recombination [99]. Negative D values may be caused
from an excess of rare variants as a result of a recent
population growth [100]. In our sample, values of D are
slightly skewed towards negative values (Additional file 2:
Figure S5).
To differentiate between selective processes and demo-

graphic effects we also complemented our sliding window
estimation of D with another test, Fay and Wu’s H, that
considers the amount of very high-frequency polymor-
phisms relative to intermediate-frequency ones, in addition
to using information from an outgroup [42]. As suggested
by Zeng et al. (2006) [41], we estimated the normalized
version of the H statistic. For an outgroup, we mapped un-
assembled reads of the closely related Asiatic honeybee
A. cerana, available from the NCBI Short Read Archive
(SRX339508) to the A. mellifera reference genome fol-
lowing the same procedure as the experiment that origin-
ally generated the data [28]. We note that interpretations
of H may be complicated by the presence of missing data
in the A. cerana sequence.
When tests against a neutral null hypothesis, such as

D and H, are performed repeatedly across a genome in a
sliding window analysis, an issue of multiple comparisons
arises. Although several strategies have been proposed to
account for multiple testing, such as controlling the false
discovery rate or Bonferroni procedures, here we use
the experiment-wide simulation approach suggested by
Nielsen et al. (2005) [43]. Several genes were found in
intervals testing significantly negative for both Tajima’s
D and Fay and Wu’s H (see Additional file 1: Table S9A
for a complete list and Additional file 1: S9B for the re-
sults of a GO analysis), including Derlin-1 (GB46979).
Derlins are rhomboid pseudoproteases involved with
endoplasmic reticulum associated degredation and play
a role in the dislocation of misfolded proteins [101]. A
~20 kb region of chromosome 5 harbors several genes
that intersect significantly negative windows of Tajima’s
D (Fig. 6). Furthermore, Fay and Wu’s H values in the
region are also detected as significantly negative (Additional
file 1: Table S9A), providing additional evidence of a true
departure from neutrality. Genes located in this region
include replication-protein- A 70 kDa subunit (RpA70;
GB44421), zinc finger FYVE domain containing protein
26 (ZFYVE26; GB44416) and alpha-mannosidase II
(GB44414).
Purifying selection may also result in significant Tajima’s

D and shift the frequency spectrum towards low fre-
quency variants [102, 103]. Nonsynonymous mutations
are expected to be under stronger purifying selection than
changes at synonymous or noncoding sites because they
alter the encoded protein and may be deleterious. To
examine the effect of purifying selection on the frequency

spectrum, we estimated Tajima’s D genome-wide at three
classes of sites: noncoding, synonymous and nonsynon-
ymous. We observed a potential influence of purifying
selection across the genome, as D is most negative at
nonsynonymous sites (-1.07). At synonymous and non-
coding sites, D was estimated as -0.61 and -0.32 respect-
ively. Thus, because of the likely impact of purifying
selection and unknown demographic effets, we caution
against interpreting the genes detected by the test as being
under positive selection.

Conclusions
Here, we describe the expansion and demonstrate the
use of a single, user-friendly interface on the Galaxy
webserver to elucidate population structure and signatures
of selection from full-genome sequence data of individuals
sampled across different ecological regions. This platform
allows for the efficient integration of several different ana-
lyses and tests, allowing researchers to examine selection
over different evolutionary time periods and make their
data publically available, facilitating transparency and re-
producibility. In our study, we examined the population
structure of 11 individual honey bees collected from
throughout Kenya. Because of the large amount of genetic
markers available and despite the relatively low number of
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Fig. 6 Selected chromosomal regions with signatures of positive
selection according to Tajima’s D analysis. The top panel shows a
section of chromosome 5. Tajima’s D was calculated in 5 kb
windows and scores are represented by vertical bars. Any bar
colored red represents a window where Tajima’s D is significantly
negative. Conversely, bars colored light blue represent windows
where Tajima’s D is not significantly different from values expected
under a site evolving neutrally. The bottom panel is a magnification
of the area containing a ~20 kb stretch of significant Tajima’s D
scores. Green blocks represent locations of genes contained within
the interval
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samples, we were able to demonstrate that the sampled
specimens segregating into two populations, with one
population found in the northern desert region and the
second spanning the savannah, coast and mountain. Both
the analyses of the mtDNA and the nuclear DNA distin-
guished between these two main populations, though the
grouping of three individuals were variable, suggesting
that these specimens represent populations with complex
histories. The two main populations are geographically
separated by series of deserts that undoubtedly prevent
migration and matings. The Savannah population spans
southern and central Kenya and includes bees sampled
from mountains, the coast, and the savannah. African bees
can migrate long distances (potentially more than 100 km),
thus facilitating gene flow across this large region [23]. The
Desert and Savannah populations clearly experience dis-
tinct ecological and climatic conditions as well, and recent
studies indicate that they are also experiencing different
parasite and pathogen challenges [12].
Based on our analyses of genome-wide signatures of

selection, there are several genes and gene regions that
may have been influenced by selective forces at different
evolutionary time scales. Many of these genes have been
shown to play a role in metabolism/nutrition (Foxo,
NDUFB2, takeout), neuroplasticity/neuronal develop-
ment (Neuroligin 3, RpA70, ZFYVE26), immunity and
parasite resistance (Foxo, peptidoglycan recognition protein-
LC, relish, helicase 25E, hemolectin), reproduction (armi-
tage and dunce), gland development and gland secretions
(Api M 6, MRJP1, thickveins), which may be involved in
pheromone, brood food, and venom production and finally
cuticle formation (ebony) and cuticular hydrocarbon syn-
thesis (fatty-acyl CoA reductase) which are critical for pro-
tecting insects from environmental stressors, and, in the
case of cuticular hydrocarbons, may also be involved in
chemical communication. Overall, while the suites of genes
identified in these different tests were essentially non-
overlapping, there was overlap in the general processes
they are associated with; genes involved in the basic
processes of metabolism and cell differentiation were
found to be regulated across multiple evolutionary time
scales. Thus, selection may operate on different genes
and on different time scales in these different honey
bee populations, but these different selective pressures
modify conserved pathways, as is the case for “genetic
toolkits” identified in studies of evolutionary development
biology [103, 104]. Although the tools and workflows
developed on Galaxy provide researchers with a user-
friendly and integrative platform to scan genomic data for
signatures of selection, we also wish to emphasize that al-
ternative explanations may be responsible for statistically
significant results. We encourage users to utilize the back-
ground information provided in this study and refer to the
original publications of each test to understand how

results may be impacted by various factors such as demo-
graphic history, drift and population structure.
While we validated the results of these genome-wide

tests for several selected genes, it is important to stress
that whole-genome computational analyses need to be
used with care. A search though millions of nucleotides
or thousand of genes to maximize or minimize some
quantitative feature will frequently identify cases where
the validity of the feature breaks down because certain
assumptions are violated, such as where the genome as-
sembly or gene annotations are incorrect. Furthermore,
genome scans can lead to spurious results in GO ana-
lysis because of the potentially large numbers of false
positives, so we further reiterate the importance of ex-
perimental validation and aim to motivate detailed stud-
ies of individual candidate loci in the future [105]. Thus,
at least until assembly and annotation methods become
error-free, the results of high-throughput data collection
and analyses often need careful investigation and/or ex-
perimental validation.

Availability of supporting data
The data supporting the results of this study are available
on the NCBI Short Read Archive, Accession Number:
[SRP037570]. Supporting tables and workflow histories
are available at https://usegalaxy.org/r/kenyanbee.
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