
Otava et al. BMC Genomics  (2015) 16:615 
DOI 10.1186/s12864-015-1726-7

RESEARCH ARTICLE Open Access

Identification of in vitro and in vivo
disconnects using transcriptomic data
Martin Otava1, Ziv Shkedy1, Willem Talloen2, Geert R Verheyen3 and Adetayo Kasim4*

Abstract

Background: Integrating transcriptomic experiments within drug development is increasingly advocated for the
early detection of toxicity. This is partly to reduce costs related to drug failures in the late, and expensive phases of
clinical trials. Such an approach has proven useful both in the study of toxicology and carcinogenicity. However,
general lack of translation of in vitro findings to in vivo systems remains one of the bottle necks in drug development.
This paper proposes a method for identifying disconnected genes between in vitro and in vivo toxicogenomic rat
experiments. The analytical framework is based on the joint modeling of dose-dependent in vitro and in vivo data
using a fractional polynomial framework and biclustering algorithm.

Results: Most disconnected genes identified belonged to known pathways, such as drug metabolism and oxidative
stress due to reactive metabolites, bilirubin increase, glutathion depletion and phospholipidosis. We also identified
compounds that were likely to induce disconnect in gene expression between in vitro and in vivo toxicogenomic rat
experiments. These compounds include: sulindac and diclofenac (both linked to liver damage), naphtyl isothiocyanate
(linked to hepatoxocity), indomethacin and naproxen (linked to gastrointestinal problem and damage of intestines).

Conclusion: The results confirmed that there are important discrepancies between in vitro and in vivo toxicogenomic
experiments. However, the contribution of this paper is to provide a tool to identify genes that are disconnected
between the two systems. Pathway analysis of disconnected genes may improve our understanding of uncertainties
in the mechanism of actions of drug candidates in humans, especially concerning the early detection of toxicity.
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Background
Introduction
Pharmaceutical companies are facing an urgent need to
increase their lead compound and clinical candidate port-
folios, to satisfy market demands for continued innova-
tion and revenue growth [1]. A relatively small number
of drugs are being approved, while research costs are
increasing, patents are expiring, and both governments
and health insurance companies are pushing for cheaper
medications [2]. Moreover, 20–40% of novel drug can-
didates fail because of safety issues [3, 4], increasing the
costs of bringing new drugs to the market [5]. Drug devel-
opment costs could be reduced substantially if undesirable
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toxicity of a drug candidate could be predicted at earlier
stages of the drug development process [6]. Integrat-
ing transcriptomics within drug development pipelines is
being increasingly considered to help the early discovery
of potential safety issues during preclinical phase and toxi-
cology studies [7–10]. Such an approach has proven useful
both in toxicology [11, 12] and carcinogenicity studies
[13, 14].
Toxicogenomics studies mostly focus on network build-

ing for rat in vivo experiments [15] or the connection
between rat in vivo and human in vitro transcriptomics
experiments, particularly in relation to drug induced liver
injury (e.g., [16–18]). Zhang et al. [19] developed a con-
sensus early response toxicity signatures of in vitro and in
vivo toxicity in human and rat using time-dependent gene
expressions. For the hepatotoxicant hydrazine, Timbrell
et al. [20] reported that the effects on various param-
eters do not always show a quantitative or qualitative
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correlation between in vivo and in vitro gene signatures.
Enayetallah et al. [4] profiled nine compounds for in vitro
and in vivo cardiotoxicity, and reported that while there
were common biological pathways for in vivo and in vitro
rat experiments for drugs like dexamethasone, most of the
biological pathways identified in vivo for the drug amio-
darone were not detected in vitro. Early prediction of
safety issues for hit or lead compounds would benefit not
only from consensus signatures, but also from disconnect
signatures between in vivo and in vitro toxicogenomics
experiments. These disconnect signatures can indicate
which biological pathways are less likely to translate from
a simplified in vitromodel to a complex and holistic in vivo
system.
Toxicity signatures developed from in vitromodels most

probably reflect protein modulations or pathway changes
resulting from direct effects of compounds upon cells
instead of the more complex interactions found in in
vivo systems. In vitro signatures could also show excessive
toxicity not to be detected in vivo due to compensatory
mechanisms found in in vivo systems. Thus the frame-
work is proposed to detect genes that are disconnected
between in vitro and in vivo dose-dependent toxicoge-
nomics experiments using fractional polynomial models.
Biclustering is applied to find subsets of disconnected
genes that are common to several compounds. Finally, the
identified groups of disconnected genes are interpreted by
their most probable biological pathways.

Data set
The ’Toxicogenomics Project - Genomics Assisted Toxic-
ity Evaluation system’ (TG-GATEs, TGP, [21]) is a collab-
orative initiative between Japanese governmental bodies
and fifteen pharmaceutical companies. It offers a rich
source of transcriptomics data related to toxicology, pro-
viding human in vitro experiments together with in vitro
and in vivo rat experiments [22–24]. We focus on a subset
of the TG-GATEs data set consisting of 128 therapeutic
drugs from a wide range of chemotypes. Gene expression
were quantified using Affymetrix chip Rat230_2 arrays.
Six weeks old male Sprague-Dawley rats were used for
both experiments and a single dose study design was used.
Each rat was administered a placebo (the vehicle) or one
of three active doses of a compound. For in vivo exper-
iment, the rats were sacrificed after a fixed time period
and liver tissue was subsequently profiled for gene expres-
sion. For the in vitro experiments, a modified two-step
collagenase perfusion method was used to isolate liver
cells from 6-week-old rats. These primary cultured hep-
atocytes were then exposed (in duplo) to a compound
and gene expression changes were investigated at multi-
ple time points. The analysis in this manuscript focuses on
gene expression data at single time point, after exposure to

a therapeutic drug for 24 hours, as gene expression signals
are likely to be stronger at this time point in a single-
dose study design [18]. The final data set for the rat in
vitro experiments contains 5,914 genes and 1024 arrays (2
arrays per dose per compound), while the data set for the
in vivo experiments contains 5,914 genes and 1536 arrays
(3 arrays per dose per compound). The gene expression
data were pre-filtered using I/NI calls to minimise false
positives [25, 26]. The actual response variable represents
the fold change of log2 mRNA intensities between the
doses and the control dose. Hereafter, referred to as ’gene
expression’ for simplicity. An example of a dose-response
profile of gene A2m for compound sulindac is shown in
Fig. 1.

Methods
A flexible fractional polynomial modeling framework is
proposed to: (1) identify genes with significant dose-
response relationships in an in vitro or in vivo experiments
and (2) identify genes that are disconnected between
the two systems. The in vitro and in vivo gene expres-
sion matrices were analysed jointly by compound and the
resulting disconnected genes from the separate analyses
were integrated using the Bimax biclustering algorithm
[27] in order to identify subsets of disconnected genes that
are common to several compounds.

The fractional polynomial framework
The fractional polynomial modeling framework aims to
capture non-linear relationship between a predictor and
a response variable. It assumes that most non-linear pro-
files can be captured by a combination of two polyno-
mial powers [28]. It is particularly appealing for model-
ing dose-response relationships since it does not impose
monotonicity apparent in most dose-response modeling
methods [29, 30]. For a single gene, let Yij denote the
gene expression from an in vitro experiment, where i =
1, 2, . . . ,m represents dose levels and j = 1, 2, . . . , ni
denotes the number of replicates per dose. The frac-
tional polynomial framework assumes that relationships
between gene expression and the compound dose can be
captured by a polynomial function;

Yij = β0 + β1 · fij(p1) + β2 · gij(p1, p2) + εij, (1)

where εij ∼ N(0, σ 2) and the polynomial powers p1, p2 ∈
P, where P = {−3,−2.5, . . . , 1.5, 2}. This range of val-
ues provides enough flexibility to capture different forms
of dose-response profile [28]. The functions fij(p1) and
gij(p1, p2) are defined as
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Fig. 1 Data set example: Using gene A2m and compound sulindac. Observed gene expression profile for gene A2m under the activity of sulindac.
Left panel: in vitro data. Right panel: in vivo data

fij(p1) =
{
ip1 p1 �= 0,
log(i) p1 = 0,

and

gij(p1, p2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ip2 p2 �= p1, p2 �= 0,
log(i) · ip2 p1 = p2, p2 �= 0,
log(i) p2 �= p1, p2 = 0,
log(i) · log(i) p2 = p1 = 0.

(2)

Note that for p1 �= 0, p2 �= 0 and p1 �= p2, the fractional
polynomial model is given by Yij = β0+β1·ip1+β2·ip2+εij.
An example of fitting different combinations of powers for
one particular gene is shown in Fig. 2.
Akaike’s information criterion (AIC, [31]) is used

to select the optimal combination of p1 and p2
that best reflects the observed dose-response relation-
ship. Optimal solutions are denoted by {φ̂1, φ̂2} ={
{p1, p2} ∈ P, AIC(φ̂1, φ̂2) = min[AIC(p1, p2)]

}
. In order

Fig. 2 Fractional polynomial framework example: Using gene A2m and compound sulindac. Illustration of changes in predicted profiles by fitting
fractional polynomial models with different powers on the same gene expression data. The model in the bottom right panel with p1, p2 = 2 is the
best predictive model with the minimum Akaike’s Information Criterion (AIC)
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to identify genes with a significant dose-response relation-
ship in vitro, a likelihood ratio test (LRT, [32]) is used to
compare model (1), that best fits the data and model (3),
the null model that assumes no dose effect:

Yij = β0 + εij. (3)

This additional testing is necessary to adjust for the
relativity of the minimum AIC criterion.
To identify disconnected genes when comparing in vitro

and in vivo data, the optimal fractional polynomial func-
tion selected per gene (with φ̂1, φ̂2, as fixed above) from
in vitro data set is projected to in vivo data set under the
assumptions that both in vitro and in vivo dose-response
relationships are similar. For a single gene, let Xijk denote
gene expression in vitro and in vivo, where i = 1, 2, . . . ,m
represents dose levels, j = 1, 2, . . . , ni denotes number of
replicates per dose and k = 1 or k = 2 depending on
whether the data is from in vitro or in vivo experiment.
The in vitro - in vivo projected fractional polynomial
model is specified as

Xijk = β0 + β1 · fijk(φ̂1) + β2 · gijk(φ̂1, φ̂2) + εijk , (4)

where εijk ∼ N(0, σ 2). A LRT is used to quantify the dis-
similarity in in vivo - in vitro dose-response relationships.
It compares model (4), which assumes that dose-response
relationships from in vitro and in vivo experiments are
the same, with model (5), which assumes different dose-
response relationships.

The comparison translates into testing if γ0 = γ1 =
γ2 = 0 in model (5). An example of a projected fractional
polynomial model is shown in Fig. 3. A significant result
obtained from LRT comparison of model (4) and model
(5) can be interpreted as a disconnect in gene expression
between in vitro and in vivo rat experiments. The sig-
nificance level was specified as 10% after correction for
multiplicity [33]. Resulting disconnected genes were sub-
jected to fold change filtering by excluding genes with
maximal dose-specific fold change between in vitro and in
vivo data set less than 1. The fold change filtering further
reduces false positives due to small variance genes [34, 35].

Biclustering of genes and compounds
A biclustering framework was introduced in order to find
subsets of genes and conditions with a similar pattern [36].
Biclustering methods [37, 38] are designed to cluster in
two dimensions simultaneously to produce sub-matrices
of the original data that behave consistently in both
dimensions. The resulting sub-matrices are called biclus-
ters. Based on the identified disconnected genes from the
fractional polynomial models, a disconnect matrixD(G×C)

of binary values was created with gcth such that:

Dgc =
{
1 if gene g is disconnected for compound c,
0 otherwise,

(6)

where G is the number of genes that are significant for
at least one compound (i.e., G ≤ 5914) and C = 128
is the number of compounds. The Bimax algorithm [27]
for binary data is applied to the disconnect matrix (G) to

Xijk =
{

β0 + β1 · fijk(φ̂1) + β2 · gijk(φ̂1, φ̂2) + εijk in vitro,
(β0 + γ0) + (β1 + γ1) · fijk(φ̂1) + (β2 + γ2) · gijk(φ̂1, φ̂2) + εijk in vivo.

(5)

Fig. 3 Projected fractional polynomial framework example: Using gene A2m and compound sulindac. Illustration of a projected fractional
polynomial model from one system to the other. Red solid line shows the projected fractional polynomial model. The blue lines shows the results of
fitting fractional polynomial models with different parameters for in vitro (dotted line) and in vivo data (dashed line), respectively
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find subsets of the disconnected genes that are common
to several compounds.

Results
The data were analysed in two ways depending on the
direction of the projected fractional polynomial models.
The first set of models (in vitro disconnects) defined the
fractional polynomial powers based on the in vitro data set
and projected its dose-response profiles to the in vivo data
set. The second set of models (in vivo disconnects) defined
the fractional polynomial powers based on the in vivo data
set and projected its dose-response profiles to the in vitro
data set. The resulting number of in vitro and in vivo dis-
connects for Sulindac and Indomethacin are illustrated in
Fig. 4. The analyses were performed in statistical software
R version 3.0.1 [39]. The R scripts are available upon
request from the authors.

In vitro disconnects
The number of the identified disconnected genes per
compound ranged from 0 to 1, 276. Three genes (Aldh1a1,
Cyp1a1 and Fam25a) were consistently identified in
56 compounds whilst 446 genes were detected in
more than 10 compounds. The 446 genes were anal-
ysed further for common biological pathways using
GO [40], KEGG [41] and Janssen pharmaceutica in-
house gene databases. As expected, many of the genes
are involved in drug metabolism (e.g. acetaminophen
metabolism, Benzo[a]pyrene metabolism, CAR/RXR acti-
vation, PXR/RXR activation), as well as endogenous
compound metabolism (e.g. butanoate metabolism, ala-
nine, cysteine and methionine metabolism, nitrogen
metabolism, fatty acid metabolism, cholesterol biosynthe-
sis). Additionally, some of the genes are also involved in
toxicity related pathways such as oxidative stress due to
reactive metabolites, bilirubin increase, glutathion deple-
tion and phospholipidosis as well as complex pathways
such as immune response, classical complement and coag-
ulation. Only pathways containing more than five genes

and with coverage of more than 10% (i.e., more than 10%
of their genes were disconnected genes) were considered.
We further identified 188 unique genes that were con-

sistently defined as disconnected genes in seven com-
pounds based on the first 10 biclusters from the Bimax
algorithm (left panel on Fig. 5). Sulindac and diclofenac
are both anti-inflammatory drugs, acetic acid derivatives
that are likely to damage liver [42]. Naphthyl isothio-
cyanate was shown to cause direct hepatotoxicity [43].
Among the 188 genes, the top genes (with respect to fold
change) are associated with liver toxicity. Genes A2m and
Lcn2 were validated for being affected in case of hepato-
toxicity [44]. Other toxicity associated genes found were
Cyp1a1, Pcsk9, Car3, Gstm3 or Ccnd1. Table 1 shows the
results of pathway analysis for the first bicluster (com-
pounds: sulindac, naphthyl isothiocyanate, diclofenac and
colchicine). For complete results of biclustering in vitro,
see Additional files 1 and 2.

In vivo disconnects
There were 175 genes that showed disconnect in gene
expression from in vivo to in vitro rat experiments for
more than 10 compounds. Similar pathways as in the
previous section (i.e projection from in vitro to in vivo)
were also discovered, although more of the pathways were
related to exogenous compound metabolism. Oxidative
stress endpoints related pathways were more common in
vivo. Complex pathways such as complement and coagula-
tion identified in the in vitro data set were not discovered
in the analysis of the in vivo data set, which may be due
to differences between the prescribed dose and actual
exposure in liver tissue in vivo.
The Bimax algorithm identified 163 unique genes com-

mon to 11 distinct compounds based on the first 10
biclusters (right panel on Fig. 5). Five compounds were
identified both in in vitro and in vivo analyses of dis-
connects: sulindac, colchicine, diclofenac, ethionine and
naphthyl isothiocyanate. The most interesting of the addi-
tional compounds are indomethacin and naproxen. They

Fig. 4 Sulindac and indomethacin compounds. Number of genes with significant dose-response relationships in in vitro data only, in in vivo data
only and in both data simultaneously
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Fig. 5 Biclustering results. Appearance of compounds across 10 biclusters. The blue colour indicates membership of a bicluster. Left panel: An
example of in vitro disconnects. Right panel: An example of in vivo disconnects

are both members of a group of non-steroidal anti-
inflammatory drugs (NSAIDs), the former an acetic acid
derivative and the latter a propionic acid derivative. Both
drugs are nonselective cyclooxygenase (COX) isozyme
inhibitors, i.e. with undesired targeting of COX-1 that
leads to gastrointestinal adverse effects [45, 46]. Specif-
ically, both drugs are indicated as high risk drugs for
general upper gastrointestinal complications [47]. All of
the compounds are connected to toxicity events. Most of
the toxicity related genes (A2m, Lcn2, Car3, Pcsk9, Acsl1,
Lamc2, Selenbp1 and Serpina10) from the previous in
vitro analysis were also identified from the analysis of the
in vivo data set. Other toxicity related genes were Cyp2e1
[48], Upp1, Gss, Ddc, Gstm7 and Srebf1. For complete
results of biclustering in vivo, see Additional files 3 and 4.

Simulation study
The empirical validation of the fractional polynomial
method in the context of in vitro and in vivo discon-
nects was done through two simulation studies. In the
first simulation study, data were generated according to

Table 1 Examples of the clustered disconnected genes and their
probable pathways. The pathways were identified using KEGG
[41]. The genes are members of first bicluster of the analysis
starting with in vitro data. The compounds in first bicluster are
sulindac, naphthyl isothiocyanate, diclofenac and colchicine

Pathway Genes

Complement and coagulation cascades A2m C1s C5 C8a C4bpb Cfh F5

Chemical carcinogenesis Cyp1a1 Gstm3 Gsta5

Metabolism of xenobiotics Akr7a3 Cyp1a1 Gstm3 Gsta5

Pathways in cancer Ccnd1 Fn1 Lamc2

seven possible scenarios. First setting corresponded to the
null model of no disconnect between in vitro and in vivo
experiments. The other six settings corresponded to three
groups of genes: genes with opposite dose-response pro-
files for in vitro and in vivo, genes with dose effect only
for in vivo and dose effect only for in vitro. The settings
followed either linear model or second order fractional
polynomial model. For each setting, 10,000 data sets were
generated.
According to the simulation results, the proposed pro-

jected fractional polynomial method under the null model
resulted in 90% specificity using the same number of
dose and the same number of observations per dose
as in TGP data set. When number of observations per
dose was increased to four, specificity increased up to
98%. Under the alternative hypothesis of a disconnected
dose-response profiles between in vitro and in vivo exper-
iments, the method resulted in 100% sensitivity for the
disconnected linear profiles. For nonlinear profiles, sen-
sitivity of 80–95% was achieved, for the maximum fold
change between the in vitro and in vivo settings greater
than 1.2. Sensitivity increased up to 98–100% when the
fold change was greater than 1.6.
The second simulation study mimicked the structure

of the TGP experiment. In total, 6,000 genes were gen-
erated to create one data set. Half of them contained no
dose effects for both in vitro and in vivo. The other half
exhibited clear dose-response effect in vitro and oppo-
site dose-response effect in vivo, creating a disconnect
between two data sets. Specifically, the model used for in
vitrowas second order polynomial model with fold change
of one (that was the minimal fold change of interest in our
analysis). Standard deviation and the number of observa-
tions per dose correspond to the TGP data set. LRTs for
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dose-response and interaction were applied for each gene.
The resulting p-values were adjusted for multiplicity using
Benjamini-Hochberg procedure to control false discov-
ery rate (BH-FDR) at 10%. The sensitivity and specificity
was computed as amount of correctly identified genes
from both categories (null model and true disconnect).
The whole procedure was repeated for 1,000 simulated
data sets, computing sensitivity and specificity for each of
them.
The ROC curves of all the simulated data sets are shown

in left panel of Fig. 6, together with the averaged ROC
curve. The spread of ROC curves is very low, suggest-
ing stability of the method across the simulated data sets.
When FDR was controlled at 10%, average specificity and
sensitivity were 93% and 95%, respectively. The box plots
of false positives and false negatives for the simulated data
set are shown in Fig. 6 (right panel). The FDR is well con-
trolled at the desired level of 10% and false negatives rate
is very low.
The simulation studies indicated that the method may

perform better in other settings than the reported results
for the TGP experiment due to its limited number of repli-
cates per dose and the weak signals. The full description
of the simulations settings and results can be found in the
Additional file 5.

Discussion
The analytic framework identified three broad groups of
genes from a joint analyses of in vitro and in vivo rats
toxicogenomic experiments. The first group showed a sig-
nificant dose-response relationship in both the in vitro
and in vivo toxicogenomic experiments. These types of
genes are shown in the top panels of Fig. 7. Whilst some
of the genes in this group showed contradictory dose-
responses profiles between the in vitro and in vivo data,
others showed similar dose-response profiles, but with
differentmagnitude of gene expression values. The second
group contains genes that showed a significant dose-
response relationship in in vitro experiments, but not in

in vivo experiments. Example of such genes are presented
in the top panels of Fig. 8. This set of genes may represent
the difference in biological complexity between in vivo
and in vitro systems. The third group are those genes that
showed significant dose-response relationship in in vivo
experiments, but not in in vitro experiments. For complete
results, see Additional files 6 and 7.
This set of genes may occur due to the mechanism of

action (MoA) in vitro of a drug candidate not being repre-
sentative of in vivo. Most of the compounds in our specific
case study that triggered the expression of the identified
disconnected genes are members of a group of anti-
inflammatory drugs and all of them are related to hepato-
toxicity, nephrotoxicity or gastro-intestinal toxicity.
If additional data about experiments are available both

for in vitro and in vivo, such data can be included in
the proposed methodology. The adjustment can be done
by adding the new variables in the fractional polynomial
model as covariates. Note that in this type of gene expres-
sion studies, the rats are specially bred to ensure baseline
comparability across all rats.

Conclusion
The findings demonstrated that substantial differences
may be identified between in vitro and in vivo gene expres-
sion. While this result is not surprising, the importance
of the analysis is in the identification of different groups
of the disconnected genes. Genes were identified that
showed significant dose-response relationships with com-
pounds in vitro that were absent in vivo, and vice-versa.
Moreover, there was a group of genes with a different
direction of dose-response relationship across the two
systems. These finding confirms possibility of important
discrepancies between in vitro experiments and in vivo
experiments. Pathway analysis of the identifying discon-
nected genes between in vivo and in vitro rat system may
improve our understanding of uncertainties in mecha-
nism of action of a drug candidate in human, especially for
early toxicity detection.

Fig. 6 Validation of fractional polynomials: Results of simulation study. Left panel: ROC curves for sensitivity and specificity of all simulated data set
(grey dotted lines) and averaged ROC curve (black solid line). Right panel: Box plot of false positives and false negatives of all 1,000 simulated data sets
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Fig. 7 Group 1 example: compound sulindac. Two genes from Group 1. Top panels: gene Eppk1-ps1 with the same direction of dose-response
relationships, but different magnitude of fold change. Bottom panels: gene Gpx2 with different direction of dose-response relationships across
platforms. Left panels: in vitro. Right panels: in vivo

Fig. 8 Group 2 and 3 examples: compound sulindac. Top panels: gene Serpinb9 from Group 2, with significant dose-response relationship only in in
vitro data. Bottom panels: gene Junb from Group 3, with significant dose-response relationship only in in vivo data. Left panels: in vitro. Right panels:
in vivo
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