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Abstract

Background: Allergic airway diseases (AADs) such as asthma are characterized in part by granulocytic airway
inflammation. The gene regulatory networks that govern granulocyte recruitment are poorly understood, but evidence
is accruing that microRNAs (miRNAs) play an important role. To identify miRNAs that may underlie AADs, we used two
complementary approaches that leveraged the genotypic and phenotypic diversity of the Collaborative Cross (CC)
mouse population. In the first approach, we sought to identify miRNA expression quantitative trait loci (eQTL) that
overlap QTL for AAD-related phenotypes. Specifically, CC founder strains and incipient lines of the CC were sensitized
and challenged with house dust mite allergen followed by measurement of granulocyte recruitment to the lung. Total
lung RNA was isolated and miRNA was measured using arrays for CC founders and qRT-PCR for incipient CC lines.

Results: Among CC founders, 92 miRNAs were differentially expressed. We measured the expression of 40 of the most
highly expressed of these 92 miRNAs in the incipient lines of the CC and identified 18 eQTL corresponding to 14
different miRNAs. Surprisingly, half of these eQTL were distal to the corresponding miRNAs, and even on different
chromosomes. One of the largest-effect local miRNA eQTL was for miR-342-3p, for which we identified putative causal
variants by bioinformatic analysis of the effects of single nucleotide polymorphisms on RNA structure. None of the
miRNA eQTL co-localized with QTL for eosinophil or neutrophil recruitment. In the second approach, we constructed
putative miRNA/mRNA regulatory networks and identified three miRNAs (miR-497, miR-351 and miR-31) as candidate
master regulators of genes associated with neutrophil recruitment. Analysis of a dataset from human keratinocytes
transfected with a miR-31 inhibitor revealed two target genes in common with miR-31 targets correlated with
neutrophils, namely Oxsr1 and Nsf.

Conclusions: miRNA expression in the allergically inflamed murine lung is regulated by genetic loci that are
smaller in effect size compared to mRNA eQTL and often act in trans. Thus our results indicate that the genetic
architecture of miRNA expression is different from mRNA expression. We identified three miRNAs, miR-497, miR-
351 and miR-31, that are candidate master regulators of genes associated with neutrophil recruitment. Because
miR-31 is expressed in airway epithelia and is predicted to target genes with known links to neutrophilic
inflammation, we suggest that miR-31 is a potentially novel regulator of airway inflammation.
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Background
Post-transcriptional control of gene expression is critical
for the proper control of inflammation [1]. microRNA
(miRNA) mediated transcript degradation and transla-
tional inhibition represent two important mechanisms of
post-transcriptional control, and a large body of work
demonstrates the complex role miRNAs play in fine-
tuning the regulatory networks that govern inflamma-
tion and innate and adaptive immunity [2]. Allergic air-
way diseases (AADs) such as allergic rhinitis and asthma
are characterized by aberrant adaptive immune re-
sponses to allergens that results in airway inflammation,
mucus hyper-secretion, and airway hyper-responsiveness
[3]. Evidence is accruing that miRNAs play a role in
these diseases [4–6]. In particular, several miRNAs have
been shown to regulate pathways underlying AAD
pathogenesis including T-lymphocyte polarization and
function [7–9], regulatory T-cell activity [10], and airway
smooth muscle proliferation and contractility [11–13].
Previous studies have also identified miRNAs that are
differentially expressed in airway epithelia of individ-
uals with AAD [14–16] and in mouse models of AAD
[8, 9, 17]. However, the question of whether genetic
variation in miRNA expression affects AAD pheno-
types has not been addressed.
We previously characterized the genetics of lung

mRNA expression in a mouse model of AAD [18] using
the Collaborative Cross (CC) mouse genetics reference
population. The CC is a mammalian systems genetics re-
source comprised of recombinant inbred lines derived
from eight-way crosses using five classical inbred strains
(C57BL/6 J, 129S1/SvImJ, A/J, NOD/ShiLtJ, and NZO/
H1LtJ) and three wild-derived inbred strains (WSB/EiJ,
PWK/PhJ, and CAST/EiJ) [19, 20]. Using incipient
(i.e., not yet fully inbred) CC lines, which we refer to as
“pre-CC” mice, we identified more than 6,000 gene ex-
pression quantitative trait loci (eQTL), the majority of
which were located near the cognate gene. We used
these eQTL to identify candidate genes within QTL for
inflammation phenotypes [21]. For example, we identi-
fied a locus on chromosome 7 that controls the expres-
sion of a gene that is causally related to neutrophil
recruitment [22], thereby linking sequence variation,
gene expression, and a downstream phenotype. Those
analyses were limited to mRNAs. Thus, the role of miR-
NAs in this experimental system remains unknown.
To identify miRNAs that play a role in AAD, we lever-

aged the genotypic and phenotypic diversity of preCC
mice and utilized two complementary analytical ap-
proaches. In the first approach we assessed whether
regulatory variation at miRNA loci underlies variation in
allergic inflammation. We identified robustly expressed
miRNAs that vary by strain, mapped the genetic loci that
correlate with expression levels, and then determined

whether these loci are associated with AAD phenotypes.
In the second approach, we combined bioinformatic se-
quence analysis with statistical simulations to identify
miRNAs that serve as candidate master regulators of
genes altered during airway inflammation.

Methods
Our overall study design and workflow is depicted in
Additional file 1: Figure S1.

Mice
We obtained 129 male preCC mice (ages 10–14 weeks)
from Oak Ridge National Laboratory [21, 23, 24]. Each
mouse was from an independent CC line that had
undergone five to fourteen generations of inbreeding.
We also obtained four male mice of each of the eight
CC founder strains from The Jackson Laboratory. All
mice were singly housed, with alpha-dri bedding, under
normal 12-h light/dark cycles. All experiments con-
ducted with mice in this study were compliant with an
Institutional Animal Care and Use Committee protocol
at an animal facility approved accrediated by the Associ-
ation for Assessment and Accreditation of Laboratory
Animal Care International.

Phenotyping protocol
We employed a house dust mite (HDM) model of AAD
that produces hallmark disease phenotypes including Th2-
biased airway inflammation, elevated serum IgE, mucous
cell metaplasia, and airway hyper-responsiveness in a
strain-dependent fashion [18]. Mice were sensitized with
10 μg of the immunodominant allergen from the Derma-
tophagoides pteronyssinus species of HDM, Der p 1, by
intra-peritoneal injection on days 0 and 7, followed by
challenge with 50 μg of Der p 1, administered by oro-
pharyngeal aspiration, on day 14. On day 17, mice were
euthanized, followed by collection of whole lung lavage
fluid with two successive volumes of 0.5 and 1.0 ml PBS.
No perfusion was performed, so vascular contents were
still present in the lungs. Following lavage, lung tissue was
snap frozen. Cells in lavage fluid were isolated by centrifu-
gation; eosinophil and neutrophil counts were then manu-
ally determined using cytospins and morphologic criteria.

miRNA expression analysis
For the eight CC founder strains (n = 4/strain), we iso-
lated total lung RNA by Trizol extraction. RNA quality
was assessed using an Agilent Bioanalyzer. With one ex-
ception, all samples had RNA integrity numbers greater
than 7. RNA samples were then processed and hybrid-
ized to Affymetrix miRNA 2.0 arrays (GSE63954). We
limited our analysis to the 723 probe sets on the array
that are specific to mouse miRNAs. Manual inspection
of results from principle component analysis of miRNA
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expression revealed that two samples were outliers (one
A/J and one NZO/H1LtJ sample); these two samples
were removed prior to subsequent analyses. We used an
ANOVA model to identify miRNAs that were differen-
tially expressed by strain at a false discovery rate (FDR)
q-value < 0.05. We further filtered this list of miRNAs to
those that were highly expressed, which we defined as
within the top 20th percentile of miRNA expression in
any one CC founder strain, and those that varied by at
least 1.5-fold between the highest and lowest-expressing
strains. This limited the list to 38 miRNAs. We also se-
lected one miRNA, miR-17* (now known as miR-17-3p),
as a reference miRNA for normalization in experiments
with preCC mice. miR-17* was selected because its ex-
pression was near the mean of all miRNAs that met our
selection criteria (mean of all miRNAs = 7.3; mean of
miR-17* = 7.1) and it was not differentially expressed by
strain (p = 0.89).
From these ANOVA models described above, we esti-

mated broad-sense heritability (H2) by calculating the in-
terclass correlation (r1) and the coefficient of genetic
determination (g2) [25]:

r1 ¼ MSB‐MSWð Þ= MSBþ n‐1ð ÞMSWð Þ
where MSB and MSW are the mean squares between
and within, respectively, from the eight-way ANOVA
model described above and n is the number of mice per
strain. g2 is a slightly modified estimate of heritability
that accounts for the doubling of the additive genetic
variance with inbreeding and is calculated as:

g2 ¼ MSB‐MSWð Þ= MSBþ 2n‐1ð ÞMSWð Þ
For the preCC mice, the same RNA isolation protocol

was used. We then used Exiqon locked nucleic acid (LNA)-
based qRT-PCR assays for each of the 38 miRNAs, except
miR-805 (because an assay was not available from Exiqon).
We added miR-148b and miR-182 due to published evi-
dence indicating roles in asthma or allergic inflammation in
the lung [10, 26], and miR-17* and U6 for normalization.
Thus in total we measured the expression of 40 miRNAs
and one snRNA (U6). Since the time of ordering the Exi-
qon LNA qRT-PCR assays, three of the measured miRNAs
have had name changes: miR-17* is now miR-17-3p; miR-
193* is now miR-193-5p; and miR-322* is now miR-322-3p.
We maintained the old nomenclature throughout the
manuscript since that is consistent with Exiqon product in-
formation at the time of ordering. Exiqon miRCURY LNA
Universal RT was used to generate cDNA, after which
miRNA-specific primers were used to amplify each miRNA.
For each miRNA for each mouse, we calculated the delta
Ct relative to miR-17*. Across all samples and miRNAs, the
delta Ct relative to miR-17* and U6 snRNA (another com-
monly used control for normalization) were highly

correlated (Pearson r = 0.81, p < 5 × 10−16). qPCR data is
provided as Additional file 2.

eQTL approach
Genotyping and eQTL mapping
We genotyped each mouse at the University of North
Carolina at Chapel Hill, using one of two Affymetrix
SNP arrays (A or B) that were produced during the de-
velopment of the Mouse Diversity array (MDA) [27].
After removing uninformative and poorly performing
SNPs, these arrays contained 181,752 (A-array) and
180,976 (B-array) SNP assays, and the set of SNPs on
each array did not overlap. Most mice (83 %) were geno-
typed on the B-array and the remaining were genotyped
on the A-array. These training arrays were annotated to
NCBI Build 36 of the mouse genome, but we mapped
QTL boundaries to Build 37 positions to integrate with
other resources. We report NCBI Build 37 positions in
our results. We estimated the most probable ancestor
for each SNP in each mouse using the GAIN algorithm
[28], and reconstructed founder haplotypes based on
these results. We then merged the non-overlapping SNP
datasets from arrays A and B by imputing unobserved
genotypes based on inferred founder haplotype. For
QTL mapping, we used HAPPY [29] to infer ancestry
matrices for an additive genetic model. For computa-
tional efficiency, we then averaged the matrices across
SNPs between which GAIN inferred no recombination
in the population, and this reduced the mapping dataset
to 27,059 intervals. Genotype data are provided as Add-
itional file 3. We used BAGPIPE [30] to fit a regression
model and calculate LOD scores. Significance thresholds
were determined by permutation (n = 250 permutations
per miRNA), and we used the 1.5 LOD drop method to
approximate confidence intervals for QTL [31]. We de-
fined local eQTL as eQTL located within 10 Mb of the
cognate gene based on prior work on mRNA eQTL [21].
Narrow sense heritability (h2) for eQTL was estimated
by regression of miRNA expression on CC founder
haplotype probabilities. For example, the expression of a
given miRNA Y is

Y ¼ intercept þ B1 C57BL=6Jð Þ þ B2 129S1=SvImJð Þ
þ B3 NOD=ShiLtJð Þ þ B4 NZO=H1LtJð Þ
þ B5 PWK=PhJð Þ þ B6 CAST=EiJð Þ
þ B7 WSB=EiJð Þ þ error

where each strain term represents the estimated number
of that strain’s haplotypes present at the QTL for a given
mouse (this estimate being the posterior expectation de-
rived from the probabilistic haplotype reconstruction using
HAPPY [29]), and where A/J is designated as the reference
strain. We used the model R2 to describe the percent of
phenotypic variation accounted for by the locus.

Rutledge et al. BMC Genomics  (2015) 16:633 Page 3 of 14



Identification of regions of shared ancestry and
phylogenetic analysis
We used a comparative genomic approach to narrow
QTL regions and identify candidate genes, as described
previously [24]. Using the allele effect plots as a guide,
we grouped founder alleles into two groups by effect
(e.g., high vs. low allele effect). We divided the two
groups based on the greatest difference between ordered
allele effects estimated at the QTL peak. We then used
the Collaborative Cross Viewer at the University of
North Carolina [20, 32] and genome sequences from the
Wellcome Trust Sanger mouse genomes project (MGP)
[33, 34] to identify regions in the confidence interval in
which grouped strains have shared SNP genotypes. Posi-
tions identified as heterozygous and low confidence
genotype calls were omitted from the analysis.

Analysis of the effects of SNPs on pre-miRNA structure
To examine the consequences of SNPs on miRNA struc-
ture, we used two computational approaches. First, we
used RNAfold [35] to compare the predicted structures of
pre-miR-342 based on the reference allele (C57BL/6J) to a
musculus-derived allele (shared by the NOD/ShiLtJ and
PWK/PhJ strains) containing two SNPs (rs264778660 and
rs242689107) and one indel (rs261236356) that fall within
the precursor. Second, we used SNPfold [36] to formally
test whether either SNP affects the ensemble of predicted
RNA structures.

Bioinformatic/Statistical approach to identify putative
miRNA-mRNA regulatory networks
To construct putative miRNA-mRNA regulatory net-
works, we utilized a multistep procedure outlined in
green in Additional file 1: Figure S1. We first identified
mRNA transcripts linearly (positively or negatively) cor-
related at an FDR < 0.1 with log-transformed eosinophil
or neutrophil counts that were previously quantified
[21, 22]. We refer to these as called quantitative trait
transcripts [37]. Second, we identified quantitative trait
miRNAs, which we defined as miRNAs that were
linearly correlated with inflammation phenotypes at an
FDR < 0.1. For each phenotype (eosinophil or neutrophil
counts), we paired positive quantitative trait transcripts
with negative quantitative trait miRNAs and vice-versa.
We then used a Monte Carlo simulation strategy called
miRhub [38, 39] to identify the miRNAs that may act as
regulatory hubs for a given set of oppositely correlated
quantitative trait transcripts. miRhub identifies miRNAs
that are predicted to regulate a target gene list/network
more than expected by chance. To accomplish this the
algorithm utilizes the following inputs: (1) the strength
and clustering of miRNA target sites in the gene set (as
predicted by the TargetScan algorithm [40]), these
predicted interactions can be filtered to require a

minimum level of conservation across species - we spe-
cified conservation between mouse and one other spe-
cies (rat, human, or chicken); (2) the centrality of target
genes in a network, which is based on high confidence
protein-protein interactions listed in the STRING 9.0
database (http://string-db.org/) - we did not employ this
feature; and (3) the expected range of targeting scores in
random gene lists/networks (n = 1000). Empirical p-values
are generated based on the comparison of the observed
distribution of target scores to the distribution found in
the random gene networks, and are adjusted for multiple
comparisons using a false discovery rate.

Results
As outlined in Additional file 1: Figure S1, we used two
complementary approaches to identify miRNAs that
may be associated with AAD, one based explicitly on
genetically determined variation in miRNA expression
(“eQTL approach” shown in blue), and one that does
not rely on genetic diversity per se but rather combined
bioinformatics and statistical analyses to construct puta-
tive miRNA-mRNA regulatory networks (“bioinformat-
ics/statistical approach” shown in green). We begin with
results from our survey of miRNA expression in CC
founder strains, followed results from the eQTL and bio-
informatics/statistical approaches, respectively.

Detection of differentially expressed miRNAs in the lungs
of CC founder strains
We measured the expression of 723 miRNAs in whole
lung RNA samples from the eight CC founder strains
(n = 3-4/strain) using microarrays (Methods). We identified
92 that were differentially expressed by strain at an FDR
< 0.05 (Additional file 4: Table S1), 38 of which were identi-
fied as highly expressed in at least one strain (Methods,
Additional file 5: Table S2). Hierarchical clustering of these
38 miRNAs clearly demonstrated the effect of strain (Fig. 1)
and the sample clustering was consistent with the known
phylogenetic relationships among these strains [41]. We
estimated the broad sense heritability (H2) for miRNA
expression (Additional file 5: Table S2); H2 values ranged
from 0.28 for miR-200a to 0.94 for miR-342-3p.
To ensure that these results were not false positives

due to altered hybridization between array probes and
genetic variants, we mapped probesets of differentially
expressed miRNAs to genetic variants contained in the
Sanger Mouse Genomes Project data [33, 34]. Three
probesets aligned to regions that contain structural vari-
ants among CC founder strains (miR-148b, miR-192,
and miR-194), but the observed patterns of expression
were not correlated with the strain distribution of struc-
tural variants. Thus we conclude that the variation in
miRNA expression is not biased by the array platform
we used.
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eQTL Approach
We then measured the expression of 37 out of 38 of these
miRNAs (Methods), as well as miR-148b and miR-182 due
to published evidence indicating roles for these miRNAs in
asthma or allergic inflammation in the lung [10, 26], in 129
preCC lines using Exiqon LNA-based qRT-PCR assays. We
observed a broad range of expression for many miRNAs
(Additional file 1: Figure S2). We note in particular the bi-
modal distributions for two miRNAs, miR-133 and miR-
489, suggesting a single, large-effect eQTL for each.
Next we performed genome-wide scans for each miRNA

to identify miRNA eQTL. In total, we identified 18 high-
confidence eQTL (at padjusted < 0.05) corresponding to 14
different miRNAs, and an additional eight potential eQTL
(at padjusted < 0.10) for seven more miRNAs (Table 1). This
equates to high-confidence eQTL for 38 % of the miRNAs

that were differentially and highly expressed among the
founder strains (and 35 % of the total number of miRNAs
studied), though surprisingly miR-133 was not one of them.
Of the high-confidence eQTL, nine were located near the
miRNA gene itself (within 10 Mb), which we refer to as
local eQTL [21], while nine were located distal to the
miRNA gene, including on other chromosomes. These re-
sults differ from our previous studies of protein coding
gene eQTL, which revealed predominately (~75 %) large-
effect, local eQTL (Fig. 2) [21].
We categorized the miRNA eQTL in terms of their ef-

fect size and location in the genome. Two eQTL, for
miR-489 and miR-342-3p, stood out in terms of effect
size. Not surprisingly, expression of these two miRNAs
also showed the highest heritability in CC founder lines
(Additional file 5: Table S2). We confirmed that for both
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Fig. 1 Hierarchical clustering miRNA expression among CC founder lines. Of the 92 differentially expressed miRNAs detected using a microarray
platform, 38 were selected based on the expression values and these are depicted here. Note that with one exception (WSB/EiJ mouse at far
right), the overall sample clustering is consistent with the phylogenetic relationships among these strains
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miRNAs the expression levels among preCC mice with a
specific CC founder haplotype at the eQTL were con-
cordant with expression levels in the CC founder strain
(Figs. 3 and 4). We calculated the narrow sense heritabil-
ity (h2) to be 0.60 and 0.84 for the miR-489 and miR-
342-3p eQTL, respectively. Taken together, these results
indicate that cis-regulatory elements at the respective
eQTL are the primary determinants of miR-489 and
miR-342-3p expression in the lung. However, we note
that miR-489 expression in CC founders suggests three
distinct groups (high expression group composed of
NOD/ShiLtJ and WSB/EiJ; medium expression group
composed of A/J, C57BL/6J, 129S1SvImJ, and NZO/H1LtJ;
and low expression group composed of CAST/EiJ and
PWK/PhJ), but the allele effects for the eQTL on chromo-
some (Chr) 6 indicates that this eQTL only explains the dif-
ferences between CAST/EiJ and PWK/PhJ vs. the other six
CC founders. Thus it appears that one or more additional
loci likely contribute to miR-489 expression; but we did not

Table 1 miRNA eQTL

miRNA p value threshold LOD Chr peak (bp) Start (bp) End (bp)

miR-139-5p 0.05 7.23 16 75704393 66282944 78490921

miR-146b 0.05 10.72 19 45318029 44272094 48072092

miR-181d 0.05 12.39 8 86984259 83331794 88394118

miR-187 0.05 7.53 18 24437090 17391307 25992115

miR-203 0.05 10.20 12 113443612 109075713 115064141

miR-221 0.05 7.23 X 11875846 6743622 19481467

miR-25 0.05 7.73 2 29331785 19850261 33013357

miR-322 0.05 8.44 11 111672727 109872770 113662465

miR-322 0.05 7.99 X 49213981 46393688 72375891

miR-322* 0.05 7.29 11 111689383 109944727 112970648

miR-342-3p 0.05 45.72 12 109161374 108668025 110004769

miR-351 0.05 7.79 7 111699531 104065978 117022949

miR-351 0.05 7.43 X 92256284 72656435 97587740

miR-451 0.05 10.18 9 108231334 106496149 111607827

miR-486 0.05 8.08 9 107619856 105998212 111638630

miR-489 0.05 25.31 6 3360097 3183618 5399987

miR-503 0.05 7.39 11 110853290 109531467 112735746

miR-503 0.05 7.18 X 55318092 49106938 70590355

miR-148b 0.1 6.66 2 42420095 34807751 50632983

miR-210 0.1 6.62 6 3259542 3001551 13855894

miR-322* 0.1 6.69 7 102716364 86631134 117203425

miR-322* 0.1 6.75 X 55058589 49106938 70017706

miR-34a 0.1 6.73 1 13531834 3036178 30553568

miR-34c 0.1 6.76 13 99709138 94236515 102155480

miR-351 0.1 6.68 11 110853290 106160019 112970648

miR-497 0.1 6.76 11 110106556 106863427 112735746

Bold denotes eQTL located within 10 Mb of the miRNA locus (i.e., local eQTL). Start and end positions (bp) in the Table headings correspond to eQTL confidence
intervals
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identify other eQTL (local or distant) using genome scans
in which we conditioned on the Chr 6 eQTL.
The allele effects for miR-342-3p indicated that the NOD/

ShiLtJ and PWK/PhJ alleles were similar in terms of their
effect on miRNA expression (Fig. 4b). Using publically

available array-based genotype and haplotype data from the
CC founder strains [20, 32], we found that, like themusculus
strain PWK/PhJ, the NOD/ShiLtJ founder strain has a
musculus-derived haplotype in the QTL confidence interval
(Chr 12: 108,668,025-110,004,769 bp). We confirmed that
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these two strains share a haplotype in this region using
more complete single nucleotide polymorphism (SNP) data
from the Sanger Mouse Genomes Project [33] (Fig. 4c).
This finding facilitated the identification of putative causal
variants descended from the musculus sub-species that are
shared by NOD/ShiLtJ and PWK/PhJ and are different
from all other founder strains. We identified 938 SNPs in
the region that met these criteria, the majority of which
were located in or near 11 genes (defined as +/− 5 kb from
the gene), including 20 SNPs in or near the miR-342 locus.
Two SNPs (rs264778660 and rs242689107) and one
indel (rs261236356) were in the miR-342 precursor
(pre-miR-342) and thus were considered strong candi-
date causal variants for the eQTL because the stem-
loop structure of the precursor is critical for miRNA
maturation and expression. The RNAfold algorithm
[35] predicted an allele-dependent effect for both SNPs
(but not the indel) on the terminal loop of the pre-miR-342

stem-loop structure (Fig. 5). Subsequent analysis using
SNPfold [36] provided further in silico evidence that
rs264778660 significantly alters the conformation of pre-
miR-342 (p = 0.01, Additional file 1: Figure S3). These re-
sults suggest that at least rs264778660 is likely to cause a
change in pre-miR-342 structure, which in turn may alter
processing by Dicer and Drosha, and consequently affect
expression of both miR-342-3p and miR-342-5p. Indeed,
among CC founder strains, we found a strong correlation
between miR-342-3p and miR-342-5p expression, with
NOD/ShiLtJ and PWK/PhJ strains having low expression
for both arms of miR-342 (Additional file 1: Figure S4).
We noted that indel (rs261236356) is predicted to cause a
change in the seed sequence of miR-342-5p (Fig. 5),
potentially altering the relationship between this miRNA
and target genes. We did not measure the expression of
miR-342-5p in the preCC because its expression levels
were very low.

Fig. 5 Predicted effects of SNPs in miR-342 on pre-miR-342 structure. Top: sequence spanning 109,896,830-109,896,928 bp on Chr 12 with miR-342-5p and
miR-342-3p sequences shown in blue and green, respectively. SNPs present in the musculus-derived haplotype are highlighted in red and by asterisks.
Bottom: the sequence of miR-342 from C57BL/6J reference strain was used to generate a structure of pre-miR-342, shown on the left. The predicted effect
of two SNPs (rs242689107 and rs264778660), present in the musculus-derived haplotype, is shown in the center. Note the change in the terminal loop as a
function of SNPs. The predicted structure of pre-miR-342 with the addition of the indel (rs261236356) is shown at right
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Seven other miRNAs had local eQTL: miR-146b, miR-
181d, miR-187, miR-203, miR-221, miR-322, and miR-503.
The allele effects for these eQTL are shown in Additional
file 1: Figure S5. Some miRNAs had both local and distant
eQTL. For example, miR-322 and miR-503 each had one
local eQTL (on Chr X) and one trans-eQTL on Chr 11.
We built regression models for these two miRNAs and
found that these two loci accounted for 44 % and 37 % of
variation in miR-322 and miR-503 expression, respectively.
The trans-eQTL locus shared by miR-322 and miR-

503 was also weakly associated with the expression of
miR-351 and miR-497 (padjusted < 0.1). We found that
each pairwise comparison of miRNA expression for all
four miRNAs was highly significant (Additional file 6:
Table S3) and that the allele effects for all four of these
trans-eQTL were consistent (Fig. 6). This suggests that a
single variant mediates allele-specific trans-regulation of
the expression of all four miRNAs. miRNA expression in
mice with the 129S1/SvImJ allele was significantly differ-
ent from all other strains with the exception of WSB/EiJ
(p < 0.05 by Tukey’s honestly significant difference test),

indicating the 129S1/SvImJ allele is functionally dis-
tinct from most other CC founder strains. This region
contains 100 genes and we looked for SNPs for which
the 129S1/SvImJ strain is distinct from all other CC
founders excluding WSB/EiJ and identified 212 SNPs in
20 genes that met this criterion: A830035A12Rik,
Abca6, Amz2, C330019F10Rik, Cacng1, Cacng5, Ccdc46,
Gm11650, Gm11655, Gm11674, Gm11677, Gm11678,
Gm11680, Gm11681, Gm11714, Gna13, Helz, Prkca,
Smurf2, and Tex2 (Additional file 7: Table S4). These
genes represent causal candidates for the miRNA trans-
eQTL. We identified a second set of trans-eQTL on Chr
9 at ~107-108 Mb for miR-486 and miR-451, but the allele
effects for these eQTL were not completely consistent
(Additional file 1: Figure S6), thus we cannot conclude that
these two trans-eQTL are one and the same.

The relationship between miRNAs and inflammation
phenotypes
Genetic variation in a miRNA has been linked to disease
phenotypes [42–45]. We asked whether the miRNA
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eQTL we discovered underlie QTL we previously identi-
fied for two phenotypes: eosinophil and neutrophil re-
cruitment responses to allergen sensitization and
challenge. No miRNA eQTL co-localized with the eosino-
phil QTL (Chr 11:71.8-87.1 Mb [21]) or neutrophil QTL
(Chr 2:79.8–98.0 Mb and Chr 4:3.3–10.0 Mb [22]).

Bioinformatic/Statistical approach to identify putative
miRNA-mRNA regulatory networks
As shown in Additional file 1: Figure S1, we used a comple-
mentary approach to ask whether any miRNAs were candi-
date master regulators of genes altered during airway
inflammation. We first identified miRNAs whose expres-
sion levels were linearly correlated with eosinophils and
neutrophils. At an FDR < 0.1, thirteen and nineteen miR-
NAs were correlated, respectively. The vast majority was
negatively correlated (Additional file 8: Table S5). We then
used the miRHub algorithm (Methods), which determines
whether the predicted regulatory effect of any given miRNA
on a specific set of genes is significantly greater than ex-
pected by chance (i.e., acts as a “regulatory hub”), to predict
whether any of these miRNAs are candidate drivers of the
gene expression profiles associated with the phenotypes of
interest. For the set of genes that were positively correlated
with neutrophils (n = 674 at FDR < 0.1), we identified miR-
497, miR-351 and miR-31 as candidate regulatory hubs
(Fig. 7). No miRNA hubs were identified for the sets of
genes positively (n = 1802) or negatively (n = 1605) associ-
ated with eosinophils (Additional file 1: Figure S7). These
results indicate that miR-497, miR-351 and miR-31 may
serve as mediators of neutrophilic inflammation by target-
ing genes that regulate neutrophil recruitment to the
airways; predicted targets of each miRNA are listed in
Additional file 9: Table S6.

miR-31 has been previously reported as a marker and/
or regulator of other inflammatory conditions, such as
inflammatory bowel disease [46] and psoriasis [47]. In a
previously published dataset of gene expression from hu-
man keratinocytes transfected with a miR-31 inhibitor,
96 genes were up-regulated, and of these, 24 were pre-
dicted targets of miR-31 [47]. We found that the mouse
orthologs of two of these genes, Oxsr1 and Nsf, were also
present in our list of predicted miR-31 targets correlated
with neutrophils, resulting in statistically significant en-
richment (p = 4 × 10−3 by hyper-geometric test). While
an overlap of two genes is not large, it is appreciable
given the differences in cell types, species, and disease
processes examined. We also found that the expression
of Oxsr1 and Nsf was negatively correlated with miR-31
expression (r = −0.26, p = 2.0 × 10−3 and r = −0.23, p =
8.7 × 10−3, respectively). Thus we conclude that miR-31
is likely to be an important modulator of neutrophilic
airway inflammation in part by targeting Oxsr1 and Nsf.

Discussion
We examined whether regulatory variation at miRNA loci
underlies variation in response to allergen sensitization
and challenge using a genetically diverse population of
mice. The phenotypic variation across these mice enabled
the identification of eQTL for 14 out of the 40 miRNAs
(35 %) that we studied, as well as suggestive eQTL for an
additional seven miRNAs. We characterized these eQTL
in terms of effect size and location relative to the miRNA
gene and found that we could explain a large fraction of
the total variation in expression for several miRNAs using
eQTL. Some miRNAs exhibited appreciable heritability
estimates based on gene expression in the CC founder
strains, but did not have detectable eQTL in the preCC
population (e.g., miR-133). One possible explanation is
that variation in expression is due to epistasis among two
or more loci that lack sizeable individual effects. Due to
the limited power afforded by the sample size of our study,
we did not test for epistatic eQTL. Additionally, due to
the fact that the qRT-PCR system we used was developed
by a company and the primer sequences are proprietary,
we cannot rule out the possibility that false negative and/
or false positive eQTL we detected in the preCC mice are
due to SNPs (or other types of genetic variants) that could
affect the measurement of miRNA expression.
In the case of miR-342-3p, we were able to identify

highly plausible candidate causal variants using a com-
bination of sequence data and structural modeling. We
found that a SNP (rs264778660) located in the miRNA
precursor is likely to alter the terminal loop of the pre-
miR-342 structure, which in turn may alter processing
and maturation of miR-342-3p. Liu et al. have shown
that the terminal loop of a pre-miRNA affects processing
by Dicer [48]. We suggest that rs264778660 affects the
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maturation and expression of miR-342-3p, providing a
plausible explanation for why preCC mice with haplo-
types at this locus matching that of NOD/ShiLtJ and
PWK/PhJ have lower expression levels. This hypothesis
merits further experimental investigation.
Out of all the other miRNAs we studied, very few had

variants located in the precursor sequence and none had
sequence variants located in seed regions (except for miR-
342-5p which was measured in the CC founder lines but
not in the preCC population). This is consistent with
other population genetic studies, which have concluded
that evolutionary pressures have preserved regulatory net-
works involving miRNAs by selecting against mutations
that cause changes in miRNA targeting [49, 50].
One of the interesting results from our eQTL analysis

was that distal or trans-eQTL were quite common for miR-
NAs. This contrasts with typical results for mRNA eQTL,
including our own findings in the same set of samples [21],
where local eQTL constitute the majority. Our findings are
similar to those recently reported for miRNA eQTL in
human peripheral blood, where miRNA eQTL were often
located far upstream from the miRNA itself [51]. In one case,
we identified four miRNAs whose expression was regulated
by a single locus on Chr 11. Of the ~20 candidate genes in
the region, Prkca, which encodes Protein Kinase C-alpha, is
a plausible candidate because it is a well-known regulator
of immune responses in the lung [52] and therefore may
regulate pathways that in turn affect miRNA expression.
Trans-eQTL were also more common than local eQTL

in a previous miRNA eQTL mapping study involving an
F2-intercross with diabetes resistant and susceptible
strains (C57BL/6J and BTBR, respectively, each containing
two mutant alleles of the leptin gene) [53]. In that study,
the authors measured the expression of 220 miRNAs in
adipose tissue in 290 F2 mice and identified eQTL for 21
of them (i.e., ~10 % of miRNAs), three of which were local
or cis-eQTL. Thus, in comparison, we identified more
eQTL (in terms of number of eQTL relative to the num-
ber measured) and a larger proportion of local eQTL. It is
likely that this can be attributed to the greater genetic
diversity present in the CC founder strains versus the two
founder strains used in that F2 mapping study. Five miR-
NAs or miRNA family members were measured in that
study and were also a part of this study, namely miR-31,
miR-34c, miR-148a, miR-181, and miR-451. We detected
a similar local eQTL for miR-181 but there was no overlap
in eQTL for the other miRNAs. These differences could
be explained at least in part by different regulatory ele-
ments responsible for controlling miRNA expression in
different tissues (adipose vs. lung) and in response to dif-
ferent perturbations (ob transgene/diet vs. allergen). In
aggregate, our results and those of Zhao et al. [53] suggest
that miRNA expression levels in mice are more strongly
dependent on genetic variation at distal loci than mRNAs.

Additionally, the LOD scores for local miRNA eQTL
were, on average, lower in magnitude than those for
local mRNA eQTL we previously identified. Hence local
eQTL account for a smaller proportion of miRNA ex-
pression variation than local mRNA eQTL. This too is
consistent with results from a recent human miRNA
eQTL study in which local eQTL accounted for ~1 % of
variation in miRNA expression compared to 30-50 %
for mRNA eQTL [51]. Our results indicate that the
genetic architecture of miRNA expression is clearly dif-
ferent from mRNA expression, likely involving more loci
with additive or perhaps even multiplicative effects.
As such, it is perhaps not surprising that we did not
identify a miRNA eQTL that underlies variation in
allergic inflammation in our model of asthma. For a
single miRNA eQTL to underlie a trait QTL, the miRNA
eQTL must have a large effect on miRNA expression
and be causally linked to the trait. While we identified
miRNAs that are correlated with inflammation pheno-
types, none of these miRNAs had a single major
effect eQTL that explains the resulting variation in in-
flammation. However, additive or multiplicative effects
across miRNA eQTL may explain a greater proportion of
the variation in inflammation. More complex statistical
models will be required to characterize the effects of
multiple loci, and this will inherently require greater
statistical power.
The bioinformatic analysis we conducted to identify

miRNAs that may act as key regulators of genes in-
volved in granulocyte (eosinophil and neutrophil) re-
cruitment pointed to three miRNAs of interest for
neutrophils, namely miR-497, miR-351 and miR-31. Of
these, miR-31 is potentially the most promising based on
prior work demonstrating that miR-31 is highly expressed
in airway epithelia [54], and in skin epithelia regulates the
expression of pro-inflammatory chemokines by targeting
genes that regulate NF-kB activity [47]. Additionally, miR-
31 is not highly expressed in neutrophils at baseline or
after bacterial challenge [55], suggesting that miR-31 is
not simply a surrogate metric of neutrophil counts. Based
on our finding of significant enrichment of predicted miR-
31 targets in our data compared to dataset from human
keratinocytes in which miR-31 was inhibited [47], we
suggest that two genes, Oxsr1 and Nsf, may be novel regu-
lators of neutrophilic inflammation in the airway. NSF
(N-ethylmaleimide-sensitive factor) is a cytoplasmic ATPase
that plays an important role in the exocytosis of inflamma-
tory mediators by disassembling the soluble-N-ethylmalei-
mide-sensitive-factor accessory-protein receptor (SNARE)
complex after exocytosis [56]. Using a mouse model of
peritonitis, Morrell et al. showed that inhibition of NSF
resulted in diminished neutrophil recruitment to the
peritoneum [57]. Given these data, one simple hypothesis
is that NSF in airway epithelium regulates the release of a
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chemokine involved in neutrophil recruitment, and this
pathway is targeted by miR-31.
Our results also indicate that other genes with estab-

lished relationships to neutrophil recruitment are pre-
dicted target genes of miR-31. We note three genes in
particular: Ccr2, a chemokine receptor linked to mono-
cyte and neutrophil recruitment to the lung and other
organs [58–60], Tnip1 (Abin1), which is involved in
toll-like receptor mediated innate immune responses
[61], and Unc93b1, a gene involved in antigen presenta-
tion by dendritic cells [62]. In combination with prior
work in human airway and skin epithelia, our result sug-
gests that miR-31 may be targeting genes both in the air-
way epithelia and in white blood cells (neutrophils,
monocytes, and dendritic cells), and provide rationale for
additional studies on the role of miR-31 in neutrophilic
airway inflammation. We note that many previous studies
have documented an important role for miR-31 in mul-
tiple cancer processes [63]; thus our findings suggest that
miR-31 is microRNA with pleiotropic effects.

Conclusion
miRNA expression in the allergically inflamed murine
lung is regulated by genetic loci that are smaller in effect
size compared to mRNA eQTL and often act in trans.
Thus our results indicate that the genetic architecture of
miRNA expression is different from mRNA expression.
We identified three miRNAs, miR-497, miR-351 and
miR-31, that are candidate master regulators of genes as-
sociated with neutrophil recruitment. Because miR-31 is
expressed in airway epithelia and is predicted to target
genes with known links to neutrophilic inflammation,
we suggest that miR-31 is a potentially novel regulator
of airway inflammation.

Availability of supporting data
Data for array-based expression of miRNAs in Collab-
orative Cross founder strains is provided in NCBI’s Gene
Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE63954. Genotype data for preCC
mice and qPCR-based measurement of miRNAs in
preCC mice are provided as supporting data (Additional
Files 2 and 3, respectively).

Additional files

Additional file 1: Figure S1. Overall study design and workflow. * See
Discussion section for a discussion of possible reasons for lack of
co-localization. ** See reference 38 for details about this analytical
method. Figure S2. Distributions of miRNA expression. Data are
expressed as Delta Ct vs. U6 snRNA. Note that miR-17* star showed
relatively little variation and its mean expression was comparable to the
majority of other miRNAs measured; thus it was used as for normalization
in subsequent analyses. Figure S3. Predicted effects of SNPs in miR-342-3p
on miR-342 structure as determined by SNPfold. Green line denotes location

of SNP. A. The effect of rs242689107 (G40A) is shown, p = 0.86. B. The
effect of rs264778660 (A43C) is significant (p = 0.01). SNP positions refer
to miR-342-3p precursor as shown in Fig. 5. Figure S4. Expression of
miR-342-3p and miR-342-5p in CC founder lines. Figure S5. Allele effects for
other local miRNA eQTL. Figure S6. Allele Effects for miR-451 and miR-486
trans-eQTL on Chr 9. Figure S7. miRNA target site enrichment analysis for
eosinophils. None of the miRNAs tested had p-values that were significant
after adjusting for multiple testing at an FDR < 0.05.

Additional file 2: qPCR-based measurements of miRNAs in preCC
mice.

Additional file 3: Genotype data for preCC mice.

Additional file 4: Table S1. Differentially expressed miRNAs among CC
founder strains.

Additional file 5: Table S2. miRNA expression and heritability among
CC founder strains for select miRNAs.

Additional file 6: Table S3. Pairwise Pearson Correlation Values Among
miR-322, miR-252, miR-497, and miR-503.

Additional file 7: Table S4. SNPs on Chromosome 11 in the miRNA
trans-band eQTL interval for which the 129S1/SvImJ Strain is distinct.

Additional file 8: Table S5. miRNAs correlated with inflammation
phenotypes.

Additional file 9: Table S6. Predicted target genes of enriched
miRNAs.
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