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Abstract

Background: Bacillus amyloliquefaciens SQR9 is a plant growth-promoting rhizobacteria (PGPR) with outstanding
abilities to enhance plant growth and to control soil-borne diseases. Root exudates is known to play important
roles in plant-microbe interactions. To explore the rhizosphere interactions and plant-beneficial characteristics of
SQRY, the complete genome sequence as well as the transcriptome in response to maize root exudates under
biofilm-forming conditions were elucidated.

Results: Maize root exudates stimulated SQR9 biofilm formation in liquid culture, which is known to be positively
correlated with enhanced root colonization. Transcriptional profiling via RNA-sequencing of SQR9 under static
conditions indicated that, at 24 h post-inoculation, root exudates stimulated the expression of metabolism-relevant
genes, while at 48 h post-inoculation, genes related to extracellular matrix production (tapA-sip\/-tasA operon) were
activated by root exudates. The individual components in maize root exudates that stimulated biofilm formation
included glucose, citric acid, and fumaric acid, which either promoted the growth of SQR9 cells or activated
extracellular matrix production. In addition, numerous groups of genes involved in rhizosphere adaptation and in
plant-beneficial traits, including plant polysaccharide utilization, cell motility and chemotaxis, secondary antibiotics
synthesis clusters, and plant growth promotion-relevant, were identified in the SQOR9 genome. These genes also
appeared to be induced by the maize root exudates.

Conclusions: Enhanced biofilm formation of B. amyloliquefaciens SQR9 by maize root exudates could mainly be
attributed to promoting cell growth and to inducing extracellular matrix production. The genomic analysis also
highlighted the elements involved in the strain’s potential as a PGPR. This study provides useful information for
understanding plant-rhizobacteria interactions and hence for promoting the agricultural applications of this strain.

Keywords: Plant growth-promoting rhizobacteria, Genome, Root exudates, Biofilm, Transcriptome

* Correspondence: shengirong@njau.edu.cn; rfzhang@njau.edu.cn

"Equal contributors

!Jiangsu Key Lab for Organic Solid Waste Utilization, National Engineering
Research Center for Organic-based Fertilizers, Jiangsu Collaborative
Innovation Center for Solid Organic Waste Resource Utilization, Nanjing
Agricultural University, 210095 Nanjing, China

Full list of author information is available at the end of the article

- © 2015 Zhang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
( B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-015-1825-5&domain=pdf
mailto:shenqirong@njau.edu.cn
mailto:rfzhang@njau.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhang et al. BMC Genomics (2015) 16:685

Background

Plant growth-promoting rhizobacteria (PGPR) are a group
of rhizosphere-colonizing bacteria that can promote plant
growth and control soil-borne diseases, which are of great
importance in both basic and applied microbiology [1, 2].
Bacillus spp. are important members of the PGPR, and
have been commercially exploited as biofertilizers and bio-
control agents [3, 4]. Complete genome sequencing of sev-
eral plant-associated Bacillus amyloliquefaciens strains,
including FZB42, CAU B946, and YAU B9601-Y2, have re-
vealed functional genes involved in growth promotion
(genes related to the synthesis of plant hormones) and dis-
ease control (gene clusters involved in nonribosomal syn-
thesis of lipopeptides and polyketides with antibiotic
activity) [4-7].

Detailed investigations of the interactions between
plants and root-associated PGPR have been performed to
determine the requirements for the bacteria to adapt and
colonize roots, providing useful information regarding the
potential applications of the PGPR strains in agriculture
[8, 9]. Increasing evidence supports the notion that plant-
bacteria interactions mainly occur in the rhizosphere and
are regulated by root exudates [10-14]. For instance, fla-
vonoids secreted by roots of leguminous plants are known
to play an important role in the early signaling events of
legume-rhizobia interactions [12]; while organic acids,
such as malic acid and citric acid, in root exudates recruit
Bacillus strains in the rhizosphere [15, 16].

High-throughput strategies, including microarray ana-
lyses [8, 9, 17, 18], cDNA-based suppression-subtractive
hybridization [19], and promoter trapping [20], have been
applied to investigate bacterial interactions with root exu-
dates (in vitro) and with the root surface (in vivo). The
groups of genes involved in plant-microbe interactions con-
sist mainly of (families of) genes involved in metabolism,
bacterial motility and chemotaxis, transport, secretion, and
antibiotics production [8, 9, 17, 18, 21]. Next-generation
sequencing (NGS) technologies have provided new oppor-
tunities to perform whole-genome sequencing and to in-
vestigate dynamic transcriptomes [22]. In addition, NGS
methods for RNA analysis (including RNA-Seq) have been
used in studies of small regulatory RNAs [23] and genome
annotation [24]. These technologies have been especially
useful in measuring the transcript expression levels under
different conditions [25, 26], both for eukaryotes [27, 28]
and prokaryotes [24]. Such high-throughput techniques
are time-saving and useful in investigating the uncharac-
terized genes. Compared with conventional strategies,
such as microarray analysis, RNA-Seq offers a better way
to study root exudates-bacterium interactions.

B. amyloliquefaciens SQR9 was isolated from the plant
rhizosphere and is able to reduce attack by the phytopatho-
genic fungus Fusarium oxysporum f. sp. cucumerinum J. H.
Owen (FOC) through efficient root colonization followed
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by production of antifungal metabolites [29-32]. SQR9 col-
onizes roots more efficiently and promotes plant growth
better than other root-associated Bacillus strains [33]. Prod-
ucts derived from SQR9 are also widely used in agriculture
in China under the BIO™ trademark. Therefore, B. amylogi-
quefaciens SQR9 could be regarded as an ideal PGPR strain
for exploring rhizoshphere plant-microbe interactions.
Biofilm formation has been found to be crucial to
colonization and expression of beneficial traits by PGPR
strains [34, 35]. Importantly, it was found that the in vitro
addition of maize root exudates could stimulate biofilm
formation of SQR9. Although several studies have explored
the plant-microbe interactions through different high-
throughput approaches, few investigations have been per-
formed under biofilm-formation condition. In this study, to
further explore the mechanisms involved in enhanced bio-
film formation of SQR9 as regulated by maize root exudates,
as well as its regulatory roles on other PGP-relevant func-
tional genes, the complete genome sequence of SQR9 was
determined by Roche 454 pyrosequencing to provide a the
reference map for transcriptomic analysis. Then, the tran-
scriptional profiling was investigated by Illumina RNA-Seq.
The results of this study reveal the genetic basis of rhizo-
sphere adaption and plant beneficial effects of SQR9, which
are crucial for understanding plant-rhizobacteria interactions
and improving the application of this strain in agriculture.

Results

Plant-beneficial activities of Bacillus amyloliquefaciens
SQR9

Greenhouse experiments were performed to evaluate the
effects of B. amyloliquefaciens SQR9 on the growth of
maize, one of the most important and widely-planted grain
crops in the world. To avoid the confounding influence of
mycoprotein on seedlings, equal amounts of inactivated
SQR9 cells were used as a control. The results revealed that
SQRY significantly promoted the growth of maize plants.
When live bacterial suspensions were applied, maize bio-
mass, shoot height, root length, and root surface area were
significantly greater than the control by 42—-60 %, 32—46 %,
33-49 %, and 29-59 %, respectively (Table 1). This out-
standing plant-promoting performance indicates that SQR9
can be regarded as an ideal PGPR agent.

Interaction of maize and B. amyloliquefaciens SQR9: root
colonization and stimulation of biofilm formation by root
exudates

Understanding of the interaction mechanisms between
host plants and PGPRs is important for practical applica-
tion of these agents. Root colonization of inoculated PGPR
agents is considered as a prerequisite for successful growth
promotion and biocontrol activities [36]. Confocal laser
scanning microcopy (CLSM) indicated that, after 5 days
of incubation in a gnotobiotic soil system, the green
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Table 1 Effect of Bacillus amyloliquefaciens SQR9 on the growth of maize seedlings

Treatment Dry weight (g) Height (cm) Root length (cm) Root surface area (cm?)
CK1 3.59+045¢ 5081 +561c 1335.87 £ 26.65¢ 354.74 + 14.58¢
CK2 3.86+£0.23¢ 51.84 £ 3.64c 135142 + 26.89¢c 35555+ 11.57¢
T 5.08+0.62b 67.08+267b 177504 £20.79b 45847 +13.76b
T2 6.16 £ 045a 7581 £343a 201647 + 54.66a 564.27 + 15.63a

Different letters indicate significant differences at P < 0.05 using Duncan’s multiple range tests. CK1: seedlings inoculated with suspensions of 5 mL inactivated bacteria
(108 CFU - mL™); CK2: seedlings inoculated with suspensions of 10 mL inactivated bacteria (108 CFU-mL™"); T1: seedlings inoculated with suspensions of 5 mL bacteria
(108 CFU - mL™); T2: seedlings inoculated with suspensions of 10 mL bacteria (10° CFU - mL™). Plants were grown in a greenhouse for 55 days (n = 10)

fluorescence protein (GFP)-tagged SQR9 cells colonized
the maize root very well and formed biofilms on the
roots with a density of approximately 1.8 x 10° CFU- g™
root (Fig. 1).

Root colonization of Bacillus strains was indicated to be
positively correlated with their ability to form biofilms
under laboratory condition [31, 35, 37]. Since root exudates
are important in rhizosphere dialogues and in biofilm for-
mation on plant roots by PGPR strains [1], static culture
assays were performed to evaluate the effects of maize root
exudates of various concentrations on SQR9 biofilm for-
mation. The addition of 1 x and 2 x maize root exudates in
1/2 MSgg medium significantly enhanced the biofilm for-
mation of SQR9 compared with the control, as revealed by
both increased biomass and more complex architecture
observed using CLSM (Fig. 2; Additional file 1: Figure S1);
these two treatments did not differ significantly from one
another. The 0.5 x root exudates also stimulated biofilm
formation not significantly so (Additional file 1: Figure S1).

Experiments design for investigating the transcriptional
profiling of SQR9 in response to maize root exudates
during biofilm formation

To investigate the regulatory roles of maize root exudates
on the rhizosphere behavior of SQRY, especially the

mechanisms involved in the induced biofilm formation, a
high-throughput Illumina RNA-Seq was performed to
study the transcriptomic response of SQR9 to maize root
exudates. Based on the results obtained above, a 1 x con-
centration of maize root exudates was used in this experi-
ment. Considering the dynamics curves of biofilm
formation, cells were collected and RNA extracted 24 and
48 h post-inoculation, which represented the mid-
exponential phase (biomass quickly increasing) and station-
ary phase (biomass peaked and remained stable) during the
biofilm formation, respectively (Additional file 1: Figure
S1). Thus, two treatments (addition of 1x maize root exu-
dates or the negative control) and two sampling points (24
and 48 h post-inoculation) for cell harvesting were used
in the transcriptomic analysis (see Methods).

Genomic analysis of Bacillus amyloliquefaciens SQR9

To provide a mapping background for the transcriptomic
analysis, whole-genome sequencing of SQR9 was performed
using Roche 454 high-throughput pyrosequencing techno-
logy. The general features of the SQR9 genome and other
relevant Bacillus strains are summarized in Table 2. The sin-
gle circular chromosome (4,117,023-bp) with a GC content
of 46.1 % encodes 4,078 predicted proteins, 72 tRNA genes,
7 rRNA operons, 218 prophages-associated genes, and 358

Fig. 1 Colonization of maize roots by SQR9-gfp cells. Uninoculated control roots of maize seedlings (@) and roots inoculated with SQR9-gfp cells (b) were
imaged by confocal laser scanning microscopy (CLSM) at 5-days post-inoculation
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Fig. 2 Effects of concentrated maize root exudates on biofilm formation of SQR9. a Effects of maize root exudates on the biomass of biofilm formed
by SQR9. Data with asterisks were significantly different from the control at each time point (¥, P < 0.05; **, P < 0.01; t test). b Effects of root exudates on
the appearance of biofilm formed by SQR9: g, Control, 24 h post-inoculation; b, Treatment with maize exudates, 24 h post-inoculation; ¢, Control, 48 h
post-inoculation; d, Treatment with maize exudates, 48 h post-inoculation). ¢ Effects of root exudates on the three-dimensional structure of a biofilm
formed by SQR9 visualized by confocal laser scanning microscopy (CLSM) 24 h post-inoculation. a, ¢. Control; b, d. Treatment with maize root exudates

non-coding RNAs (Fig. 3; Additional file 2: Table S1). The orthologous genes and a pan genome size of 5,643 ortholo-
core genomes of SQR9 and four other closely related Bacil-  gous genes, among which 309 genes were unique to SQR9
lus strains (B. subtilis strain 168 and B. amyloliquefaciens  (Fig. 4; Additional file 3: Table S2). Pairwise genome and
strains FZB42, DSM7', and B9601-Y2) consists of 3,014 gene order comparisons suggested that the majority of the



Zhang et al. BMC Genomics (2015) 16:685

Page 5 of 20

Table 2 Genomic features of the Bacillus amyloliquefaciens SQR9 genome. The SQR9 genome was compared with those of Bacillus

subtilis 168 and three other B. amyloliquefaciens strains

Features B. amyloliquefaciens SQR9 FZB42 DSM7" B9601-Y2 B. subtilis 168
Genome size (bp) 4,117,023 3,918,589 3,980,199 4242774 4,214,630

G + C content (mol %) 46.1 464 46.1 45.85 435
Protein-coding sequences 4078 3693 3921 3989 4106
Average CDS size (bp) 916 933 888 927 895

Percent of coding region 89 % 88 % 87 % 87 % 87.2 %
Ribosomal RNA operons 7 10 10 10 10

Number of tRNAs 72 89 94 91 86
Phage-associated genes 218 44 n.r. n.r. 268
Transposase genes of IS elements 28 9 n.r. 24 0

n.r., not reported

SQR9 protein-encoding sequences were conserved in 168
and FZB42 (Additional file 4: Figure S2). An ortholog ana-
lysis within the three strains revealed that 304 genes were
shared by SQR9 and FZB42, while only 156 genes were
shared by SQR9 and 168 (Fig. 4; Additional file 5: Table S3).
A phylogenetic tree constructed from the core genomes of
SQR9 and 17 additional Bacillus strains indicated that
SQRY belonged to the B. amyloliquefaciens group
(Additional file 6: Figure S3).

Genomic islands (GI) prediction by IslandViewer and M-
GCAT identified 11 large regions of genomic plasticity
(Additional file 7: Table S4). Importantly, GI3 was a unique
mobile genomic fragment that is not found in the genomes
of other Bacillus strains. It consists of genes related to the
biosynthesis of an unknown polyketide (Additional file 8:
Figure S4).

Overall transcriptional profiling of SQR9 in response to
maize root exudates during the biofilm formation process
The RNA-Seq generated approximately 10 million reads for
each sample, of which 60-70 % were confirmed to be valid
after filtering reads with Phred quality scores of < 20 using
FASTX-Toolkit version 0.0.13.2 (http://hannonlab.cshl.edu/
fastx_toolkit/index.html). The rarefaction curves revealed
that the sequence throughput was sufficient to cover the
whole SQR9 genome (Additional file 9: Figure S5), sugges-
ting that the data were adequate for transcriptomic profi-
ling studies.

Based on the standards for identifying genes with signi-
ficantly different expression levels between different treat-
ments [expression fold-change > 1.5, g-value <0.001 (false
discovery rate, FDR), and a RPM (reads per million) consis-
tently above 10 in at least one treatment], genes representing
roughly 15.8-25.1 % of the SQR9 transcriptome were sig-
nificantly regulated by the addition of root exudates as com-
pared with control (Table 3; Additional file 10: Figure S6).
Of the 643 significantly affected genes after the 24-h incuba-
tion, 443 were annotated with known functions; most
belonged to the categories of metabolism and ATP-binding

cassette (ABC) transporters (Table 4). The remaining 200
genes were annotated to encode putative enzymes, hypo-
thetical proteins, and proteins with unknown function. Once
the biofilm had matured, at 48 h post-treatment, most of
the differentially expressed genes were down-regulated. Of
the 1,024 differentially regulated genes, 758 with known
functions were mainly assigned to functions related to me-
tabolism, transporters, transcription regulation, cell motility,
and chemotaxis (Table 4). Though there were some differ-
ences in the fold changes of several significantly regulated
genes between real-time PCR and RNA-Seq, the general
trends were consistent between each other, suggesting that
the RNA-Seq data were convincible (Additional file 11:
Table S5). These differences were probably caused by use of
different methods, which could be also observed in previous
studies [9, 38].

Genome and transcriptional analyses indicate that maize
root exudates enhances SQR9 biofilm formation by both
growth promotion and extracellular matrix induction
Bacterial biofilms are ubiquitous communities of tightly
associated cells encased in an extracellular matrix [39].
Biofilm formation might be affected by both the cell popu-
lation and extracellular matrix production within the com-
munities. Here, whole transcriptomic information revealed
the regulatory roles of maize root exudates on biofilm
formation of SQR9.

Root exudates stimulates the metabolism of SQR9 in the
exponential phase

After 24 h of incubation in maize root exudate, 98 genes
relevant to carbohydrates/amino acids metabolism were sig-
nificantly differentially regulated; of these, 75 were activated.
In detail, three genes encoding enzymes involved in the
Embden-Meyerhof-Parnas (EMP) pathway (gapB and fbaB)
and the tricarboxylic acid (TCA) cycle (sucC) were up-
regulated (Figs. 5 and 6¢; Additional file 12: Table S6). Other
up-regulated genes related to carbohydrate metabolism in-
cluded those involved in use of inositol (iol cluster), mannitol
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(mtlD), hexulose (hxIA), and other carbon sources. Also
genes involved in the metabolism of amino acids, including
alanine (dat, alaT), glutamate (gltD, gltA), lysine (kamA),
and aspartate (dapG), were induced by root exudates (Figs. 5
and 6¢; Additional file 12: Table S6). In addition, numerous
genes annotated as phosphotransferase system (PTS) or
sugar transporters, as well as citH encoding for citrate

transporter, were activated by root exudates (Figs. 5 and 6b;
Additional file 12: Table S6). These data, together with the
observation that adding maize root exudates significantly
enhanced the growth of SQR9 cells under aeration (data
not shown), indicate that root exudates can stimulate the
metabolism and cell growth of SQRY, thereby leading to a
higher cell population.
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In contrast, most of the differentially regulated genes
involved in metabolism of carbohydrates (53 out of 56
genes), including seven in the EMP pathway and eight
in the TCA-cycle, and amino acid/related molecules
(27 of 41), were inhibited by root exudates at 48 h
post-treatment (Figs. 5 and 6c¢; Additional file 12: Table S6).
As expected, down-regulation of numerous genes related to
PTS or sugar transporters was observed. In contrast, several
genes involved in amino acid/peptide (glnQHM, yveA,
appC, etc.), ferrichrome (ycIN, yclO), Mg (sapB), and
phosphate (pst cluster) uptake were activated (Figs. 5 and 6b;
Additional file 12: Table S6).

Root exudates induces extracellular matrix production by
SQR9 in the stationary phase

The genetic regulation pathways of biofilm formation of B.
subtilis (including B. amyloliquefaciens) have recently been
summarized [39]. The SQR9 genome contains the complete
set of relevant genes, including extracellular matrix produ-
ction genes (epsA-O for exopolysaccharide synthesis, tapA-
sipW-tasA for extracellular protein production, and bs/A for
self-assembling the bacterial hydrophobin that coats the
biofilm) and regulatory genes (SpoOA ~ P-AbrB/Sinl-SinR

Table 3 Numbers of significantly differentially expressed genes
in the presence and absence of root exudates

[tems Up-regulated Down-regulated
RE/Control_24h 382 (94 %) 261 (6.4 %)
RE/Control_48h 260 (6.4 %) 764 (18.7 %)

The percentages in parentheses represent the ratios of differentially expressed
gene numbers to those of the whole genome (4,078 coding sequences)

pathway, YwcC-SIrA-SIrR pathway, and DegQ pathway)
(Fig. 5; Additional file 13: Table S7).

At 24 h post-inoculation, the expressions of the genes re-
lated to biofilm formation and involved in extracellular
matrix production were not significantly altered, whereas
at 48 h post-inoculation the abrB gene, a negative regulator
of extracellular matrix production and root colonization
[31, 39], was down-regulated by root exudates. As a result,
the tapA-sipW-tasA operon responsible for extracellular
matrix production was activated in the presence of root ex-
udates (Figs. 5 and 6f; Additional file 12: Table S6). In
addition, a small regulatory protein (degQ) that stimulates
phosphotransfer from DegS ~P to DegU [40], was acti-
vated. Increasing the phosphorylation level of DegU en-
hanced the biofilm formation and root colonization of
SQR9 [37]. In summary, the RNA-Seq data suggests that
maize root exudates stimulates the metabolism and growth
of SQRY in the exponential phase, whereas it induces
extracellular matrix production in the stationary phrase.

Specific components in maize root exudates stimulate
biofilm formation of SQR9 through different mechanisms
For a better understanding of the chemical composition of
and the presence of potential signal compounds in maize
root exudates, the exudates was collected as described in
the Methods and analyzed by gas chromatography—mass
spectrometry (GC-MS) as described by Badri et al. [41].
The results indicated that the maize root exudates was
mainly composed of carbohydrates, sugar alcohols, glyco-
sylamines, carboxylic acids, phenolic acids, and amino
acids. Glucose and xylose were found to be the most
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Table 4 Functional categories of SOR9 genes that were

significantly regulated by the maize root exudates

Functional class 24-h  48-h
1 Cell envelope and cellular processes
1.1 Cell wall 14 39
1.2 Transport/binding proteins and lipoproteins 80 75
1.3 Sensors (signal transduction) 4 14
14 Membrane bioenergetics 13 23
(electron transport chain and ATP synthase)
1.5 Mobility and chemotaxis 18 49
1.6 Protein secretion 1 9
1.7 Cell division 2 19
1.8 Sporulation 47 44
1.9 Germination 6 2
1.10 Transformation/competence 1
2 Intermediary metabolism
2.1 Metabolism of carbohydrates and related molecules
2.1.1 Specific pathway 52 41
2.1.2 Main glycolytic pathways 2 7
2.13 TCA cycle 1 8
2.2 Metabolism of amino acids and related molecules 43 41
2.3 Metabolism of nucleotides and nucleic acids 17 30
24 Metabolism of lipids 20 28
2.5 Metabolism of coenzymes and prosthetic groups 24 51
2.6 Metabolism of phosphate 2 1
2.7 Metabolism of sulfur 2 2
3 Information pathways
3.1 DNA replication 1 12
3.2 DNA restriction/modification and repair 2 19
3.3 DNA recombination 8
3.4 DNA packaging and segregation 4
3.5 RNA synthesis 25 66
3.6 RNA modification 18
3.7 Protein synthesis 2 51
3.8 Protein modification 2 15
3.9 Protein folding 2 1
4 Other functions
4.1 Adaptation to atypical conditions 18 25
4.2 Detoxification 18 25
4.3 Antibiotic production 6 10
4.4 Phage-related functions 15 15
4.6 Miscellaneous 4 5
Total (with known function) 443 758
5 Proteins of unknown function that are
similar to other proteins
5.1 From Bacillus 119 154
5.2 From other organisms 32 53
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Table 4 Functional categories of SQR9 genes that were
significantly regulated by the maize root exudates (Continued)

6 No similarity 49 59
Total 643 1024

Functional categories were according to
SubtiList (http://genolist.pasteur.fr/SubtiList/help/function-codes.html)

prominent carbohydrates. Also detected were amino acids
(e.g., alanine, glycine), carboxylic acids (e.g., citric acid,
malic acid, fumaric acid), glycerol, inositol, ethanolamine,
and some other components (Additional file 14: Table S8).

To further understand which maize root exudates com-
ponents contributed to the SQR9 biofilm enhancement,
several compounds in concentrations of 0.1-1 mM were
selected for investigation based on the chemical analysis of
maize root exudates. These root exudates components in-
cluded glucose and xylose (the most abundant carbohy-
drates in the exudates); alanine, glycine, leucine, isoleucine,
gamma-amino butyric acid, and valine (the most dominant
amino acids); and citric acid, malic acid, and fumaric acid
(important organic acids reported to be involved in plant-
microbe interactions) (Additional file 14: Table S8). Only
glucose at 500 uM and 1 mM significantly promoted
SQRY biofilm formation at 24 h post-inoculation, resulting
in a biomass increase by 23-32 % relative to the control
(Fig. 7a). No other compounds revealed significant effects,
nor did glucose at 48 h post-inoculation (data not shown).
Our previous study also suggested that low concentrations
(~ 50 pM) of citric acid and fumaric acid enhanced the
biofilm formation of SQR9 [16].

To further investigate the mechanisms by which these
compounds enhanced biofilm formation, the influences of
glucose, citric acid, and fumaric acid on the growth of
SQR9 were assessed under aeration. Glucose (500 uM and
1 mM) and citric acid, but not fumaric acid, could signifi-
cantly stimulate SQR9 cell growth (Fig. 7b).

In addition, the transcriptional levels of epsD and
tapA, which are responsible for extracellular matrix pro-
duction during biofilm formation, in response to glu-
cose, citric acid, and fumaric acid, were determined by
real-time PCR. Results indicated that fumaric acid in-
duced the expression of both genes after incubation for
24 h, and citric acid stimulated tapA expression at 48 h
post inoculation, by more than 2-fold; whereas glucose
repressed the expression of tapA at 24 h and did not sig-
nificantly affect the two operons at 48 h post-inoculation
(Table 5). These findings suggested that glucose en-
hances the biofilm formation by growth promotion and
fumaric acid stimulates biofilm formation by inducing
the expressions of epsD and tapA, genes which are in-
volved in matrix production. Citric acid seemed to use
both mechanisms.
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Whole transcriptomic analyses reveals the rhizosphere
adaptation and plant-beneficial effects of SQR9

Genes involved in degradation of plant polysaccharides
Cellulose and hemicellulose are major components of root
debris and are widespread in the rhizosphere [42]. Several
genes involved in cellulose degradation (bglC, bglS, bglA,
licH, etc.) as well as genes related to xylan transport and
utilization (xynA, xynB, xyIR, and xylAB), were all identi-
fied in the SQR9 genome. They are likely to improve the
ability of SQR9 to exploit various plant-derived polysac-
charides in the rhizosphere (Fig. 5; Additional file 13:
Table S7). Interestingly, bglS and bglA were significantly
induced by root exudates at 24 h post-inoculation. The
same was the case for xynA at 48 h post-inoculation
(Figs. 5 and 6¢; Additional file 12: Table S6).

Genes involved in cell motility and chemotaxis

Bacteria in the rhizosphere sense signals released from
roots [43] and swim to the root surface for attachment,
which is a prerequisite for biofilm formation and root
colonization [9]. In the SQR9 genome, a variety of genes
governing flagellar synthesis, chemotaxis and cell motil-
ity (e.g., fla-che operon, motAB, mcp, hag, swrA, and

sfp), were identified and found to be highly conserved
across Bacillus strains (Additional file 13: Table S7) [44].

At 24 h post-inoculation, several genes involved in
chemotaxis (cheA, cheB, cheW, mcpB, and mcpC) and fla-
gella synthesis (fliF-L, flgD, flgG, flhA, flhF, and hag) were
found to be up-regulated in response to root exudates
(Fig. 6d; Additional file 12: Table S6 and Additional
file 15: Figure S7), suggesting that the presence of spe-
cific compounds in maize root exudates can attract SQR9
cells. At 48 h post-inoculation, 25 of the 31 genes in the fla-
che cluster and several other cell motility/chemotaxis genes
were all down-regulated in response to the root exudates
(Fig. 6d; Additional file 12: Table S6 and Additional file 15:
Figure S7).

NRPS (nonribosomal peptide synthetase) and PKS (polyketide
synthetase) gene clusters for suppressing soil-borne pathogens
in the rhizosphere

A considerable proportion of the genomes of B. amylolique-
faciens strains are dedicated to the nonribosomal synthesis
of lipopeptides and polyketides, which play important roles
in suppressing of different soil-borne pathogens [5, 45].
SQRY possesses eight gene clusters that are also present in
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bioenergetics; 5, motility and chemotaxis; 6, protein secretion; 7, cell division; 8, sporulation and germination; 9, metabolism of carbohydrates and related
molecules; 10, metabolism of amino acids and related molecules; 11, metabolism of nucleotides and nucleic acids; 12, metabolism of lipids; 13, metabolism
of coenzymes and prosthetic groups, phosphate, and sulfur; 14, DNA replication, restriction/modification, repair, recombination, packaging and segregation;
15, RNA synthesis; 16, RNA modification; 17, protein synthesis, modification and folding; 18, adaptation to atypical conditions; 19, detoxification; 20, antibiotic

the model PGPR B. amyloliquefaciens strain FZB42 [5, 45]
and that are responsible for the synthesis of surfactin,
bacillomycin D, fengycin, bacillibactin (siderophore), baci-
lysin, macrolactin, difficidin, and bacillaene, respectively
(Fig. 5; Additional file 13: Table S7 and Additional file 16:
Table S9). The presence of all of the antibiotic products of
these clusters in SQR9 has been confirmed by high per-
formance liquid chromatography and mass spectrometry
(data not shown), and can be directly linked to the
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Fig. 7 Effects of specific components in maize root exudates on biofilm
formation and growth of SQR9. a Effects of different concentrations of
glucose on the biomass of biofilm formed by SQR9 after incubation for
24 h. b Effects of glucose (Glucose 1, 500 uM; Glucose 2, T mM), citric
acid (50 uM) and fumaric acid (50 uM) on the growth of SOR9 under
aeration at 8 h post-inoculation. Columns with different letters are
statistically different according to the Duncan’s multiple range
tests (P < 0.05)

biological control activity of SQR9. Our previous results
showed that bacillomycin D is the major antibiotic against
the soil-borne wilt fungal pathogen F. oxysporum [32].

The unique genomic island GI3 (also designated as pks4
cluster because it likely encodes the fourth polyketide anti-
biotic of SQR9) is composed of 30 open reading frames
(ORFs) (V529_06400-06690, Additional file 17: Figure S8).
BLASTP indicated that this cluster includes the genes en-
coding polyketide synthase modules and related proteins,
as well as ABC transporters and histidine kinase, which
might have been obtained from Ornithinibacillus sca-
pharcae by horizontal gene transfer (Additional file 18:
Table S10). An SQR9 mutant with a deletion of the
whole GI3 lost its antagonistic ability against the phylo-
genetically closely related strain B. amyloliquefaciens
FZB42, but not against B. subtilis 168, implying that
this cluster might be involved in the biosynthesis of a
novel polyketide antibiotic that inhibits closely-related
Bacillus strains (data not shown). In summary, SQR9
uses approximately 9.9 % of its genome to encode a
variety of antibiotics.

At 24 h post-inoculation, up-regulation of the surfactin
genes srfAA and srfAB in response to the root exudates
was observed. The dhb cluster responsible for synthesis of
bacillibactin, which is a type of siderophore that operates
under iron-limited conditions [5], was found to be down-
regulated in the presence of root exudates. Interestingly,
several genes involved in the pks4 clusters were also
down-regulated by root exudates (Figs. 5 and 6e; Additional
file 12: Table S6). At 48 h post-inoculation, dhbC, dhbE
were up-regulated, as well as bacA, which is involved in the
biosynthesis of bacilysin, a dipeptide with antibacterial ac-
tivity [45]. The fen cluster, which is responsible for the bio-
synthesis of fengycin, a lipodecapeptide antibiotic with an
internal lactone ring and a B-hydroxy fatty acid chain that
is mainly active against fungi [46], was down-regulated by
the presence of the root exudates (Figs. 5 and 6e; Additional
file 12: Table S6).

Genes involved in plant growth promotion

Several genes reported to be involved in tryptophan-
dependent indole-3-acetic acid (IAA) synthesis in B. amy-
loliquefaciens FZB42, including ysnE, yhcX, and dhasS [5, 47],
as well as the alsRSD operon which is responsible for 2,
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Table 5 Effects of glucose, citric acid, and fumaric acid on the
expressions of matrix production relevant genes (epsD and tapA)
of SQR9 under biofilm formation conditions

Incubation time  Treatment Fold change in expression
epsD tapA

24-h Glucose (500 puM) -1.82+022 -362+0.63*
Citric acid (50 pM) -120+£0.14 1.03+£0.08
Fumaric acid (50 uM) 297 +0.55*% 5.15+042*

48-h Glucose (500 puM) -113+0.13 -1.18+0.10
Citric acid (50 uM) 148 +0.21 227 +0.17*%
Fumaric acid (50 uM) 158 +0.30 1.31£0.10

The fold changes revealed by real-time PCR of the selected genes were determined
based on the threshold cycle (Ct) values and 2% method (94). Three replicates
were performed for each gene. The asterisks represent a gene expression levels
with fold changes > 2

3-butanediol biosynthesis, were found to be present the
SQR9 genome (Fig. 5; Additional file 13: Table S7). In
the transcriptomic analysis, both alsS and alsD were ac-
tivated at 24 h post-inoculation, which could be attributed
to presence of the precursor (tryptophane) for IAA
synthesis in the maize root exudates (Figs. 5 and 6g;
Additional file 12: Table S6; unpublished data).

The phy gene, which encodes the phytase precursor, was
also detected in the SQR9 genome (Fig. 5; Additional file 13:
Table S7). Phytase degrades phytate into lower phosphate
esters of myo-inositol and phosphate, thus promoting plant
growth under phosphate-limited condition [47].

Discussion

Previous high-throughput studies of plant-microbe interac-
tions under aerobic conditions i# vivo or in the rhizosphere
[8, 9, 17, 18] have indicated that biofilm formation is
closely related to root colonization and is necessary for
beneficial effects [34]. Although B. amyloliquefaciens SQR9
is a PGPR derived from the cucumber rhizosphere, it ap-
pears to have outstanding growth promotion and enhanced
root colonization abilities on maize roots (Fig. 1). Con-
sidering that SQR9-derived agents are widely applied in
maize production, and biofilm formation of SQR9 was
significantly stimulated by maize root exudates (Fig. 2),
an Illumina RNA-Seq was performed for the whole
transcriptional investigation.

Phylogenetic analysis of the B. amyloliquefaciens SQR9
genome

Whole-genome sequencing of SQR9 indicated that its core
genome is very similar to the core genomes of other B. amy-
loliquefaciens strains, such as FZB42 and CAU B9%46 [5, 6].
Based on gene phylogenies, including for gyrA (encoding
the DNA gyrase subunit A) and cheA (encoding the two-
component sensor histidine kinase CheA), and on plant-
associated characteristics, such as root colonization,
nonribosomal synthesis of secondary metabolites, and
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the occurrence of polysaccharide-degrading enzymes,
B. amyloliquefaciens strains can be divided into two
subspecies clades, the amyloliquefaciens and plan-
tarum groups [4]. These groups might have evolved in
different environments long ago, since the patterns of
molecular clock mutation and gain/loss of functional
genes were quite consistent. Phylogenies of gyrA and
cheA indicated that SQR9 belongs to the plantarum group,
which consists of several plant-associated B. amylolique-
faciens strains, including FZB42, CAU B946, and YAU
B9601-Y2 (Additional file 19: Figure S9). Several other dis-
tinguishing characteristics of these two subgroups men-
tioned above all supports the notion that SQR9 is more
closely related to the plant-associated B. amyloliquefa-
ciens strains, which are clearly distinct from the non-
plant-associated strains, such as DSM7', $23, and
ATCC15841 [45]. Further investigation revealed that
the functional elements contributing to the potential of
SQRY as a plant-associated beneficial bacterium were
mainly due to genes involved in rhizosphere adaptation,
biocontrol, and plant growth promotion.

Mechanisms involved in stimulating biofilm formation by
maize root exudates as revealed by RNA-Seq
Activation of the metabolism-related genes in SQR9 by
root exudates at 24 h post-inoculation is consistent with
previous findings that monosaccharides, amino acids, and
organic acids are major components of plant root exudates
and serve as growth substrates for rhizosphere microbes
[9, 12, 17, 48]. Another significant group at this time-point
includes genes involved in cell motility and chemotaxis,
suggesting that some specific components of maize root
exudates can be recognized by SQR9 to establish rhizo-
sphere cross talking [49]. This observation is consistent
with other reports showing that expression of motility-
related genes is required for progression of pellicle forma-
tion [50]. Because the expressions of genes related to bio-
film formation did not differ significantly from the
control, the biofilm induced by root exudates at 24 h post-
inoculation could be attributed to the activation of genes
involved in metabolism (leading to a growth promotion
and a larger cell population) and cell motility/chemotaxis.
This assumption is supported by the finding that add-
itional glucose and citric acid promoted both biofilm for-
mation and growth of SQRY (Fig. 7), which is also in
accordance with reports in which it is reported that glu-
cose and other carbon source can influence biofilm devel-
opment in Gram-positive bacteria [51, 52]. However,
glucose suppressed the expressions of epsD and tapA,
genes responsible for the matrix production at 24 h post-
inoculation, which could counteract the induction of these
two operons by fumaric acid (Table 5).

The stimulation of biofilm formation by root exudates
at 48 h post-inoculation may be mainly attributed to the
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suppression of abrB, a negative regulator of biofilm for-
mation, which activates the tapA-sipW-tasA operon en-
coding the TasA extracellular matrix protein [39, 53].
Additional real-time PCR results also suggest that the
citric acid and fumaric acid in maize root exudates en-
hances the expression of the tapA operon. Other prob-
able reasons for this notion are: (i) repression of genes
involved in cell motility and chemotaxis at 48 h, which
could help to maintain the mature aggregation phase
[54, 55]; (ii) down-regulation of genes related to the me-
tabolism of carbohydrates and/or amino acids at 48-h
represses microbial metabolism, which has been found
to be depressed in mature biofilms relative to that of
proliferating biofilms [56]; and (iii) activation of a series
of genes involved in iron transport, including dhbE/C
(encoding the siderophore biosynthesis protein) and
ycIN/O (encoding the ferrichrome ABC transporter).
Iron has been reported to play important roles in bacter-
ial biofilm formation, although its detailed function in
the pellicle formation of B. subtilis strains has not been
well explored to date [57-59]. The observation that deletion
of iron transporter genes (feuBC, ycgT) in SQR9 disabled its
ability to form biofilms (unpublished data), further confirms
the importance of iron in SQR9 biofilm formation.

In summary, maize root exudates mediates the biofilm
formation of SQRY by both promoting cell growth and in-
ducing matrix production. Components, including glucose
and citric acid, that are directly involved in the EMP path-
way and the TCA cycle stimulate cell growth during the
early biofilm formation stage, whereas in the stationary
stage, citric acid and other unidentified compounds acti-
vate the matrix production genes.

Although the transcriptomic data generally explain the
stimulatory effects of root exudates on biofilm formation of
SQRY, the detailed pathways between the signal molecules
in the exudates and the target genes (e.g., abrB, eps, and
tapA operon) remain unclear. L-Malic acid in tomato root
exudates could be sensed by the extracellular calcium chan-
nels and chemotaxis receptors domain in the KinD of B.
subtilis 3610 and could consequently stimulate the phos-
phorylation of SpoOA and pellicle formation [60]. Another
recent study indicated that certain plant polysaccharides
can trigger B. subtilis biofilm formation by serving as both
a signal of the kinases controlling the phosphorylation
state of the master regulator SpoOA as well as a source
of sugars for the synthesis of the matrix exopolysac-
charide [61]. These studies provide perfect models for
investigating the molecular interactions between envir-
onmental signals and bacterial biofilm formation in the
rhizosphere.

NRPS/PKS clusters identified in the SQR9 genome
The eight confirmed NRPS/PKS clusters in the SQR9
genome together with another candidate encode powerful
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weapons to suppress various plant pathogens [45]. In
addition to their antibiotic activities, these secondary me-
tabolites were also found to have other roles in rhizo-
sphere adaptation and indirect pathogen suppression. As
a versatile lipopeptide, surfactin could affect motility by
reducing surface tension [62], stimulating biofilm forma-
tion by inducing potassium leakage and the subsequent
activation of downstream genes [63], and serving as a sig-
nal to induce plant resistance [64]. Bacillomycin D pro-
duced by SQR9 is involved in the early stages of biofilm
formation [32].

Noticeably, GI3 encodes a potential polyketide antibiotic
that inhibits closely-related Bacillus strains. Domain ana-
lysis and prediction of the 30 ORFs performed by Antibi-
otics & Secondary Metabolite Analysis Shell (antiSMASH,
http://antismash.secondarymetabolites.org/) suggested that
13 modules with PKS-related domains may be involved in
synthesizing a polyketide antibiotic with a 33-membered
ring lactone skeleton. However, the elucidation of the mo-
lecular structure and the detailed synthesis pathway of this
antibiotic will require further exploration.

Modeling of the rhizosphere interaction of SQR9 with
plants and pathogens

Whole genome sequencing and transcriptomic data of
SQRY identified several elements relevant to its potential as
a plant-associated PGPR strain. Bacteria in the rhizosphere
sense root exudates components released by plants [43]
through methyl-accepting proteins, activate their motility
related genes (e.g., fla-che operon), and then swim to
the root surface for attachment. At the same time, the
genes involved in metabolism (e.g., fbaB, sucC) and trans-
port (e.g., glcl) of various substrates are also induced. Ac-
tivation of several NRPS/PKS genes related to antibiotic
production (e.g., srf) also takes place to outcompete other
microbes in the struggle for access to the root surface and
to form biofilms. Thereafter, regulation of genes related to
biofilm formation in cells attached to the root surface
stimulates bacterial aggregation, thus allowing effective
colonization and establishing a rhizospheric competition
with soil pathogens. Finally, stimulation of the NRPS/PKS
and plant growth-promotion (e.g., alsS, alsD) genes con-
tributes to pathogen biocontrol and growth stimulation,
respectively (Fig. 8). Thus, root exudates can activate the
rhizosphere adaptation and survival elements of SQR9,
which in turn exerts beneficial biocontrol and growth-
promotion effects, resulting in a mutually-beneficial rela-
tionship between plant and PGPR strain.

Conclusion

The transcriptional profiling of B. amyloliquefaciens SQR9
responding to maize root exudates, and its complete gen-
ome sequence, obtained by Illumina sequencing and Roche
454 pyrosequencing, respectively, suggest that the biofilm
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formation-stimulation effects are mainly attributed to
growth promotion and extracellular matrix induction.
Future disruptions of potential rhizosphere-associated genes
identified by transcriptional profiling will be performed to
better understand their roles in plant-microbe interactions.
In addition, an in vivo test will be performed in further
work, and the strategy for collection of root-attached bac-
teria and for the elimination of plant associated cDNA reads
will be carefully considered prior to any additional research.

Methods

Bacterial strains and culture conditions

B. amyloliquefaciens SQR9 (CGMCC accession No.
5808, China General Microbiology Culture Collection
Center) was isolated from rhizosphere soil) [29]. SQR9
was routinely grown at 37 °C in Luria-Bertani (LB)
medium, except that it was cultivated in 1/2 MSgg
medium for biofilm formation experiments [2.5 mM po-
tassium phosphate (pH 7), 50 mM MOPS (pH 7), 1 mM
MgCl,, 350 uM CaCl,, 25 pM MnCl,, 50 uM FeCls,
0.5 pM ZnCl,, 1 pM thiamine, 0.25 % glycerol, 0.25 %
glutamate, 25 pg-mL™" tryptophan, and 25 pg-mL™
phenylalanine [67]. The green fluorescent protein
(GFP) -labeled B. amyloliquefaciens SQR9 (SQR9-gfp)
was routinely maintained in LB medium complemented
with 20 pg-mL™" kanamycin.

Plant material and growth conditions
Maize seeds (Hua'nuo Jiangnan) were surface-disinfected
in 2 % NaClO solution for 10 min and rinsed four times

in sterilized distilled water. Surface-sterilized seeds were
pre-germinated on filter paper in a Petri dish in an incu-
bator at 28 °C. The germinated seeds were then trans-
ferred into a box containing quartz sand and incubated
in a growth chamber at 28 °C with a 16-h light/8-h dark
photoperiod. After 20 day of growth, seedlings with four
to five leaves were uprooted from the substrate, and
their roots were gently washed to remove any adhered
sands. Some of the seedlings were transplanted to pots
filled with 400 g soil-less growth medium (Klasmann-
Deilmann Base Substrate, Recipe-No. 422, 1:1 blended
with sterile vermiculite) for growth-promotion assays.
The remaining individual seedlings were transplanted
into 50-mL flasks, each containing 50 mL of sterile li-
quid 1/2 sucrose-free Hoagland medium at 28 °C [65].
The hydroponic system was placed on a shaker (50 rpm)
for 2 h each day.

Greenhouse growth promotion assays
Roots of maize plants were dipped in one of four different
suspensions: CK1 (5 mL inactivated SQR9 suspension),
CK2 (10 mL inactivated SQR9), T1 (5 mL SQR9) or T2
(10 mL SQRY). Suspensions of SQR9 (10° cell - mL™) were
prepared by shaking cells for 6 h in liquid LB medium
followed by centrifugation for 10 min at 8000 x g. The pel-
let was suspended in sterile distilled water and washed
twice with sterile distilled water.

Plants were irrigated regularly during the growing period.
Soil in pots was fertilized with 1 % (w/w) commercial
fertilizer (alkali-hydrolyzed nitrogen, 6.27 %; available
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phosphorus, 4.71 %; available potassium, 10.01 %). All treat-
ments were carried out in a greenhouse at 70 % humidity
under natural light at 27 + 2 °C (day) and 22 + 2 °C (night).
Ten randomly selected plants of each treatment were har-
vested 55 days after transplanting, and plant height, root
length and surface area, and shoot dry weight were mea-
sured. Data were analyzed using JMP software (SAS Insti-
tute, Cary, NC, USA).

Collection of root exudates

The maize seedlings prepared above were used to collect
root exudates. After incubation for 3 days, the plant roots
were washed four times with sterile double-distilled water to
avoid the influence of nutrient solutions. Each plant was
then placed into a 50-mL flask, and the roots were sub-
merged in 50 mL sterile double-distilled water. All plants
were placed in a plant growth chamber for 24 h (16 h light/
8 h dark) at 28 °C with gentle shaking at 80 rpm. The com-
bined solutions (4000 mL from the 80 individual maize seed-
lings) were filtered through a 045 pum membrane filter
(Millipore, Billerica, MA, USA), and the sterility of the exu-
dates was judged by plating 100 pL exudates on LB medium
and incubating at 30 °C for 24 h. The filter-sterilized root ex-
udates was lyophilized and divided into two parts. One part
was dissolved in sterile distilled water (50x concentrations),
and the other part was kept as a powder. Both fractions were
stored at -80 °C until further study.

Colonization of maize roots by SQR9-gfp cells

Maize seedlings with four to five leaves, prepared as de-
scribed above, were soaked in a bacterial suspension of
SQR9-gfp (10® CFU-mL™) for 30 min at 30 °C and trans-
ferred to containers with 200 g sterilized natural soil.
After 5 days, the roots were collected and put on micro-
scope slides for visualization using a confocal laser scanning
microscopy (CLSM; Zeiss, Jena, Germany) to compare the
thickness and the architecture of the bacterial biofilms.
GFP was excited at 488 nm, and fluorescence was recorded
in the range of 500—-600 nm. Images were obtained using
ZEN 2012 (blue edition). The density of SQR9-gfp on roots
was also determined as described previously [66]. To this
end, 0.2 g of the maize roots were homogenized in 1.8 mL
of phosphate buffered saline using a mortar and pestle. The
homogenates were serially diluted and plated onto LB
medium containing 20 ug-mL™ kanamycin. After growth at
37 °C for 2 days, the bacterial colonies were examined using
fluorescence microscopy (Olympus MVX10, Tokyo, Japan),
and those emitting green fluorescence were counted.

Effects of maize root exudates and some of its individual
components on biofilm formation of SQR9

To investigate the effects of the maize root exudates on the
biofilm formation of SQRY, assay was performed as
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described by Hamon and Lazazzera [67] in 48-well microti-
ter plates. An overnight culture of SQR9 was grown in LB
medium at 37 °C until the ODgy, reached 1.0. Then, the
cells were centrifuged, washed twice with 1/2 MSgg, and fi-
nally resuspended in the same volume of 1/2 MSgg. Each
well was filled with 1 mL 1/2 MSgg medium containing
10 pL of the suspension prepared as described above. Either
10, 20, or 40 pL of the 50x concentrated root exudates was
added to the medium in the well, resulting in a final
concentrations of 0.5x, 1x, and 2x root exudates rela-
tive to the concentrations in the flasks used to collect
root exudates. Negative controls contained 20 pL of
distilled water in each well.

After static incubation at 37 °C, the biomass of the bio-
film formed by SQR9 was determined [67] after every 12-h
interval until 72 h after inoculation. Growth medium and
nonadherent cells were removed from the microtiter wells,
which were then rinsed with distilled water. Biofilm cells
were stained with 1 mL of 0.1 % crystal violet (in distilled
water) for 30 min at room temperature. Excess crystal violet
was poured out, and the wells were washed twice with dis-
tilled water. The bound crystal violet was solubilized with
1 mL ethanol-acetone (4:1 v/v), and the biofilm formation
was quantified by measuring the ODs;q for each well using
a multi-functional plate reader Spectra Max M5 analysis
system (Molecular Devices, Sunnyvale, CA, USA). Each
treatment contained four biological replicates.

An additional assay was performed to evaluate the effects
on SQR9 biofilm formation of several important com-
pounds in maize root exudates, including the carbohydrates
glucose and xylose; the amino acids alanine, glycine, leu-
cine, isoleucine, y-amino butyric acid, and valine; and the
organic acids citric acid, malic acid, and fumaric acid. The
final concentrations of these compounds in the wells were
100 pM, 250 uM, 500 pM, and 1 mM. Four replicates were
used per treatment. After incubation for 24 and 48 h, the
biofilm was quantified as described above.

Also, the influences of the compounds with biofilm-
stimulation effects, including glucose (500 uM and
1 mM), citric acid (50 pM), and fumaric acid (50 pM)
[16] on the growth of SQR9 were investigated under
aeration (37 °C, 170 rpm). To this end, 3 mL of 1/2
MSgg medium was inoculated with a suspension of
SQR9 with a final ODggq value of 0.01. The ODgoo was
determined at 8 h post-inoculation. Each treatment
contained four replicates.

Design of the transcriptome experiments, total RNA
preparation, and microscopy

Based on the results of the pre-experiments, 1x root exu-
dates was used as the test concentration, and the time points
24 and 48 h after incubation were selected for sampling.
The biofilm formation assays were performed as described
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above, and 20 pL of the concentrated root exudates was
added to the medium in each well, with an equal volume of
distilled water in the control wells. After static incubation at
37 °C for 24 or 48 h, the SQR9 cells within the biofilms
formed in the presence and absence of the root exudates
were harvested, thus generating four samples. A volume of
50 mL of the culture (from the 50 wells of the microtiter
plate) was mixed with 25 mL of cold “killing buffer”
(20 mM Tris—HCl, 5 mM MgCl,, 20 mM NaNj, pH 7.5)
and centrifuged at 4500 x g for 3 min at 4 °C. The pellet was
then washed once more with 1 mL of “killing buffer” and
immediately frozen in liquid nitrogen. The frozen cell pellets
were stored at -80 °C prior to RNA isolation.

The total RNA samples were extracted using an
E.ZN.A. @ Bacterial RNA Kit (Omega, Bio-tek, Norcross,
GA, USA), according to the manufacturer’s protocol.
The isolated RNA was digested with DNasel (Ambion,
Carlsbad, CA, USA) to remove possible traces of DNA.
The concentration of the total RNA was determined
with a spectrophotometer, and its quality was checked
on a 1 % agarose gel. Multiple 30-ug quantities of each
RNA sample were depleted of rRNA using a Ribo-Zero™
rRNA Removal kit (Epicenter, USA) according to the
manufacturer’s instructions. The resulting RNA samples
were dissolved in 100 puL RNase-free water and quantified
with a NanoDrop 2000 spectrophotometer (Wilmington,
DE, USA).

The biofilm at 24 h post-inoculation from experiments
with or without root exudates was also carefully col-
lected and put on microscope slides for visualization
with CLSM to compare the thickness and architecture,
as described above.

cDNA synthesis, construction of cDNA library, and DNA
sequencing

Ten micrograms of the thermal-fragmented rRNA-depleted
mRNA was incubated with biotinylated random hexamers
(Illumina, San Diego, CA, USA) with the use of 1,000 units
of Superscript II reverse transcriptase (Invitrogen, Carlsbad,
CA, USA) for first-strand cDNA synthesis. Dynal M280
streptavidin Dynabeads (Invitrogen) were used to select the
biotinylated RNA/cDNA. The first-strand of cDNA was re-
leased via alkaline hydrolysis. Subsequently, adaptors were li-
gated to the 5'-end of the first strand cDNA by DNA ligase
(TaKaRa, Otsu, Japan), and the second-strand cDNA was
synthesized through primer extension using ExTaq polymer-
ase (TaKaRa, Japan). The synthesized cDNA was fractioned
ultrasonically into 300-800 bp and purified with Ampure
beads (Agencourt, USA). The prepared cDNAs were trans-
formed into libraries using the Truseq™ DNA Sample Prep
Kit-Set A (Illumina) and then clonally amplified with the
TruSeq PE Cluster Kit (Illumina). DNA sequencing
was performed on a HiSeq 2500 sequencing system

Page 16 of 20

(lumina) by the Chinese National Human Genome
Center (Shanghai, China).

Genome sequencing and assembly

To provide the reference mapping background for the
transcriptomic analysis, the genome of B. amyloliquefa-
ciens SQR9 was shotgun sequenced using a Roche 454 GS
FLX system (Penzberg, Germany) at the Chinese National
Human Genome Center. In total, 279,622 reads produced
115.5 Mb of sequence data (28.1x coverage) with an aver-
age read length of 413 bp. The reads were assembled into
51 contigs with a total size of 4.07 Mb using Newbler soft-
ware (v2.3) provided in the Roche 454 suite package [68].
Of the 51 contigs, 42 were more than 2 kb in length, and
their N50 was 300.1 kb (that is, 50 % of all bases were con-
tained in contigs of at least 300.1 kb). After linkage of the
contigs, sequences obtained by the Sanger method were
used to fill in gaps in the assembly and confirm regions of
uncertainty.

Genome annotation

Protein-coding genes were predicted using both Glimmer 3
[69] and Prodigal [70]. The two sets of gene calls were com-
bined using Prodigal as the preferred start call for genes with
the same stop codon. Pseudogenes and anomalous start/
stop codons were identified by the GenePrimp pipeline [71].
Then, all of the genes were manually curated with the gen-
ome viewer Artemis [72]. The RNA-Seq data obtained as
described below were also used to verify gene calling and
identify novel transcripts, including non-coding RNAs, by
Rockhopper [73]. The functional annotation was carried out
using the BLASTP search tool, with B. amyloliquefaciens
FZB42 and B. subtilis 168 as references, and GenBank’s
non-redundant protein databases (nr) (parameters: E value:
le-5, coverage > 60 %, identity > 50 %). Each gene was func-
tionally classified into Cluster of Orthologous Genes (COQG)
categories using an RPS-BLAST search against the COG
database with an E value of le-5 [74]. Domain prediction
was also carried out with a RPS-BLAST search against the
PFAM database with an E value of le-5 [75]. Genes for
tRNAs were predicted with tRNAscan-SE [76] and for
rRNAs with RNAmmer 1.2 Server [77]. Insertion sequences
(ISs) were identified using a BLASTN scan against an IS
database [78]. Horizontally transferred genomic islands
(GIs) were identified with IslandViewer [79] and using Seq-
Word Sniffer tools [80] to combine the prediction results.
Prophage regions were identified using the PHAST web
server [81]. Dot plot comparison was implemented in
MUMmer nucmer [82], and the global alignment of whole
genome sequences was performed with M-GCAT software
[83]. The circular map and the graphic representation of
genome-compared orthologous genes were generated using
Circos [84].
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Orthologous gene analysis

Orthologous genes present in the four B. amyloliquefa-
ciens strains and B. subtilis 168 were identified using
OrthoMCL [85]. The protein-coding genes of all the five
bacteria were compared all-against-all using BLASTP
with a minimum E value of 1e-05 and a cutoff of 70.
Then, all homologous proteins were grouped into ortho-
logous genes by the cluster tool MCL, with an inflation
value of 1.5 [86]. Python scripts were developed to
process the output group file, and the core genome and
dispensable genome were extracted. Gene counts were
based on orthology, and a Venn diagram was generated
with VennDiagram [87].

Phylogenetic analysis

A total of 18 genomes, that is, 12 B. amyloliquefaciens
genomes, two B. subtilis genomes, and another four Ba-
cillus genomes (B. cereus, B. pumilus, B. licheniformis,
and B. atrophaeus), were included in the phylogenetic
analysis. Python scripts were developed to filter the core
genome to 1,044 conserved genes with exactly one mem-
ber per genome; the lengths of each of these genes were
nearly identical. MAFFT [88] was used to align the protein
sequences and concatenate each gene alignment into a
string for each genome. The interleaved NEXUS file was
formatted using PAUP*4.0b10 [89]. Phylogenetic analyses
of the core genome were performed using the maximum-
parsimony method (observed p-distance, no evolutionary
modeling required) implemented in PAUP*4.0b10 via a
heuristic search (z =1,000) with the random addition of
sequences and the TBR tree-swapping algorithm. The reli-
ability of the obtained clades was tested by 500 bootstrap
replications. Bootstrap values>75 % were considered
significant.

Mapping and processing of the RNA-Seq data
The clean reads obtained from Illumina sequencing (at
least half of the bases with a quality > 5, not including N)
were retained and mapped to the B. amyloliquefaciens
SQR9 genome. Collected reads from different samples of
each gene were transformed into reads per million reads
values (RPM) [90]. Transcript abundance (fragments per
kilobase unique exon sequence per megabase of library
mapped; FPKM) was estimated with Cufflinks v 0.9.3 [91].
Genes exhibiting statistically significant expression dif-
ferences between the control and treatment conditions
were identified using MARS (MA-plot-based method
with Random Sampling model) from the DEGseq pro-
gram package using the false discovery rate (FDR) con-
trol method [92, 93]. Only genes that met the following
filter conditions were regarded as significantly differently
expressed between control and treatment: (i) fold-
change > 1.5; (ii) g-value <0.001 (FDR); and (iii) with a
RPM consistently above 10 in at least one sample. The
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ratios of the gene expression levels between the treat-
ment and control conditions belonging to different cat-
egories were used to generate a heatmap with MeV
version 4.8.1 (MultiExperiment Viewer), according to
the manufacturer’s instructions.

Real-time PCR

Real-time PCR was performed on the original RNA ex-
tracts to confirm the transcriptional profiling data ob-
tained from Illumina sequencing as well as to investigate
the gene expression responses to the biofilm-stimulating
compounds, including glucose (500 uM), citric acid
(50 uM), and fumaric acid (50 pM) [16]. First-strand
¢DNA was obtained as described above. A volume of
1 pL of the cDNA was subjected to real-time PCR using
SYBR Green PCR master mix (Applied Biosystems, Fos-
ter City, CA, USA). Oligonucleotide primers for the tar-
get genes were designed using Primer Premier 5
software (PREMIER Biosoft, Palo Alto, CA, USA), and
the recA gene was used as an internal control. The reac-
tion mixtures contained a final concentration of 25 pL
SYBR® Premix Ex Taq™, 1 pL of each primer (10 pM),
1 uL ROX Reference Dye II (50x), 2 uL template DNA
and 20 pL sterile water. The reactions were performed
using an ABI 7500 system (Applied Biosystems) with the
following conditions: an initial cycle at 95 °C for 30 s,
followed by 40 cycles of 95 °C for 5 s, 65 °C for 34 s,
and 72 °C for 15 s. Three technical replicates were
carried out for each target gene. Quantification was
analyzed based on the threshold cycle (Ct) values and
the 27°““* method [94].

Analysis of the composition of maize root exudates

The collected maize root exudates were analyzed by gas
chromatography—mass spectrometry (GC-MS) at the
Genome Center Core Services, University of California,
Davis, CA, USA, as described by Badri et al. [41].

Statistical analysis

Differences among treatments were determined by analysis
of variance with Duncan’s multiple range tests (P < 0.05)
and Student’s ¢ test (P<0.05 or P<0.01) as appropriate.
SPSS (IBM, Chicago, IL, version 19.0) was used for statis-
tical analysis.

Accession number
The genome sequence and annotated data of SQR9 are

available in the NCBI database (accession No. CP006890).

Additional files

Additional file 1: Figure S1. Effects of concentrations and incubation
times of maize root exudates on biofilm formation of SQR9. (A) Influence of
different concentrations of maize root exudates on SQR9 biofilm formation.
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Bars indicate the standard errors of the means from four replicates. Columns
with different letters are statistically different according to the Duncan’s
multiple range tests (P < 0.05, for 24 and 48 h post-inoculation, respectively).
1/2 RE, RE, and 2x RE represent that the 1/2 MSgg medium were supplied
with 0.5%, 1%, and 2x concentrated root exudates as described in the
Methods. (B) Dynamics of the biomass of biofilm-formed SQR9 in response
to 1x maize root exudates. Bars indicate the standard errors of the means
from four replicates. The arrows represent the sampling times for transcrip-
tional profiling analysis. (DOCX 44 kb)

Additional file 2: Table S1. Novel noncoding RNAs predicted by
Rockhopper. The expression level listed in the table was obtained by
Rockhopper. Con_24, negative control, 24 h post- inoculation; Ma_24,
maize root exudates treatment, 24 h post-inoculation; Con_48, negative
control, 48 h post-inoculation; Ma_48, maize root exudates treatment,
48 h post-inoculation. (XLSX 26 kb)

Additional file 3: Table S2. Unique genes in Bacillus amyloliquefaciens
SQR9 in the pan genome formed by SQR9, Bacillus subtilis 168, and B.
amyloliquefaciens FZB42, DSM7", and B9601-Y2. (XLSX 36 kb)

Additional file 4: Figure S2. Comparison of the genomes of Bacillus
amyloliquefaciens strains SQR9 and FZB42 and Bacillus subtilis 168. (A
and B) Matches of the SQR9 genome with those of B. subtilis 168 (A)
and B. amyloliquefaciens FZB42 (B). Synteny plots show the comparison
at the nucleotide level of the B. amyloliquefaciens SQR9 genome (a and
b, vertical axis) with the genomes of B. subtilis 168 (A, horizontal axis)
and B. amyloliquefaciens FZB42 (B, horizontal axis). Forward matches are
plotted in red and reverse matches in blue. (C) Global alignment of the
three strains built by the M-GCAT program. (DOCX 295 kb)

Additional file 5: Table S3. Genes shared by Bacillus amyloliquefaciens
SQR9 and B. amyloliquefaciens FZB42 but absent in Bacillus subtilis 168 (Sheet 1),
or shared by SQR9 and 168 but absent in FZB42 (Sheet 2). (XLSX 77 kb)

Additional file 6: Figure S3. Phylogenetic tree drawn from 1,044
conserved genes of the core genomes of 18 Bacillus genomes. The
maximume-parsimony tree was obtained in PAUP*4.0b10 via a heuristic
search (n=1,000) with the random addition of sequences and the TBR
tree-swapping algorithm. Bootstrap values of > 75 % were considered
significant. Bacillus cereus ATCC 14579 was used as the outgroup.
(DOCX 55 kb)

Additional file 7: Table S4. Genomic island (Gl) prediction of Bacillus
amyloliquefaciens SQR9. Gls were predicted by IslandViewer and M-GCAT
(Sheet 1). Sheet 2 shows the detailed information for all genes in the 11
predicted Gls. (XLSX 209 kb)

Additional file 8: Figure S4. Orthologous genes in Bacillus subtilis 168
and Bacillus amyloliquefaciens SQR9 and FZB42. Lines in blue represent
orthologs between SQR9 and FZB42 that were not found in 168, while
lines in red represent orthologs between SQR9 and 168 that were not
found in FZB42. Highlight-1 is genomic island 3 of SQR9, which was only
found in SQRY, and highlight-2 shows the prophage (genomic island 7, 8,
and 9) only shared by SQR9 and 168. (DOCX 378 kb)

Additional file 9: Figure S5. Saturation curves of the Illumina RNA-Seq
data. The X-axis represents the number of reads. The Y-axis represents
the number of open reading frames covered by the reads obtained.
(DOCX 90 kb)

Additional file 10: Figure S6. Comparison of different gene expression
patterns regulated by root exudates at 24 h (A) and 48 h (B) post-inoculation.
Every point represents a gene with different expression levels (fragments per
kilobase unique exon sequence per megabase of library mapped; FPKM) in
two transcriptomes. Blue color denotes genes with no significant differences
between the two transcriptomes, red means up-regulation and green means
down-regulation. (DOCX 228 kb)

Additional file 11: Table S5. Comparison of fold-changes of differentially
expressed genes obtained by Illumina RNA-Seq and real-time PCR. The fold
changes revealed by real-time PCR of the selected genes were determined
based on the threshold cycle (Ct) values and 2°““* method. Three replicates
were performed for each gene. (DOCX 15 kb)

Additional file 12: Table S6. lllumina RNA-Seq data of all significantly
differentially expressed genes in different categories (Sheet 1, 24 h
post-inoculation; Sheet 2, 48 h post-inoculation). (XLSX 275 kb)

Additional file 13: Table S7. List of genes involved in rhizosphere
adaptation (degradation of plant polysaccharides, cell motility and chemotaxis,
biofilm formation, transporters, and detoxification), synthesis of secondary
metabolisms, and plant growth promotion. (XLSX 59 kb)

Additional file 14: Table S8. Composition of maize root exudates
analyzed by gas chromatography-mass spectrometry. (XLSX 55 kb)

Additional file 15: Figure S7. Diagram of genes involved in cell motility
(mainly flagellar synthesis, A and B) and chemotaxis (C and D), and their
expression patterns in response to root exudates. The significantly regulated
genes (red for up-regulation and green for down-regulation) were mapped
in the KEGG pathway (with some modifications for the flagellar synthesis).
(A) and (C) show expression patterns at 24 h post-inoculation and (B) and
(D) at 48 h post-inoculation. (DOCX 114 kb)

Additional file 16: Table S9. NRPS and PKS gene clusters involved in
the biosynthesis of secondary metabolites in Bacillus amyloliquefaciens
SQR9 and FZB42. (DOCX 15 kb)

Additional file 17: Figure S8. Schematic representation of genes in the
pks4 cluster in Bacillus amyloliquefaciens SQR9. Non-ribosomal polyketide
synthetase/polyketide synthetase is marked in red, transporter genes in blue,
accessory genes in green, and hypothetical genes in yellow. (DOCX 27 kb)

Additional file 18: Table S10. BLASTP results for each open reading
frame in the pks4 cluster (XLSX 13 kb)

Additional file 19: Figure S9. Neighbor-joining phylogenetic tree
based on partial gyrA (A) and cheA (B) nucleotide sequences. The
consensus tree was reconstructed from 1,000 trees according to the
extended majority rule (SEQBOQT program). Bootstrap values >50 %
(1,000 repetitions) are indicated at branch points. (DOCX 136 kb)
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