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Abstract

Background: Whole-exome sequencing (WES) is rapidly evolving into a tool of choice for rapid, and inexpensive
identification of molecular genetic lesions within targeted regions of the human genome. While biases in WES coverage
of nucleotides in targeted regions are recognized, it is not well understood how repetition of WES improves the
interpretation of sequencing results in a clinical diagnostic setting.

Method: To address this, we compared independently generated exome-capture of six individuals from
three-generations sequenced in triplicate. This generated between 48x-86x mean target depth of high-quality mapped
bases (>Q20) for each technical replicate library. Cumulatively, we achieved 179 - 208x average target coverage for each
individual in the pedigree. Using this experimental design, we evaluated stochastics in WES interpretation, genotyping
sensitivity, and accuracy to detect de novo variants.

Results: In this study, we show that repetition of WES improved the interpretation of the capture target regions after
aggregating the data (93.5 - 93.9 %). Compared to 81.2 - 89.6 % (50.2-55.4 Mb of 61.7 M) coverage of targeted bases at
≥20x in the individual technical replicates, the aggregated data covered 93.5 - 93.9 % of targeted bases
(57.7 – 58.0 of 61.7 M) at ≥20x threshold, suggesting a 4.3 – 12.7 % improvement in coverage. Each individual’s aggregate
dataset recovered 3.4 – 6.4 million bases within variable targeted regions. We uncovered technical variability (2-5 %)
inherent to WES technique. We also show improved interpretation in assessing clinically important regions that lack
interpretation under current conditions, affecting 12–16 of the 56 genes recommended for secondary analysis by
American College of Medical Genetics (ACMG). We demonstrate that comparing technical replicate WES datasets and
their derived aggregate data can effectively address overall WES genotyping discrepancies.

Conclusion: We describe a method to evaluate the reproducibility and stochastics in exome library preparation, and
delineate the advantages of aggregating the data derived from technical replicates. The implications of this study are
directly applicable to improved experimental design and provide an opportunity to rapidly, efficiently, and accurately
arrive at reliable candidate nucleotide variants.

Background
Whole-exome sequencing (WES) is becoming a rapid and
cost-effective molecular diagnostic tool in individuals with
genetic diseases [1–5]. Recent reports demonstrate WES’
utility in both clinical [6–8] as well as basic genetics

research [9–11]. With growing demand for WES and drop
in costs of next-generation sequencing (NGS), WES as a
technique requires greater understanding of how experi-
mental design can improve data interpretation and
thereby biological outcomes.
Inherent within WES and NGS, however, is much

heterogeneity and bias in mean number of times a
targeted nucleotide base is sequenced [12]. This hetero-
geneity in sequencing depth arises due to numerous
factors, such as target-enrichment kit used [13, 14], target
sequence GC bias [15], PCR amplification bias [16],
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repeats and pseudo-genes [13], and other experimental
design variables. These factors directly and systematically
influence sensitivity of WES [14, 17, 18]. While evolving
versions of exome-enrichment kits continue to address
these biases, effects of technical replicate experimental
design in pedigree-based WES are poorly understood.
Pedigree-based WES approaches facilitate the discov-

ery of not only de novo variants [19–21], but also
multiple-inherited variants [22, 23]. Overall, clinical
exome sequencing studies report significantly higher
molecular diagnostic yield for pedigree-based approaches
compared to single-proband sequencing [21] stressing the
importance of understanding WES’s performance in
multiple-generation families.
Here, we present an investigation on estimating the

proportion of WES target sequence coverage biases
that can be eliminated by repetition of the procedure in
all individuals in a multiple-generation family. Specific-
ally, we directly compare independent exome-capture
libraries generating 18 technical replicates in 6 mem-
bers of a multiple-generation family (3 per individual).
In this study, we evaluated variability and interpreted
targeted sequencing within targeted exome regions.
Overall, our work reveals the advantages of technical
replicate pedigree-based WES in multiple generations,
specifically in relation to interpretation of WES derived
genotypes [7, 24, 25].

Results
Direct comparisons of exome-capture samples in triplicate
We compared the results of independent exome-capture
in triplicate for six individuals from three generations
(Fig. 1), evaluating them for high-quality bases (>Q20)
aligned to a reference human genome (hg19). We com-
pared the alignment results either between technical
replicate samples of a single individual or between indi-
viduals within the pedigree by utilizing pooled data of all
technical replicates for each individual. In total, 18 ex-
ome data sets from six individuals were evaluated. Illu-
mina HiSeq2000 sequencing generated 53–98 million
paired-end (PE) 100-bp reads per technical replicate li-
brary to produce >48x mean alignment target depth of
high-quality mapped bases (>Q20) for each technical
replicate library (Table 1). This generated 5–9 Gb of
high-quality target-aligned data per technical replicate
and cumulatively 20–22 Gb (206–235 million PE 100-bp
reads) to give 179 - 208x average target coverage for each
individual in the pedigree (Additional file 1: Table S1).
Technical replicate data were compared directly for

each individual (Fig. 1a). The mean target-depth of se-
quencing varied linearly with the input of total sequence
data and was evident for all technical replicates derived
from the six individuals (Fig. 1b; Table 1). The most vari-
able technical replicate depth of sequencing results was

from individual ID4385 (51x-86x) and the least variable
was from individual ID3866 (69x-71x). Upon aggregation
of data from all technical replicates for each individual,
the depths of coverage were 179 - 208x for targeted re-
gions (Fig. 1b).
To determine sequencability of targeted bases, we

determined the percentage coverage with ≥1x to ≥100x
(increments of 10x) in each technical replicate and in
each aggregate data set (Additional file 1: Table S2 and
Figure S2). This analysis identified minimal variability at
≥1x coverage but appreciable variability at ≥20x coverage
(81.2 - 89.6 %) among the technical replicates of each
individual (Fig. 1c). Greater variability was observed at
higher (≥30x to ≥100x) depth of sequencing thresholds
(Additional file 1: Figure S2). Subsequently we restricted
our analysis to ≥1x, ≥10x and ≥20x thresholds. We
observed that this variability was a function of the total
number of bases aligned to target regions. Therefore, we
used a local polynomial regression (loess) package in the R
statistical software to estimate variation in percent target
region coverage as a function of sequenced bases aligned
to target regions. We used this tool to fit data for technical
replicate and cumulative percent target region sequenced
(span = 0.75). Using this approach, we predicted a polyno-
mial fit to percent target bases sequenced as a function of
total bases aligned in targeted regions, and determined the
predicted 95 % confidence interval along the fitted line.
Results showed higher standard error at ≥20x relative to
≥1x (Fig. 1c). In addition, at ≥1x we noticed that the fitted
line approached saturation as a function of total bases
aligned to target. Taken together, this suggested that lower
thresholds (≥1x) had lower variability, and ≥20x threshold
was highly sensitive to changes in total bases aligned to
target (Fig. 1c, especially when aligned data were below 10
Gb). Given these observations, we investigated whether
higher depth of sequencing would stabilize this effect at
≥20x threshold and repeated this analysis using the aggre-
gate data for each individual. In addition to sequencing
93.4 - 93.9 % of targeted bases at ≥20x, we observed less
influence of input sequence data on the variability of
percent target bases sequenced (see predicted 95 % con-
fidence interval at higher depths). Overall, our results sup-
ported the conclusion that current exome sequencing
results (mean depth of <100x, 10 Gb aligned data) have
high variability at the ≥20x coverage threshold.

Stochastics in capture and sequencing can be estimated
by replicate libraries
Data from exome sequencing are typically reported as
percent targeted bases sequenced at a given sequencing
depth threshold. Although informative for the perform-
ance of targeted sequencing as a whole, this masks the
‘true’ stochastic nature of per-target-base coverage. In
other words, it does not clarify whether a given targeted
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base achieves the required minimum depth of sequen-
cing if the capture experiment were to be repeated inde-
pendently. To address this, we analyzed the technical
replicate data regarding what fraction of total targeted
nucleotides were subject to stochastic genotypeability
and sequencing given comparable, equal input sequence

data (Fig. 2a). To investigate the relative stochastic vari-
ation in coverage at a per-target-base level, we grouped
the technical replicate samples by individual. Technical
replicate data for all individuals are shown in Additional
file 1: Table S1. As proof of principle, we picked the set
with the least variable sequence input data (ID3866).
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Fig. 1 Independent technical replicate target exome capture and aggregate data alignment results for a six member multiple generation family.
a Probability density function plots of three independent library targeted exome capture experiments as a function of depth of sequencing per targeted
base (X) categorized by each member of the six member 3 generation family. b Mean depth of coverage as a function of total bases aligned in targeted
exome region (62 Mb) for all 18 technical replicates, and aggregate data for 6 individuals derived by merging 3 technical replicate captures per individual.
c Percent targeted bases sequenced at ≥1x, ≥10x, and ≥20x thresholds as a function of total number of bases aligned in targeted exome region (62 Mb)
for technical replicate and aggregate data for each individual. Black lines show the predicted local polynomial regression (loess) fit to data with default span
value of 0.75, and red dashed lines represent predicted 95 % confidence interval along the predicted line
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The null expectation (H0) was that there would be no ap-
preciable difference between the intersection and the
union of technical replicate sets (Fig. 3a). We observed
that 52,212,644 bases (84.3 %) of 61,884,224 targeted bases
were sequenced at ≥20x coverage in all three technical
replicates (intersection), whereas 3,443,727 (5.5 %; P-
value = 0.0007; two-independent proportion test) targeted
bases were sequenced at ≥20x coverage in at least one but
not all three technical replicates (union) (Fig. 2b). Similar

variation was observed for the three technical replicates of
each of the five other individuals (data not shown).
Because the above results for coverage at ≥20x were

theoretically dependent on sequencing input quantity,
we repeated the analysis at near ‘predicted’ saturation of
capture and sequencability (≥1x coverage). Only 1.9 % of
targeted bases were variable among the technical
replicates. Specifically, 58,994,725 bases (95 %) were
sequenced at ≥1x coverage, whereas 1,203,131 bases

Table 1 Whole exome sequencing mean target coverage depth and percent target coverage statistics of replicate and aggregate data

WES sample Mean target depth % Target ≥1x % Target ≥10x % Target ≥20x

ID3866

Replicate 1 68x 96.2 91.5 86.6

Replicate 2 65x 96.3 91.9 87.3

Replicate 3 71x 96.4 92.3 88.3

Mean ± SE 96.3 ± 0.1 91.9 ± 0.4 87.4 ± 0.8

Aggregate 205x 97.6 95.1 93.8

ID4382

Replicate 1 69x 96.5 92.1 87.8

Replicate 2 61x 96.3 91.6 85.8

Replicate 3 63x 96.3 91.7 86.4

Mean ± SE 96.4 ± 0.1 91.8 ± 0.4 86.7 ± 1.0

Aggregate 193x 97.7 95.3 93.9

ID4384

Replicate 1 56x 96.0 90.5 83.5

Replicate 2 68x 96.3 92.0 87.4

Replicate 3 83x 96.5 92.7 89.4

Mean ± SE 96.3 ± 0.3 91.7 ± 1.2 86.8 ± 3.0

Aggregate 208x 97.6 95.1 93.8

ID4385

Replicate 1 51x 96.2 90.3 83.1

Replicate 2 86x 96.7 92.9 89.6

Replicate 3 61x 96.3 91.6 85.7

Mean ± SE 96.4 ± 0.2 91.6 ± 1.3 86.1 ± 3.2

Aggregate 198x 97.7 95.3 93.9

ID4386

Replicate 1 64x 96.4 91.6 86.8

Replicate 2 69x 96.3 91.9 87.4

Replicate 3 49x 96.0 90.3 82.1

Mean ± SE 96.2 ± 0.2 91.2 ± 0.8 85.4 ± 2.9

Aggregate 182x 97.6 94.9 93.5

ID4606

Replicate 1 77x 96.5 92.1 87.8

Replicate 2 48x 96.0 90.1 81.2

Replicate 3 55x 96.2 90.9 83.7

Mean ± SE 96.2 ± 0.2 91.0 ± 1.0 84.2 ± 3.3

Aggregate 179x 97.5 95.0 93.5
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(1.9 %) were sequenced in at least one but not all three
technical replicates (not significant) (Fig. 2c). This sug-
gested that stochastic variability among these technical
replicates contributes little to overall sequencability
(≥1x) although it had an appreciable affect on usable
(≥20x coverage) sequence data.

Cumulative technical replicate sequencing improves
targeted sequence interpretation
Of the variability within WES target capture regions,
2-3 % arose within protein-coding regions at ≥20x
depth of sequencing threshold [26]. To understand
whether or not deep sequencing addresses stochastic vari-
ability and benefits achieve theoretical maximum coverage
(>95 % of targeted bases), we merged the three technical
replicate bam files from each subject to generate a single
bam file (Additional file 1: Table S1). For each aggregate data

set, 20–22 Gb high quality reads covered targeted WES
regions; each targeted base had an average of 179 - 208x
coverage. Compared to 81.2 - 89.6 % (50.2-55.4 Mb of
61.7 M) coverage of targeted bases at ≥20x in the
individual technical replicates, the merged data covered
93.5 - 93.9 % of targeted bases (57.7 – 58.0 of 61.7 M) at
≥20x, suggesting a 4.3 – 12.7 % improvement in coverage
(Fig. 3a, Table 1). Each individual’s aggregate dataset re-
covered 3.4 – 6.4 million bases of variable targeted region.
The distribution of consecutive targeted bases recov-

ered to ≥20x sequencing depth followed a power-law
distribution (Fig. 3b). Aggregate data recovered 117,913-
170,667 singleton target-base positions (Fig. 3b); the
average-size of consecutive bases recovered was ~50 bp
(Fig. 3b). In each individual, we identified 17,132 -
40,726 segments greater than 50 bp. We then intersected
regions greater than 50 bp with UCSC known-gene
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protein-coding exons. Intersecting UCSC known-gene
coding bases with recovered regions revealed that 8,156
- 22,868 regions (0.5 – 2 Mb) overlapped protein-coding
regions, including 12–16 of the 56 genes that the Ameri-
can College of Medical Genetics (ACMG) recommended
for return of incidental findings in clinical sequencing
[25]. Figure 3c illustrates that current depths of se-
quencing consistently fail to meet 20x coverage at
clinically important sites. For example c.16C > T vari-
ant (p.Q6X; chr1: 156,084,725; hg19) in LMNA, a
cause of autosomal dominant Emery-Dreifuss muscu-
lar dystrophy (EMD) [27]. This illustrates how aggre-
gate deep sequencing may help recover variable
regions to 20x or greater depth of coverage. Taken
together, this analysis not only revealed the advantage
of technical replicate sequencing to determine exact
targeted regions affected by stochastics under current
exome sequencing standards but also demonstrated

the utility of merging the technical replicate data to
permit interpretation of regions with coverage that is
otherwise too shallow.

Genotyping sensitivity and accuracy to detect de novo
variants improves with cumulative replicate sequencing
We investigated the effect of stochastic variation on
genotyping of variants among technical replicate data
sets of the same individual. We included all 18 technical
replicates for this analysis. Since depth of sequencing
and the relative proportion of representation of the alter-
nate allele play a key role in genotype calling [28], we
delineated genotype discordances among technical repli-
cates at varying depths of sequencing. To address this
question systematically, we binned each targeted pos-
ition into 10-19x, 20-29x, and ≥30x bins. We evaluated
sites within each of these bins where genotype calls
disagreed between technical replicates of the same
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individual. In total we evaluated 19,424,806, 11,888,469,
and 75,145,195 positions in the 10-19x, 20-29x, and ≥30x
bins, respectively, and found 65 differences. 62 of these
differences were in the 10-19x bin (between technical
replicate genotype discordance: 3.2x10−6), 3 in the 20-29x
bin (between technical replicate genotype discordance:
2.5x10−6) and none in the ≥30x bin.
To evaluate the accuracy of WES genotyping at the 65

genotype-discordant sites, we performed Sanger dideoxy
chain-termination sequencing. Of the 54 differences for
which we could design functional primers (Additional
File 1: Table S3), Sanger sequencing showed that 20
(37 %) were heterozygous; 29 (54 %) were homozygous
reference, and 5 (9 %) were homozygous non-reference.
This demonstrated that 20 heterozygotes were not called
in at least one technical replicate in an individual
(disagreement rate: 0.64x10−6; 20 in 31,313,275 sites
tested), while 29 variant sites were falsely called as
heterozygotes in at least one technical replicate. The
sequence surrounding 13 of the 29 sites mapped to
multiple regions of the human reference sequence
suggesting that the differences arose from mis-mapping
(Additional file 1: Table S3).
Next, we called de novo variants that arose in second

and third generations of the family. In technical replicate
data, for each trio, we found 3–11 (mean: 6.2 ± 3) and
1–8 (mean: 3.3 ± 2) de novos at 10x and 20x thresholds,
respectively. In aggregated data, we found 4–7 (mean: 6
± 1.7) and 3–4 (mean: 4 ± 2.3) de novos at 10x and 20x
thresholds, respectively. Of the 30 sites for which we
could design effective primers, Sanger sequencing
showed that 4 were true de novo variants in technical
replicates (Additional file 1: Table S4). Two of the 6 de
novo variants identified in the aggregate data were missed
in technical replicate data. The technical replicate and ag-
gregate variants that did not validate by Sanger sequen-
cing were in regions with problematic GC-content or
mappability (Additional file 1: Figure S5 and Table S5)
[29]. Taken together, technical replicate data along with
aggregate data for a given individual improved the inter-
pretation of NGS genotype calls compared to current
WES standards.

Discussion
In this study, we investigated the utility of independent
generation of exome capture libraries for the purpose of
interlibrary comparison, the effects of stochastics on tar-
geted genomic region capture, the advantages of aggregate
data on targeted resequencing, and finally the effect of the
overall process on genotyping and de novo detection.
We showed that current accepted exome-sequencing

threshold of ≥ 20x is unsaturated at average 50x-100x WES
target coverage, since interpretation of the targeted bases
varied significantly among technical replicates at a ≥ 20x

threshold and not significantly at ≥ 1x threshold. Our
results are consistent with current understanding that
capture sequencing data interpretation is heavily
dependent on amount of exome data generated [14,
22, 28]. Certain targeted regions had variable coverage
only as a consequence of input data since aggregate
data met the genotyping threshold of ≥ 20x coverage.
Controlled analysis done by limiting the effect of
input sequence data on overall measurement of sto-
chastics showed variability between technical repli-
cates at the genotypeability threshold of ≥ 20x and
this is addressed by aggregating data to higher depths.
A recent report by Redin and colleagues [9] support
our conclusion that aggregate data is beneficial to the
overall interpretation of exome data. They showed
that un-interpretable regions within targeted portions
can be as low as 3.9 kb (1.8 kb protein-coding) given
deep-sequencing (mean coverage: >350x) compared to
our observation that it (mean coverage: 40-50x) can
be as high as 0.5-2 Mb. Therefore deeper exome
sequencing may have potential to improve diagnostic
yield for unselected patients, which for rare disorders
is currently 25 % (95 % CI: 20–31) in clinical labora-
tories [30].
Our approach is unique and novel because it addresses

the potential library generation-specific sequencing biases
that may propagate through the sequencing process and
when evaluated, appear as true single nucleotide variants.
Our study design comparing technical replicate library
data from the same individual provides an added advan-
tage to detect genotyping anomalies that would otherwise
be undetectable. This approach however raises the ques-
tion of whether funding would be better spent on two
additional technical replicates rather than on single library
preparation and generating additional sequence data. At
the time when this study was designed and performed, it
cost $300 per replicate library preparation (Illumina
TruSeq kit; see Additional file 1: Table S6). However, due
to the rapid drop in prices and technological advance-
ments, cost estimates for replicate library preparations
currently are around $124 per replicate library (Illumina
Nextera; see Additional file 1: Table S6). Using the tripli-
cate library approach would therefore equate to an extra
cost of $248 per individual sequenced, when compared to
single library preparation coupled with deep sequencing
approach (same sequence data output). Estimating current
sequencing costs at $0.1 per million bases sequenced
(http://www.genome.gov), we assess that $248 would
theoretically allow for purchase of 2.48 Gb of additional
sequence data per sample. Given 70-85 % of 2.48 Gb
would pass post-alignment and quality-filter analysis,
1.7-2.1 Gb mappable data would be available for in-
terpretation. Given our observations of target-base
coverage saturation at ≥ 20x threshold for 20–23 Gb

Cherukuri et al. BMC Genomics  (2015) 16:998 Page 7 of 10

http://www.genome.gov


aggregate user-quality data, we conclude that an extra
1.7-2.1 Gb per sample would minimally alter the overall
interpretation of targeted regions under evaluation (see
Additional file 1: Figure S6).
Finally, we argue that our approach and findings are

consistent with other studies that note benefits of repli-
cate exome comparisons for variant detection and repli-
cated exome merging for variant calling accuracy [31].
Benefits of this approach may also minimize the stochas-
tic branching process of allele-distribution in exome
datasets derived from a single library generation process
and may additionally help mitigate library specific amplifi-
cation biases [18].

Conclusions
We describe a method to evaluate the reproducibility
and stochastics in exome library preparation, and de-
lineate the advantages of aggregating the data derived
from technical replicates. The implications of this
study are directly applicable and provide an oppor-
tunity to rapidly, efficiently, and accurately diagnose
patients.

Methods
Patients
Patients accepted into the NIH Undiagnosed Diseases
Program (UDP) were enrolled in clinical protocol 76-
HG-0238 approved by the Institutional Review Board
(IRB) of the National Human Genome Research Insti-
tute. The individuals or their guardians gave written,
informed consent.

Genomic DNA extraction
Genomic DNA was extracted from peripheral whole
blood using the Gentra Puregene Blood kit (Qiagen, Inc.),
which employs modified salting-out precipitation accord-
ing to the manufacturer’s protocol as previously described
[2]. DNA was eluted in 250 – 1000 μL at a concentration
of up to 35 μg/mL.

Independent exome-library preparation and capture
Independent exome-libraries were generated in triplicate
(3 technical replicates) for each subject (Fig. 1b) using
the Illumina TruSeq DNA Sample Preparation kit
(version 2) according to the manufacturer’s protocol.
Pre-enrichment, all independent libraries were pooled
and multiplexed up to 6-samples. Pooled libraries were
captured in-solution for isolating exonic regions of inter-
est in the human genome using hybrid selection with
TruSeq Exome Enrichment kit, version 2 (Illumina, Inc.)
as per the manufacturer’s protocol. The kit targeted
62 Mb of the human genome using 95mer probes that
selected target libraries of 300–400 bp and enriched

265–465 bases centered symmetrically on the midpoint
of the probe.

Exome sequencing and data processing
Paired-end sequencing was performed on the Illumina
HiSeq 2000 instrument generating 100-bp reads. The
output reads from the Illumina Genome HiSeq 2000 were
mapped to the reference haploid human-genome se-
quence (Genome Reference Consortium human genome
build 37; human genome 19) with the use of the eland
(Illumina, Inc) generating per-sequencing-lane bamfiles.
Fastq files derived from per-sequencing-lane bamfiles were
re-aligned to the reference sequence using the Novoalign
program (http://www.novocraft.com) with default param-
eters; data for this stage were grouped by technical repli-
cate samples. SAMtools [32] was used to identify and
remove PCR duplicates. Each exome sequencing result
was either saved as a technical replicate bamfile or a
merged bamfile (aggregate data) derived by merging all
three technical replicates of a given individual. Genotypes
were called at all positions where there were high-quality
sequence bases (Phred-like Q20 or greater) using a
Bayesian algorithm (Most Probable Genotype – MPG)
[33]. Nucleotide coverage queries and read depth analyses
were performed using SAMtools [32]. The depth of cover-
age was calculated from bamfiles with SAMtools and
custom PERL scripts. Descriptive statistics for sequencing
data analysis were obtained using R statistical software
(version 3.1.2).

De novo mutation analysis
For de novo mutation (DNM) detection analysis, all family
members’ pedigree information was formatted into trio
data. Each individual’s data were organized into technical
replicate bamfiles. For each technical replicate bamfile,
genotypes were called in targeted regions and these data
were binned by target region coverage: 10-19x, 20-29x,
and ≥30x bins. Variants were classified as DNMs in
scenarios that did not fit Mendelian inheritance patterns
for each trio, similar to methodologies established in pre-
vious publications [34, 35]. We iterated this procedure for
all possible trios and all bins. Technical replicate DNM
concordance was computed using PERL scripts.

Bioinformatics data analysis
The data were chiefly analyzed and annotated by means of
a bioinformatics pipeline that was developed in-house,
mainly consisting of PERL scripts. Data were formatted
for parallel computational processing using GNU Bash
scripting (http://www.gnu.org/software/bash) on a Linux
operating system (http://linux.org). Parallel and batch
compute job tasks were submitted, queued, and managed
by Portable Batch System (PBS) computer software in a
Linux cluster environment. Job tasks were processed on
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National Institutes of Health (NIH) Biowulf system via
login node (biowulf.nih.gov). All nodes within this system
are connected to a 1 Gb/s switched Ethernet network,
while sub-sets of nodes are on high-performance Infinipath
or Infiniband networks (16 Gb/s bandwidth with very low
latency). Job tasks were mostly processed on 8 x 2.67 GHz
Intel X5550, 32 x 72 GB nodes (352 nodes) in this system.
Data were accessed from RAID-6 file systems mounted
over Network File System (NFS; Sun Microsystems) or
General Parallel File System (GPFS; IBM).

Statistical analysis
R statistical software (version 3.1.2) (www.r-project.org)
was used for statistical data analysis and plotting figures.
Non-parametric regression method, Local Polynomial
Regression Fitting (loess) was used for local polynomial
fitting of percentage of exome target region sequenced
data (span = 0.75). Fitting was locally controlled by alpha
parameter (span (α)), which determined the size of the
regression neighborhood. To test for stochastics in target
bases sequenced, we used two independent proportion
test (prop.test). This tested the null that the probabilities
of success (coverage of same sequence bases) in several
groups are the same (conf.level = 0.95).

Sanger sequencing
For Sanger sequencing verification of genotypes called by
NGS, oligo-nucleotide primers were synthesized by Inte-
grated DNA Technologies. The regions containing the
suspected single nucleotide variants (SNVs) were amplified
by polymerase chain reaction (PCR) using 50 ng of gen-
omic DNA derived from patient peripheral blood, the listed
primers and Qiagen HotStar Taq Plus under the following
conditions: 95 °C x 5 min denaturation followed by 40 cycles
of 95 °C x 30 s, 55 °C x 30 s, 72 °C x 30 s. Residual primers
and nucleotides were removed with ExoSAP-IT reagent
(USB, Cleveland, OH, USA). The amplicons were then se-
quenced using BigDye® terminator chemistry by Macrogen
(Rockville, MD) and compared to Human Genome refer-
ence sequence (GRCh37; assembly hg19) using Sequencher
(GeneCodes, Ann Arbor, MI, USA).

Additional files

Additional file 1: Figure S1. Systematic approach to study exome
capture variability in exome-sequencing (A) Three-generation pedigree in
which two individuals have an undiagnosed disease that segregated as
an autosomal dominant disorder and a de novo variation arose in the
second generation. (B) Model of individual subject sample blood DNA
processing and sequencing. A sample of blood went through DNA isolation,
and independent libraries (in triplicate) were sequenced to appropriate
comparable depth and analyzed for various quality control parameters,
target coverage, read depth and nucleotide variation detection. (C) Schematic
illustration of sequencing read depth vs. targeted genomic region in relation
to exome sequencing in replicate. Listed are also the main approaches taken
in this study to analyzed exome replicate data. (D) Two main hypotheses

tested using replicate exome data: (i) Biases in sequence capture resulting in
poor coverage are addressable through repetition (ii) Library replication is
beneficial to overall interpretation of sequence variation data. Figure S2.
Titration of percentage targeted exome sequenced as a function of depth
of sequencing thresholds in all three replicates per sample. Error bars show
standard error for replicate sequencing. As expected, higher depth of
sequencing thresholds (x-axis) result in higher-coverage (y-axis) variability in
replicate exome data. Table S2.Titration of percentage target exome
sequenced as a function of depth of sequencing thresholds (attached excel
file). Table S3. Primers used for and results of Sanger sequencing analysis for
resolution of replicate discordances in NGS data. Table S4. Primers used for
and results of Sanger sequencing validation of de novo variants detected using
NGS. (Concordant NGS and Sanger genotypes are highlighted in yellow).
Figure S3. Box-plot of GC-content distribution in all first-exons (blue) and
high-GC content (>70% GC; >=50 bp length). Table S5. Evaluation of
coverage of targeted exons with high GC content (attached excel file). Table
S6. Quote from Illumina for exome enrichment kits. Quotes in red indicate
costs when the study was undertaken. Nextera prices, and other kit prices
(in white) reflect current costs per sample (see last column). (DOC 1 mb)

Additional file 2: Table S2. Titration of percentage target exome
sequenced as a function of depth of sequencing thresholds. (XLSX 59 kb)

Additional file 3: Table S5. Evaluation of coverage of targeted exons
with high GC content. (XLSX 56 kb)
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