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Genetic associations and shared
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Abstract

Background: The skin is the outermost layer of the human body and one of the key sites for host-microbe
interactions. Both environmental and host genetic factors influence microbial communities in distinct anatomical
niches, but little is known about their interplay in shaping the skin microbiome. Here, we investigate the heritable
components of the skin microbiome and their association with host genetic factors.

Results: Based on our analysis of the microbiota from 45 individuals including monozygotic and dizygotic twins
aged 26–55 years and their mothers, we found that skin microbial diversity was significantly influenced by age and
skin pigmentation. Heritability analysis revealed genetic and shared environmental impacts on the skin microbiome.
Furthermore, we observed a strong association between the abundance of Corynebacterium jeikeium and single
nucleotide polymorphisms (SNPs) in the host FLG gene related to epidermal barrier function.

Conclusion: This study reveals an intimate association of the human skin microbiome and host genes, and
increases our understanding of the role of human genetic factors in establishing a microbial ecosystem on the
body surface.
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Background
The skin provides a protective barrier against invading
microbial pathogens, while also serving as a habitat for a
plethora of commensal bacteria. The composition of
skin microbiota varies among individuals, but a core set
of microbes can be found in all subjects for each ana-
tomical location [1–3]. Recent advances in high-
throughput sequencing technologies have enabled rapid
analysis of microbial communities indigenous to specific
niches in the human body [4]. There is significant inter-
individual variation in the skin microbiota, which is at-
tributable to genetic differences and environmental fac-
tors. Colonization of the host body by bacteria occurs
immediately after birth, with more complex microbial
communities developing in distinct anatomical niches

afterwards [5]. Succession of the microbiota within indi-
vidual hosts is also driven by host-intrinsic factors, such
as age, gender, genotype and health status, as well as en-
vironmental and lifestyle factors, such as climate, light
exposure, and detergent use [6, 7]. Previous studies have
quantitatively explored host genetic effects on the gut
microbiome composition using animal models and
humans [8–11]. These studies revealed a significant in-
fluence of host genetic factors on the microbiota. How-
ever, the impact of host gene expression on skin
microbial diversity in human subjects has not been fully
investigated.
The majority of complex human traits are governed by

multiple gene interactions [12]. These sophisticated in-
teractions differ among individuals based on environ-
mental factors. Studies on twins are therefore a useful
method for estimating the genetic and environmental ef-
fects that a given factor has on human health [13]. Twin
heritability and linkage studies segregate the genetic and
environmental effects based on the assumption that
monozygotic twins are genetically identical, and so their
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phenotypic differences are of environmental origin.
Additionally, the shared environmental effects can be
determined from monozygotic (MZ) and dizygotic
(DZ) twins, as well as parent-offspring pairs [13]. Our
knowledge of individual differences in the skin micro-
biota and genetic markers associated with its compos-
ition remains limited. In this study, we analyzed the
skin microbiota of 16 MZ and 8 DZ twins between
26 and 55 years of age and their mothers (n = 16) to
identify the heritable components of the skin micro-
biome and their association with host genetic factors.
To this end, we focused our analysis on host genes
related to key dermatological conditions, including
sebum production, skin humidity, pigmentation, epi-
dermal barrier function, and hair follicle development.
Using the microbial composition as quantitative traits,
we identified one human single nucleotide polymor-
phisms (SNPs) strongly associated with the abundance
of Corynebacterium jeikeium on the skin.

Results and discussion
Study population and composition of the human skin
microbiome
The study population included Korean subjects (n = 45)
with eight MZ and four DZ twin pairs, five singletons,
and 16 of their mothers (Table 1). Skin traits including
skin humidity and pigmentation were measured in 32
subjects. Subjects were categorized as having sufficiently
moisturized versus dry skin, and mid- versus light-tone
skin color based on threshold values in an arbitrary unit
for skin humidity (45 AU) and pigmentation (150 AU),
respectively. A total of 860,547 sequencing reads from
the V2-V3 regions of the human 16S rRNA genes were
generated from 45 skin swab samples, for an average of
19,123 reads per sample. We chose the flexor surface of
the right upper arm to minimize variations due to differ-
ences in the use of cosmetics, surface temperature,

acidity, humidity, handedness, and other external factors.
The skin microbiota was first assessed at the phylum
level; Actinobacteria (50.0 %), Firmicutes (22.0 %), Pro-
teobacteria (16.1 %), and Bacteroidetes (6.0 %) were the
dominant phyla among the samples collected. The com-
position of the skin microbiome in our study was con-
sistent with previous reports [7]. Further classification of
the skin microbiota at the genus level revealed high
inter-individual variation with Propionibacterium
(37.11 %), Staphylococcus (6.79 %), and Streptococcus
(6.95 %) prevailing on the skin (Fig. 1a). At the species
level, P. acnes was the most abundant inhabitant, ac-
counting for 23.62 % of the skin microbiota. Occupancy
by the remaining species accounted for less than 1 %
each.
To explore the skin microbe-host interaction further,

we used PICRUSt [14], an algorithm that detects the
functional capabilities of a community by comparing its
metagenome with reference genomes using microbial
communities identified from all subjects. PICRUSt clas-
sified 200 functional pathways from the 16S rRNA se-
quences of human skin microbiota.
Functional traits determined based on 16S rRNA

genes showed categorical similarity with a recent skin
metagenomic study (Fig. 1b), with a large proportion
of the functions associated with carbohydrate, amino
acid, vitamin, and nucleotide metabolism [15]. Dis-
crepancies in the relative contribution of each path-
way between the studies could be due to use of
different sampling sites and analytical methods. The
previous metagenomic study reflects the microbial
functions from two male subjects at mid-twenties
with samples from five different body parts. Addition-
ally, 16S rRNA based predictions of the functional
traits by PICRUSt could possibly cause the discrepan-
cies. Detailed categories of the functional traits and
Nearest Sequenced Taxon Index (NTSI) values are

Table. 1 Summary of the study population (N = 45)

Mother MZ twin DZ twin Singletona Sum

No. 16 16 8 5 45

Age, mean (SD), y 62.1 (8.5) 31.0 (3.6) 36.8 (5.1) 41.2 (8.4)

Sex

Female, no. 16 10 4 3 33

Male, no. - 6 4 2 12

Humidity (SD), AUbc 30.1 (20.6) 36.3 (29.3) 19.0 (21.3) 28.7 (17.3)

Pigmentation (SD), AUbd 124.3 (83.4) 97.9 (72.3) 65.6 (73.1) 111.6 (64.8)
aThree MZ and two DZ twins were analyzed as singletons, since one of their associated twins was excluded due to antibiotic use
bDermatologic phenotypes were measured from 12 mothers, 15 MZ twins, and 5 DZ twins
cThe level of skin humidity is expressed using arbitrary units (AU) as given by the device (Corneometer®CM825). Corneometry values greater than 45 AU indicate
sufficiently moisturized skin, while values less than 45 AU indicate dry skin
dA melanin index of 0–150 AU indicates light skin tone, and values of 150–250 AU indicate mid-tone skin pigmentation
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provided in Additional file 1: Table S1 and Additional
file 1: Table S2, respectively.

Diversity of the human skin microbiome
Microbial diversity “within” and “between” subject
groups is denoted by alpha and beta diversity, respect-
ively. In an assessment of species richness, the rarefac-
tion curves, reflective of alpha diversity, showed
significantly higher levels of bacterial diversity at ages

greater than 35 years (Wilcoxon rank-sum test, W = 109,
P < 0.001; Fig. 2). The median value was used as the cut-
off age at 35 to evenly disperse individuals into two
groups. Previous studies have shown that age is a pri-
mary contributor to increased microbial diversity in the
skin. A study comparing the skin microbiota between
children and adolescents revealed microbial shifts with
the onset and progression of sexual maturation [16].
The amount of sebaceous wax ester is known to be

Fig. 1 Diversity of the skin microbiota and functional traits of the microbial communities. a Taxonomic classification of the skin microbiome at the
genus level. Relative bacterial abundance for each individual is shown. A familial relationship is indicated among those individuals represented by the
same number. Twin pairs are presented in the parenthesis. b Skin metagenomes predicted using PICRUSt (Methods). Relative contribution of each
functional pathway is determined for the collective microbiota of all subjects. Error bars, SEM
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closely associated with age, increasing between the ages
of 15–35 years and decreasing afterwards [17]. An in-
crease in skin lipids is thought to create an acidic envir-
onment, reducing the numbers of acid-susceptible
bacteria—such as Staphylococcal and Streptococcal spe-
cies—on adolescent skin. Disparities in sweat, sebum,
and hormone production, as well as lifestyle choices
such as the use of cosmetics, may underlie gender differ-
ences in skin microbiota [2, 3, 15]. However, gender ef-
fects were not present on the inner wrist (Wilcoxon
rank-sum test, W = 147, P = 0.144) when mothers were
excluded to avoid confounding by age. The gender ef-
fects on bacterial diversity seem to depend on the skin
site; greater diversity of bacteria in females was evident
on hands [2] but not at the base of the neck [18]. Add-
itionally, we could not observe the significant effect of
skin humidity (Wilcoxon rank-sum test, W = 126, P =
0.534) on the skin. This is likely due to the relatively low
variation in humidity in the skin of the upper arm where
the microbiota was sampled. Interestingly, skin pigmen-
tation significantly influenced skin bacteria, increasing
the diversity in individuals with an intermediate skin
tone (Wilcoxon rank-sum test, W = 176, P = 0.045; Add-
itional file 1: Figure S1). While there have been reports

on the effects of bacterial species on melanogenesis [19–
21], the exact nature of the relationship between the skin
microbiota and pigmentation remains to be determined.
Our data revealed only a weak association with skin hu-
midity (Pearson correlation, r = 0.393, P = 0.029; Add-
itional file 1: Table S3). To compare the beta diversity
profiles across different status of age, gender, skin hu-
midity, and pigmentation, we performed a principal co-
ordinate analysis (PCoA) using weighted and
unweighted UniFrac metrics (Additional file 1: Figure
S2), wherein the distance between microbial communi-
ties was calculated based on phylogenetic information.
The results were not indicative of complete separation
of microbiotas based on the host phenotypes (ANOSIM,
P > 0.05 for all host traits) indicating that the groups di-
vided by age, gender, skin humidity, and pigmentation
did not include significantly different microbial
compositions.

Heritability of the skin microbiota
Comparison of the skin microbiota between twins and
their mothers was performed using weighted and un-
weighted UniFrac distances (Fig. 3a and b). With both
metrics, MZ twins showed the highest similarity,

Fig. 2 Differences in skin microbial diversity analyzed using rarefaction curves a Age. b Gender. c Skin humidity (CV, Corneomerty Value). d Pigmentation
(MI, Melanin Index). Error bars indicate 95 % confidence intervals. * Significance is based on the Wilcoxon rank-sum test
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followed by DZ twins and mother-twins. The dissimilar-
ity of unrelated subject was the highest under the un-
weighted UniFrac metrics whereas it was the second
highest next to mother-twins under the weighted Uni-
Frac distance. The similarity of the skin microbiota of
MZ twins was comparable to that of DZ twins, but sig-
nificantly higher than those in unrelated subjects and
their mothers (P < 0.05). Our subsequent analysis of the
skin microbiota focused on heritability and the add-
itional effects stemming from common environments

(Table 2). Heritability ranged from 40.9–56.4 % with the
abundance of Roseomonas in the skin showed the highest
degree of heritability. Although the role is not well-
defined, a recent study comparing skin microbes on the
face and other body parts found an increased abundance
of Roseomonas on the scapula and inner elbow [22]. Two
of the taxonomic branches described in this study were
found to possess a heritable component: Corynebacteria-
ceae/ Corynebacterium and Brevibacteriaceae/ Brevibac-
terium/ Brevibacterium aureum. Corynebacterium is a

Fig. 3 Comparison of the skin microbiota of twins and their families in terms of heritability and environmental effects. a Weighted and b
unweighted UniFrac distance between twin pairs (4 UniFrac distance values for DZ pairs and 8 for MZ pairs), twins and mothers (25 UniFrac
distance values), and unrelated individuals (909 UniFrac distance values). The error bars represent the standard error. *,P< 0.05 based on Wilcoxon
rank sum test

Table. 2 Heritability and household effects of the skin microbiota after adjustment for age and gender

Genetic Effect (95 % CI) P-value Common Environment Effect (95 % CI) P-value Individual Effect (95 % CI)

f__Brevibacteriaceae 0.409 (0.191–0.627) 0.047 0.59 (0.372–0.808)

f__Bacillaceae 0.465 (0.213–0.717) 0.048 0.535 (0.283–0.787)

f__Corynebacteriaceae 0.468 (0.273–0.663) 0.019 0.532 (0.337–0.727)

g__Corynebacterium 0.468 (0.273–0.663) 0.019 0.532 (0.337–0.727)

g__Peptoniphilus 0.426 (0.216–0.636) 0.034 0.573 (0.363–0.783)

g__Brevibacterium 0.409 (0.191–0.627) 0.047 0.59 (0.372–0.808)

g__Roseomonas 0.564 (0.333–0.795) 0.033 0.436 (0.205–0.667)

s__Brevibacterium aureum 0.409 (0.191–0.627) 0.047 0.59 (0.372–0.808)

c__Sphingobacteria 0.659 (0.367–0.951) 0.021 0.246 (0.1–0.392)

f__Hyphomicrobiaceae 0.611 (0.436–0.786) 0.025 0.389 (0.214–0.564)

f__Leuconostocaceae 0.729 (0.594–0.864) 0.011 0.271 (0.136–0.406)

f__Microbacteriaceae 0.626 (0.437–0.815) 0.032 0.373 (0.184–0.562)

f__Propionibacteriaceae 0.563 (0.366–0.760) 0.028 0.437 (0.240–0.634)

f__Rhodospirillaceae 0.563 (0.366–0.762) 0.031 0.436 (0.237–0.635)

f__Sphingobacteriaceae 0.560 (0.366–0.756) 0.048 0.44 (0.244–0.636)

g__Propionibacterium 0.563 (0.366–0.760) 0.028 0.437 (0.240–0.634)

g__Weissella 0.701 (0.546–0.856) 0.021 0.299 (0.144–0.454)

s__Propionibacterium acnes 0.577 (0.384–0.770) 0.027 0.422 (0.229–0.615)

s__Weissella cibaria 0.701 (0.546–0.856) 0.021 0.299 (0.144–0.454)

Each taxonomic level is indicated by f, g, and s for family, genus, and species, respectively
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major constituent of the normal skin flora along with
Staphylococcus, Propionium, Streptococcus, and Pseudo-
monas [23]. C. jeikeium, the only species belonging to
genus Corynebacterium described in this study, is com-
monly found on skin epithelium, and it has been shown to
cause nosocomial infections in immunocompromised pa-
tients [24, 25]. Brevibacterium sp. is a Gram-negative bac-
terium capable of degrading cyfluthrin, an organic
compound with xenobiotic characteristics and toxicity to
the reproductive, neural, and respiratory systems in
humans [26]. The range of shared-environmental effects
on the skin microbiome was 56–72.9 %, with Leuconosto-
caceae/ Weissella/ Weissella cibaria (70.1 %; P = 0.021)
and Propionibacteriaceae/ Propionibacterium/ Propioni-
bacterium acnes (57.7 %; P = 0.027) significantly influ-
enced by the common environment from family to
species. W. cibaria is a lactic acid bacterium belonging to
the family of Leuconostocaceae [27]. Lactic acid bacteria
require specific nutrients, such as carbohydrates, amino
acids, vitamins, purines, and pyrimidines for growth [28].
Despite these requirements, the bacteria have been iso-
lated from a variety of environments, including the oral
cavity, intestinal tract, and fermented foods [28, 29]. This
adaptability likely accounts for the presence of the bacteria
in two seemingly incongruous locations. P. acnes, the
most dominant and well-known skin commensal bacter-
ium [30], is heavily reliant on the metabolism of fatty acids
found in sebum secretions. Soap, detergents, astringents,
and other factors that alter the amount of sebum may ac-
count for the environmental effects on P. acnes
colonization [31]. Individual-specific effects ranged from
29.9–59.1 %.

Genetic association of skin microbiotas
We next explored associations between the skin micro-
biota composition and host genetic variation. For this in-
vestigation, we focused on SNPs in a panel of select host
genes known to affect sebum production (MC5R, FA2H,
DGAT1, DGAT2, SCD1, and ELOVL4), pigmentation
(DCT, OCA2, and TYRP1), skin humidity (AQP3), skin
barrier function (KLF4, FLG, POF1B, and SPINK5), and
hair follicle development (EDA1, EDAR, EDARADD, and
PKP1) (Additional file 1: Table S4). The selection of

genes was performed manually. One of 275 SNPs was
significantly associated with the abundance of a specific
bacterial species (Table 3 and Fig. 4a), where significance
was defined using a cut-off level of P < 0.05/275 =
0.000182. The identified SNP was localized in a gene
known to play a role in skin barrier function (FLG).
Marker rs6996321 (allele T) in FLG was negatively asso-
ciated with C. jeikeium, although the abundance differ-
ence was small between the host genotypes (P < 0.05;
Fig. 4b). FLG defects are known to cause allergic skin
diseases, such as atopic eczema and ichthyosis vulgaris
[32], both of which are characterized by dry skin. Cor-
respondingly, possession of the minor allele T tended
lower skin humidity but it was not statistically proved
(Fig. 4c, P > 0.05). FLG, which encodes filaggrin, is a
structural protein in the cornified envelop of the stratum
corneum critical for skin barrier function [33]. Muta-
tions in the serine protease St14 in mice, which impairs
filaggrin processing, also results in an ichthyotic pheno-
type [34]. Importantly, Corynebacterium is overrepre-
sented in the skin microbiota of St14-deficient mice,
suggestive of a possible link between bacteria and filag-
grin processing and pathogenesis. The allelic association
with bacterial abundance was further confirmed using
LEfSe analysis, an algorithm based on calculation of sig-
nificantly different phenotypes using the Kruskal-Willis
test followed by the Wilcoxon rank-sum test for post hoc
analysis (Fig. 4d) [35]. Linear Discriminant Analysis
(LDA) scores allowed us to estimate the effect size of
the differentially abundant features. LEfSe analysis
showed an additional association between Peptoniphilus
asaccharolyticus and the minor allele of FLG. Although
not identified in the SNP analysis, a substantial percent-
age of Peptoniphilus abundance could be attributed to
heritability, indicating a possible genetic relationship be-
tween the bacteria and host. Interactions between the
host and the skin microbiota have been analyzed in asso-
ciation with multiple skin diseases [36–38]. For example,
a recent quantitative trait locus (QTL) mapping of
mouse skin microbiotas revealed a strong connection
between disease susceptibility and the host genotype-
dependent microbial composition [38]. This study, per-
formed on a genome-wide scale, detected QTL regions

Table. 3 Associations between the skin microbiota and SNPs of targeted human genes after adjustment for age and gender

Bacteria Marker Associated
gene

Chromosome Chromosome
position

Minor
allele

MAFa βb 95 % CI P-value FDR_BH LDA effect
sizec

Skin barrier
function

Corynebacterium
jeikeium

rs6996321 FLG 8 38441503 T 0.4545 −0.5174 −0.8929,
−0.1418

0.00017 0.03383 3.37707

The direction of the β value in Table 2 indicates the positive or negative association between the minor allele and the bacteria
aMinor allele frequency
bRegression coefficient
cLinear discriminant analysis effect size assessed using the LEfSe (LDA coupled with effect size measurements) software
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Fig. 4 Effect of the host genotype on skin traits. a Manhattan plot summarizing the results of an association analysis of 275 candidate SNPs with
Corynebacterium jeikeium. Each dot represents the candidate SNP plotted across the genome. b Relative abundance of C. jeikeium with respect to
rs6996321. The means and standard errors are indicated by solid and dashed bars, respectively. c Level of skin humidity by genotype at
rs6996321. Boxes represent the 25th percentile, median, and 75th percentile. Whiskers represent the lowest values and the highest values of skin
humidity. Filled circles represent outliers. AU: arbitrary unit. d LDA (linear discriminant analysis) plot of skin bacteria found by LEfSe showing their
association with the host genotype at rs6996321. Cladogram on the right indicates the phylogenetic distribution of the skin bacteria. Each color
represents host genotype: CC genotype in red and CT in green. Circles are arranged by phylogenetic levels from kingdom, phylum, class, family,
genus, and species from inside out
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related to innate immune activation. This and our inves-
tigation did not identify overlapping QTL regions, which
is conceivable because our SNP analysis was based on
the specifically selected gene categories with known im-
plications for human skin structure and function. Be-
yond the identification of cis-regulatory element
associated SNPs, recent SNP association studies are
expanding to include flanking regions of the target genes
and long-range enhancer/promoter [39–41]. In this way,
it is able to discover the interplay between target SNPs
and their transcriptional regulators and ultimately, prac-
tical roles of the SNPs. Further studies on such long-
range SNPs should allow us deeper insights into the gen-
etic associations on the skin microbiome.

Conclusions
In this study, we describe host genetic factors and other
host-intrinsic characteristics that directly influence the
composition of the skin microbiota. We further demon-
strated a strong association between the composition of
skin microbiota and human genetic factors related to
skin barrier function. Analysis of genetically identical
MZ twins and half-identical DZ twins can be used to
identify and discriminate genetic and environmental ef-
fects on the microbiome [42]. Investigation of the twin
pairs proved that the skin microbiome is shaped both by
host genetics and their environmental factors. Addition-
ally, analysis of human genetic traits associated with the
skin microbiota was performed using a candidate-gene
approach. For this investigation, we chose five represen-
tative traits that affect dermatologic conditions; namely,
sebum production, pigmentation, skin humidity, skin
barrier function, and hair follicle formation. To confirm
the results of the association analysis, the bacterial abun-
dance associated with host alleles was further analyzed
using LEfSe. One SNP, located in a gene related to skin
barrier function, was significantly associated with C. jei-
keium. C. jeikeium abundance was lower in subjects con-
taining the minor allele of FLG, which encodes filaggrin,
a structural protein in the cornified envelop of the
stratum corneum critical for skin barrier function.
Although we have explored intrinsic characteristics of

the human skin microbiome in aspect of host genetics
and environmental factors, our study has statistical limita-
tions from a small sample size. In genetic association stud-
ies, a sufficient number of samples are critical to detect
causality between genes and phenotypes. Furthermore, the
collective size of bacteria identified by microbiome ana-
lysis creates more stringent p-values to achieve asking for
increased sample size to identify additional links between
host genetic factors and the composition of the skin
microbiota. To overcome such limitations, we tried to as-
sess the genetic impacts put on the skin microbiome using
different analytical approaches and the results are

supportive of our findings. Yet, more expansive genome-
wide association studies with increased sample size are
warranted to identify additional links between host genetic
factors and the composition of the skin microbiota. Our
results provide insight into skin traits associated with indi-
vidual’s microbiome and potential genomic and microbial
targets for skin healthcare.

Methods
Study population and sample collection
Study subjects were either MZ or DZ twins, and their
mothers were recruited for the Healthy Twin Study as
part of the Korean Genome Epidemiology Study [43] be-
tween September 2010 and August 2011. Zygosity of
twins was confirmed using either 16 short tandem repeat
(STR) markers (15 autosomal markers and 1 sex-
determining marker) (67 %) or a self-administered zy-
gosity questionnaire (33 %), which showed >90 % accur-
acy [44]. A total of 51 trios were initially selected, but 6
subjects were excluded due to intake of antibiotics
within 3 months of sample collection. Thus, the final
sample size was 45 individuals including 8 MZ twin
pairs, 4 DZ twin pairs, and 21 family members; the
members were composed of 5 parent-offspring pairs and
11 mothers of the twin pairs. Age of the mothers ranged
from 49–79 years, and twin children and singletons
ranged from 26–55 years. Two subjects exhibited mild
symptoms of atopy, but were not excluded as they were
only reported to have such symptoms and not prescribed
any medication. Dermatological phenotypes such as pig-
mentation and humidity were available from 32 partici-
pants. The participants provided their written informed
consent to participate in this study. All experiments in-
volving human subjects were approved by the Korea
Centers for Disease Control and the Institutional Review
Board of the Seoul National University (IRB No. 144–
2011–07–11).
The inner wrist of the right arm was swabbed with

two sterile cotton swabs moistened with ST solution
(0.15 M NaCl with 0.1 % Tween 20) [45]. The number
of strokes was 4–5 times per sampling with gentle pres-
sure. The heads of the cotton swabs were stored in
100 μl of ST solution at −80 °C until use. Swab samples
were collected after 3-hr medical checkup securing the
time from contact with water and soap. Additionally,
skin phenotype—including pigmentation and humidi-
ty—were determined using different probes with a C + K
multi probe adapter MPA 9 (Courage + Khazaka Elec-
tronic GmbH, Köln, Germany) on the same date. Sample
collection and visiting was done at set times strictly. Skin
pigmentation was measured from the flexor surface of
right arm using a Mexameter® MX 18, as described pre-
viously [46]. The device quantifies the ratio of light emit-
ted and reflected by skin chromophores and calculates
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the amount of melanin. Melanin levels were expressed
as the melanin index, which ranged between 0 and 150
arbitrary units (AU) for light skin tone, and 150 and
250 AU for mid-tone, skin pigmentation. For skin hu-
midity, capacitance measurement was performed using a
Corneometer®CM825 [47]. Each phenotype was mea-
sured three times at 18–23 °C and 40–60 % relative hu-
midity. Corneometry values of greater than 45 AU
indicate sufficiently moisturized skin, and values less
than 45 AU were considered dry skin. The categories of
each trait followed the manufacturer’s instructions. The
average value of the repeated measurements was used
unless the measurements differed by more than 10 %. In
this case, the median of the three measurements was
taken.

DNA extraction and 454 pyrosequencing
Total genomic DNA was extracted following the bead-
beating extraction protocol [48]. Briefly, the cotton swab
and ST solution were added to 500 μL of extraction buf-
fer (200 mM NaCl, 200 mM Tris, and 20 mM EDTA;
pH 8), 500 μL of phenol:chloroform:isoamyl-alcohol
(25:24:1; pH 7.9) (Sigma, Steinheim, Germany), 210 μL
of 20 % SDS, and 500 μL of zirconia-silica beads
(0.1 mm in diameter; Biospec Products Inc., Bartlesville,
OK). The mixture was homogenized using a Vortex
Adaptor (MoBio Laboratories, Solana Beach, CA) for
2 min at room temperature. DNA extraction was per-
formed with 500 μL of phenol: chloroform: isoamyl-
alcohol (25:24:1; pH 7.9), followed by isopropanol pre-
cipitation. The nucleic acid solutions were stored at
−70 °C until use. The V2 and V3 regions of the 16S
rRNA genes were amplified from total DNA, extracted,
and pyrosequenced as described previously [49]. The ex-
periments were quality controlled using proper negative
and positive controls at the stage of DNA extraction and
PCR amplification, respectively. The cotton swabs with-
out swabbing the inner arm were used as the negative
controls. PCR amplification of these controls did not
amplify any bacterial DNA, thus they were not used for
subsequent sequence analysis. The positive controls used
were DNA from E.coli at the stage of PCR amplification.
The sequence data have been submitted to the EMBL
databases under accession number PRJEB5864 (http://
www.ebi.ac.uk/ena).

Bioinformatic analysis using 16S rRNA sequences
Sequence data were analyzed using the QIIME software
package (version 1.5.0) [50]. Before the sequence ana-
lysis, quality filtering was performed including removal
of low-quality sequences (<200 bp) and ambiguous reads
and end-trimming. Subsequently, homopolymers were
removed by denoising the sequence data set in the
QIIME pipeline [51]. Representative sequence sets were

chosen using UCLUST and clustered at the 97 % se-
quence similarity level. Processed sequences were
aligned using PyNAST [52], and taxonomy was assigned
using the ribosomal database project (RDP) classifier
[53], and the Greengenes Database (gg_97_otus_4-
feb2011.fasta) was used as the reference [54]. The mini-
mum confidence score for the taxonomy assignment to
sequences was 0.8. Chimera sequences (10.55 %) were
excluded from downstream analyses prior to the gener-
ation of phylogenic trees or OTU tables using Chimera-
Slayer algorithm [55]. Bacterial diversity both within and
between samples was assessed through alpha using
Chao1 measure [56] and beta diversity using weighted
and unweighted UniFrac distances [57]. Phylogenetic
tree was generated using the FastTree method [58]. Uni-
Frac metrics were also used to identify differences be-
tween sample pairs. Analysis of similarity (ANOSIM)
was performed to test the statistical significance in the
differences. Functional traits were determined from 16S-
rRNA-based sequences using PICRUSt-0.9.1(http://
picrust.github.io/picrust/) [14]. Unclassified pathways
were excluded from the functional analysis.

Heritability analysis
Heritability estimates of each skin microbe were calcu-
lated by variance component methods using Sequential
Oligogenic Linkage Analysis Routines (SOLAR, version
6.6.2; Southwest Foundation for Biomedical Research,
San Antonio, TX, USA) [59]. Skin bacterial abundances
at all taxonomic levels were used as quantitative traits.
As the bacterial abundances were not normally distrib-
uted, inverse normal transformation was applied to the
traits before the heritability analysis. Additionally, the
monozygotic twins were separately categorized from the
rest of participants. SOLAR uses a maximum-likelihood
method, which allows incorporation of fixed covariate
effects (age, gender, and interaction between age and
gender). Also, the software allows working with ex-
tended families and complicated pedigree of different
age and sex. Variance component analysis decomposes
the total variation (σp2) into additive genetic effects
(σa2) and residual non-genetic variance (individual ef-
fect; σe2), which can be further specified to unmeasured
common environmental effects (σc2). We fitted the vari-
ance component model into additive genetic and non-
genetic components and added the common environ-
mental variance when the effects (σc2) were present
(σp2 = σa2 + σc2 + σe2). Thus, the heritability was esti-
mated as the ratio of variance attributed to the additive
genetic components and the total variance (σa2 /σp2).

Skin traits associated with SNPs
For SNP genotyping, venous blood from each subject
was collected and genomic DNA was extracted using the
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i-genomic Clinic DNA Extraction Kit (Intron, Seong-
nam, South Korea). Genotyping was performed on Affy-
metrix Genome Wide Human SNP Array 6.0
(Affymetrix, Inc., Santa Clara, CA). Exclusion criteria in-
cluded SNPs with Minor Allele Frequency < 0.01, Hardy
Weinberg Equilibrium < 0.001, low call rate (<95 %),
Mendelian error, and non-Mendelian error. Mendelian
and non-Mendelian errors were identified using the
PEDSTATS 0.6.12 [60] and Merlin 1.1.2 [61] software.
Association analysis of skin microbiotas was performed

using Plink 1.07 (http://pngu.mgh.harvard.edu/purcell/
plink/) [62], as described previously [63]. Briefly, the
QFAM (family-based test of association for quantitative
traits) model was used to analyze SNPs obtained from
skin-trait related genes (Additional file 1: Table S4). Can-
didate genes were selected based on their roles in regula-
tory functions or skin metabolism. The list of SNPs was
obtained from the Single Nucleotide Polymorphism Data-
base (dbSNP; Build 137) [64]. Skin bacterial abundances at
all taxonomic levels were used as quantitative traits.
QFAM uses a simple linear regression and corrects for
family structure based on adaptive permutation; in this
study, 100,000 permutations were performed. This adap-
tive permutation also alleviates the assumption about nor-
mality of data set. Prior to analysis, the bacterial
abundances were adjusted for age and gender by fitting to
a regression model in R version 3.0.2 [65], as QFAM does
not allow for covariates. For MZ twins, only one individual
from each pair was analyzed. The alleles of the significant
SNPs were examined with the bacterial abundances using
LEfSe (linear discriminant analysis [LDA] coupled with ef-
fect size measurements) software [35]. The linear discrim-
inant analysis (LDA) effect size greater than 2 was used as
the threshold for discriminative bacteria.

Statistical analysis
Species richness and UniFrac distances were analyzed by
the Wilcoxon rank sum test (two-tailed) using R version
3.0.2 [65]. Correlation test of skin pigmentation was per-
formed by the Pearson correlation with the SPSS software,
ver. 21 (Armonk, NY, US). Association of host genotype
with skin humidity was tested using the Kruskal-Willis
test.

Additional file

Additional file 1: Figure S1. Number of OTUs by skin pigmentation.
Boxes represent the 25th percentile, median, and 75th percentile. Whiskers
represent the lowest values and the highest values of skin pigmentation.
Filled circles represent outliers. MI: Melanin Index. Figure S2. Differences
in skin microbial diversity. Principal coordinate analysis (PCoA) for (A) age,
(B) gender (C) skin humidity (CV, Corneomerty value), and (D)
pigmentation (MI, Melanin Index) based on 16S rRNA genes (weighted/
unweighted UniFrac distances). Left: weighted, Right: unweighted
measures. Table S1. Functional traits and their abundance based on the

16S rRNA genes of members of the skin microbiota. Table S2. Nearest
Sequenced Taxon Index (NSTI) values for individuals. Table S3. Correlation
between skin pigmentation and selected variables. Table S4. Summary of
the SNPs of 14 targeted genes (DOCX 871 kb).
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