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Fast dimension reduction and integrative
clustering of multi-omics data using low-
rank approximation: application to cancer
molecular classification
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Abstract

Background: One major goal of large-scale cancer omics study is to identify molecular subtypes for more accurate
cancer diagnoses and treatments. To deal with high-dimensional cancer multi-omics data, a promising strategy is to
find an effective low-dimensional subspace of the original data and then cluster cancer samples in the reduced
subspace. However, due to data-type diversity and big data volume, few methods can integrative and efficiently
find the principal low-dimensional manifold of the high-dimensional cancer multi-omics data.

Results: In this study, we proposed a novel low-rank approximation based integrative probabilistic model to fast
find the shared principal subspace across multiple data types: the convexity of the low-rank regularized likelihood
function of the probabilistic model ensures efficient and stable model fitting. Candidate molecular subtypes can be
identified by unsupervised clustering hundreds of cancer samples in the reduced low-dimensional subspace. On
testing datasets, our method LRAcluster (low-rank approximation based multi-omics data clustering) runs much
faster with better clustering performances than the existing method. Then, we applied LRAcluster on large-scale
cancer multi-omics data from TCGA. The pan-cancer analysis results show that the cancers of different tissue origins
are generally grouped as independent clusters, except squamous-like carcinomas. While the single cancer type
analysis suggests that the omics data have different subtyping abilities for different cancer types.

Conclusions: LRAcluster is a very useful method for fast dimension reduction and unsupervised clustering of large-
scale multi-omics data. LRAcluster is implemented in R and freely available via http://bioinfo.au.tsinghua.edu.cn/
software/lracluster/.
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Background
Cancer is a large family of lethal diseases which are kill-
ing millions of lives each year [1, 2]. Highly genetic het-
erogeneity makes it hard to develop general and effective
treatments against cancer [3, 4]. One of the major goal
of cancer multi-omics study is to discover possible can-
cer subtypes using molecule-level signatures, which can
be used for more accurate diagnoses and treatments
[5–8]. Several international collaborated projects, such

as TCGA [9], ICGC [10], and CCLE [11] generated
tons of cancer multi-omics data. However, we still
face several challenges for analyzing such large-scale
cancer multi-omics data: 1) need to handle different
data types of different platforms at the same time,
such as count based data of sequencing, continuous
data of microarray and binary data of genetic varia-
tions; 2) the data dimension (the number of the mo-
lecular features) is much higher than the sample
number; and 3) the big data volumes require efficient
and robust computational algorithms.
The molecules involved in the same biological pro-

cesses are usually highly correlated. It is commonly
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believed that the high-dimensional cancer genomic data
can be reduced to a low-dimensional subspace associ-
ated to a few major biological processes [12–15], such as
sustainable proliferation, apoptosis resistance, activated
invasion and immune avoidance [16, 17]. Several efforts
have been made to do such integration analysis [18–22].
To find the shared low-dimensional subspace across
multiple data types, Shen et al. proposed a latent model
iCluster + based on probabilistic principal component
analysis, which used generalized linear models to trans-
form continuous, discretized and count variables as a
sparse linear regression on a set of latent driving factors.
Then, cancer subtyping can be done in the reduced sub-
space consisting of the latent driving factors [21, 22].
Lock et al. proposed another Bayesian latent model
(Bayesian consensus clustering, BCC) to simultaneously
find the latent low-dimension subspaces and assign sam-
ples into different clusters [23]. However, the low com-
putational efficiency limits its applications on large-scale
cancer omics dataset.
In recent years, low-rank approximation (LRA) is be-

coming one kind of promising dimension reduction
methods [20, 24]. In most cases, LRA is convex and can
be solved using fast algorithm [25–27]. A few studies
show the advantages of LRA for single data type analysis,
such as cancer copy number variations [20, 28]. In this
study, we formulated a novel low-rank approximation
based integrative probabilistic model, which can deal with
different data types with high computational efficiency
and stability. It assumes that a few major biological factors
determine a set of high-dimensional but low-rank systems
parameters and the observed cancer omics data are gener-
ated based on these parameters. Results show that our
method LRAcluster can run much faster than iCluster +
with stable model fitting, which makes it possible to
analyze large-scale cancer multi-omics data on a small ser-
ver or even a personal computer.
Then, LRAcluster is applied on a large-scale TCGA

multi-omics dataset of 11 different cancer types with
four different data types, which is hard to be processed
by previous methods. The pan-cancer analysis results
suggest that different cancer types (or different tissue or-
igins) can be generally grouped into independent clus-
ters except squamous-like carcinomas in the reduced
low-dimensional subspace. While, the single cancer type
analysis results show that the multi-omics data have dif-
ferent subtyping capabilities for different cancer types.

Methods
LRAcluster overview
LRAcluster is an unsupervised method to find the
principal low-dimension subspace of large-scale and high-
dimensional multi-omics data for molecular classification

(Fig. 1). In LRAcluster model, the molecular features (such
as somatic mutations, copy number variations, DNA
methylations and gene expressions) are expressed as
multiple observed data matrices. The probabilistic as-
sumption is that each observed molecular feature of
each sample is a random variable conditional on a
hidden parameter. Thus, each observed data matrix is
conditional on a size-matched parameter matrix and
different types of data follow different probabilistic
models (see below). The low-rank assumption of the
parameter matrix leads to a penalty function corre-
sponding to a structural complexity constraint of the
model. Then, the low-rank parameter matrix can be
decomposed into a low-dimensional representation of
the original data, which will be used to identify candi-
date molecular subtypes.

Probabilistic model
The k-th type of omics data are denoted as Xij

(k) (the row
index represents the i-th molecular feature and the col-
umn index represent the j-th sample), while Θ(k) denotes
the size-matched parameter matrix of X(k). The probabil-
istic model specifies the probability density (mass) func-
tion of the observations given the parameters for each
data type as below:

a) Pr X kð Þ
ij jΘ kð Þ

ij

� �
∝ exp − 1
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ij −Θ kð Þ

ij

� �2
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Gaussian distribution (CNV and DNA methylation
data in this study);
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for binary data, Bernoulli distribution

(somatic mutation data in this study);

c) Pr X kð Þ
ij jΘ kð Þ
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� �
∝ λ kð Þ
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ij
e −λ kð Þ
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kð Þ
ij for

count data, Poisson distribution (RNAseq
normalized count data in this study).

Categorical data can be transformed using dummy
code and thus can be treated as binary variables.
The likelihood function of above probabilistic model is

written as the minus log of the probability density
(mass) function, which is:

L Θ kð Þ; ;X kð Þ
� �

¼ −
X

ij
ln Pr X kð Þ

ij jΘ kð Þ
ij

� �� �
ð1Þ

For integrative analysis, there are two or more ob-
served data matrixes X(k) (k = 1, 2, …, K). Thus the over-
all parameter matrix Θ stacks all the parameter matrices
(Θ(k)) used for each observed data matrix. The overall
likelihood function is the sum of the likelihood functions
of different data types:
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L Θð Þ ¼
X

k
L Θ kð Þ; ;X kð Þ
� �

ð2Þ

The probabilistic model assumes that the observations
Xij are independently distributed conditional on the ul-
trahigh dimensional parameter matrix Θ. The prior as-
sumption of the model is that Θ has low-rank structure.
The low-rank assumption is used to penalize the

freedom of the model and eventually leads to the follow-
ing optimization problem:

arg min
Θ

L Θð Þ þ μ Θj j� ð3Þ

where μ is a tuning parameter and |•|* denotes the nu-
clear norm of the matrix [25].

Fig. 1 LRAcluster overview. LRAcluster receives 3 types (Gaussian, Poisson and Binary) of data as input. A probabilistic model with large amount
of parameters are used to model the data. Low-rank approximation of the parameter matrix implies a latent subspace with low dimension.
Clustering done on the reduced subspace generates the candidate molecular subtypes
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Fast low-rank approximation
The solution of the optimization problem (3) mimics a
singular value thresholding method [26] which suggests
a general framework to solve the optimization problem
arg minΘ f Θð Þ þ μ Θj j� where f is a convex function. The
iterative solution framework can be briefly expressed as
the following steps:

1) initialize Θ0 and iterate the following two steps until
convergence

2)

Θ2nþ1 ¼ Θ2n−δn∇f

3)

Θ2nþ2 ¼ Dμ Θ2nþ1
� �

∇f is the gradient of the un-regularized likelihood
function (2) and δn is the step length. Dμ represents the
“singular value shrinkage operator”: let us denote the
singular value decomposition (SVD) of a matrix Θ as Θ
=UΣVT, then Dμ(Θ) =UDμ(Σ)V

T. Dμ(Σ) is a diagonal
matrix with the same size as Σ and each diagonal elem-
ent is the shrinkage of the singular value of Σ. For a
positive singular value λ, the shrinkage result is (λ–μ)
when λ > μ and 0 when λ ≤ μ.
The objective function of LRAcluster is convex, so any

initial value of the iteration will converge to the global
minimum. LRAcluster simply initializes Θ as a zero
matrix. The original framework needs a user defined
constraint parameter μ which is hard to choose in prac-
tical use. Instead of μ, LRAcluster receives the rank r
(also the target dimension) as the user defined constraint
parameter. μ is automatically chosen as the rank r + 1
largest singular value in each iteration. The choice of μ
is to guarantee that Θ has rank r and the shrinkage has
minimal effect on Θ. For simple “matrix completion
problem”, Cai et al. proves that when the step length δ is
between 0.5 and 2, the algorithm converges definitely
[26]. LRAcluster set δ as 0.5, which ensures convergence
for real applications in this study.
The target rank (or dimension) r is the only user-

defined parameter in dimension reduction step. The log
likelihood − L(θ; X) corresponding to the optimized solu-
tion θ* (denoted as ℒr

*) is used for guiding the choice of
parameter r: for the same dataset, larger r means weaker
penalization of the model freedom and leads to better
data fitting (larger likelihood ℒr

*). Thus, ℒr = 0
* is the

minimum and ℒr = +∞
* is the maximum among all the ℒr

*.
The quantity ℒr

* describes to what extend the model fits
the data. As LRAcluser mainly deals with large dataset,
ℒr
* is usually a big value. So, instead of ℒr

*, LRAcluster

uses the normalized quantity ℒ �
r¼þ∞−ℒ

�
r

ℒ �
r¼þ∞−ℒ

�
r¼0

(between 0 and

1) as “explained variation” for choosing a desirable rank
r. We will describe the basic principles for the choice of
rank r in Results section.

Dimension reduction and clustering
The dimension reduction is straightforward after getting
the low-rank matrix Θ. As the rank of Θ is no more than
r, the singular vector decomposition (SVD) of that
matrix Θ =UΣVT has Σ with no more than r non-zero
singular values. Thus the first r columns of ΣVT are just
the dimension reduction result of the original data
matrix X with the target dimension (rank) r.
LRAcluster uses k-means to identify the candidate mo-

lecular subtypes in the reduced low-dimensional sub-
space. Silhouette values [29] is used to determine the
cluster number k. Any other unsupervised clustering al-
gorithm can be used instead of k-means.

Datasets
In this study, all the datasets were downloaded from
publicly released TCGA level 3 data (processed data
from UCSC Cancer Genome Browser [30]). No ethics
approval is required for this study. The whole dataset
consists of 11 types of cancer (BRCA, COAD, GBM,
HNSC, KIRC, LGG, LUAD, LUSC, PRAD, STAD, and
THCA) with somatic mutations, copy number varia-
tions, DNA methylations and gene expressions. For
somatic mutation and copy number variation data, our
preliminary studies indicate that the massive passenger
variations of the complete datasets deteriorated the clus-
tering stability. Thus, only the somatic mutations and
copy number variations of the ~500 genes reported as
“causally implicated in cancer” in COSMIC [31] were in-
cluded in this study. For DNA methylation data using
Illumina HumanMethylation450 BeadChip (450 k array),
probes annotated as “promoter_associated” (based on
the annotations of IlluminaHumanMethylation450k.db
[32]) were selected (if a gene has multiple promoter
associated probes, only one of them was chosen).
Overall, ~8,000 probes were used. The normalized
count-based data from RNA-Seq were all included
with ~20,000 genes.
The three cancer-type testing dataset consists of

BRCA, COAD, LUAD cancer types with RNA-Seq and
and 450 k DNA methylation data. The other datasets
consists of all the four data types described as above.

Results
LRAcluster is a computational-efficient method for fast
dimension reduction and integrative clustering of large-
scale cancer multi-omics data. We first show the perfor-
mances and parameter tuning of LRAcluster on a three
cancer-type testing dataset and a breast cancer dataset
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labeled with ER+/ER- subtypes. Then, it was applied on
the large-scale TCGA pan-cancer dataset.

The computational performances of LRAcluster
A three cancer-type dataset was used to compare the
clustering performances and time consumption between
LRAcluster and iCluster+. The molecular features (genes
for expression data and probes for DNA methylation

data) with largest variances across all samples are se-
lected to construct datasets of different sizes. The smal-
lest dataset containing top 100 molecular features of
each data type is used to test LRAcluster and iCluster+’s
clustering performances with different target dimension
(from 2 to 10). Time consumption of the two methods
was recorded for datasets with different feature sizes
(from 100 to 5000 features). iCluster + runs under both

Fig. 2 Performance of LRAcluster. a the classification accuracy and silhouette value against the dimension of the reduced subspace (the cluster
number is set as three) on the three cancer-type testing dataset. b Time consumption of LRAcluster and iCluster+. The number behind the
method’s name is the dimension of the latent subspace. iCluster + represents the method that do not tune the penalty parameter. iCluster.tune
represents the method tuning the penalty parameter. c and d the dynamic changes of the explained variance and penalty parameter μ as the
algorithm iterates

Wu et al. BMC Genomics  (2015) 16:1022 Page 5 of 10



normal model (random initialization of penalty param-
eter for better model) and simple model (fixed penalty
parameter).
We found that both LRAcluster and iCluster + got

high classification accuracy for the three cancer types in
the reduced low-dimension subspaces (Fig. 2a). The only
exception is for iCluster + with target dimension 9: it
misclassified COAD and LUAD samples, which may be
caused by unstable model fitting of iCluster+. But, the
silhouette values show that the clustering performances
of LRAcluster are superior to iCluster+, especially when
the target dimension is large. These results indicate that
iCluster + will encounter local optimal problems when

the model becomes complex, while the convexity of
LRAcluster model ensures stable model fitting (Fig. 2a).
For the time cost, LRAcluster runs ~5 fold faster than
iCluster + with fixed penalty parameter and much faster
(~300 fold) if that parameter is optimized (the programs
are all running under single thread model) (Fig. 2b).
The convergence is an important issue for model fit-

ting. The dynamic changes of the “explained variance”
and the penalty parameter μ demonstrated that
LRAcluster can quickly converge within only a few itera-
tions (Fig. 2c & d). There are two important parameters
in LRAcluster: the rank (or dimension) of the reduced
subspace r and the cluster number c. To illustrate how

Fig. 3 The curves for parameter choice. a the curve of “explained variance” against dimension. b the curve of silhouette value against cluster
number. c the scatter plot of BRCA samples in the reduced 2-dimensional subspace
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to choose these parameters empirically, we used the
BRCA dataset with known ER+/ER- subtypes as an ex-
ample: the dimension r can be chosed according to the
curve of “explained variance” (Fig. 3a) and the cluster
number c can be chosen according to the curve of sil-
houette value (s-value) (Fig. 3b). For the BRCA dataset,
dimension r should be chosen as 2, because there was a
turning point at 2 on the curve of the “explained vari-
ance” (Fig. 3a). This empirical rule is based on the
principle that the increase of model fitness is much
slower after the changing point. The choice of cluster
number c is straightforward: larger s-value indicates bet-
ter clustering performance. For the BRCA dataset, the
largest s-value was achieved when c = 2 (Fig. 3b). Results
show that LRAcluster can find two subtypes in the re-
duced 2-dimensional subspace and the identified sub-
types are highly consistent with known ER+/ER-
subtypes (accuracy 92.1 %) (Fig. 3c).

Application on the large-scale TCGA pan-cancer dataset
By applying LRAcluster on the TCGA pan-cancer data-
set (11 different cancer types, 3,319 samples and four
different data types including somatic mutations, copy
number variations, DNA methylations, and gene expres-
sions), we get ten clusters in the reduced ten-dimension
subspace (Table 1). The dimension and the cluster num-
ber were determined according to the curves of “ex-
plained variances” and s-values, respectively, as above
principles (curves are shown in Additional file 1: Figure
S1 & S2).
Results show that most samples from the same cancer

types are grouped as independent clusters. These results
are similar with a recent pan-cancer study [8]. The two
brain cancers (LGG and GBM) are grouped together
(Cluster C3). Only HNSC are separated into two major
clusters (Cluster C1 & C10) and the samples (40.3 % of
HNSC) in Cluster C10 are clustered together with LUSC
samples (81.1 % of LUSC), which indicates that the

squamous carcinomas of different tissue origins may
share some common molecular mechanisms. A recent
work also reported an integrative network-based stratifi-
cation (jNBS) pan-cancer clustering analysis on TCGA
dataset, which incorporated multi-omics data with the
information of a pre-given gene network [33]. Generally
speaking, it reported similar results with LRAcluster:
most of cancer types are separately clustered according
to their tissue origin, and two types of squamous carcin-
omas, head/neck squamous carcinoma and lung squa-
mous carcinoma are cluster together. But it found more
cross tissue type clusters. Because the jNBS analysis only
used genetic (mutation & CNV) and epigenetic (DNA
methylation) data, the results are hard to be directly
compared. The molecular signatures associated with
the pan-cancer clusters were shown in Additional file
1: Figure S3.
Then, LRAcluster was applied on the 11 cancer types

separately. The results suggest that the omics data have
different subtyping abilities of different cancer types
(Table 2). BRCA, LGG, PRAD, and THCA datasets get
high silhouette values. As described above, the BRCA
subtypes are significantly associated with ER status. But,
there are no significant differences of overall survival
among the identified molecular subtypes in LGG, PRAD,
and THCA (the scatter plots of the samples in reduced
subspace were shown in Fig. 4). For the remaining 7
cancer types, LRAcluster did not find strong molecular
subtypes based on current omics data.

Conclusion
LRAcluster probabilistically models the observed data
conditional on the size-matched parameters. The low-
rank constraint is the key to get the low-dimensional
representation of the original data. And the convexity
of the regularized likelihood function provides effi-
cient gradient-descent algorithm for model fitting. Re-
sults show that LRAcluster runs fast with high

Table 1 The unsupervised clustering results of pan-cancer analysis

BRCA COAD GBM HNSC KIRC LGG LUAD LUSC PRAD STAD THCA Total

C1 1 0 0 286 0 0 0 6 0 0 0 293

C2 0 0 0 0 0 1 0 0 0 0 411 412

C3 0 0 41 0 0 451 0 0 0 0 0 492

C4 0 0 0 0 0 0 0 0 0 231 0 231

C5 0 0 0 0 0 0 0 0 293 0 0 293

C6 0 190 0 1 0 0 2 0 1 0 0 194

C7 3 17 0 0 1 0 406 7 0 0 3 437

C8 0 0 0 0 240 0 0 0 0 0 0 240

C9 448 0 1 2 1 0 4 1 0 0 0 457

C10 8 1 0 195 0 0 6 60 0 0 0 270

Total 460 208 42 484 242 452 418 74 294 231 414 3319

Wu et al. BMC Genomics  (2015) 16:1022 Page 7 of 10



classification accuracy and it is suitable for large-scale
cancer multi-omics analysis.

Discussions
In LRAcluster probabilistic model, the real-type data are
modeled as Gaussian-distributed random variables with
variance 1. Though the assumption of all features having
the same variance seems unnatural for any dataset as the
different features should have different variance, it is
consistent with the simple method of principle compo-
nent analysis. Minus log likelihood function of the real-

type data is 1
2 Xij−Θij
� �2

which is the same as the loss
function of principle component analysis (PCA). So, if
there are only real-type data as input, the LRAcluster so-
lution is in principle the same as the PCA. The only dif-
ference is the scale of each principle component because
the LRAcluster considers the L1 norm but PCA con-
siders the L0 norm.

Table 2 The results of single-cancer analysis

Cancer Dimensiona #Clusterb Silhouette values

BRCA 2 2 0.55

COAD 4 4 0.40

GBM 8 2 0.35

HNSC 7 3 0.26

KIRC 6 2 0.36

LGG 2 3 0.44

LUAD 5 2 0.34

LUSC 5 4 0.32

PRAD 2 4 0.41

STAD 4 3 0.37

THCA 2 2 0.61
aThe dimension of the reduced space is determined according to the curve of
the explained variations of each cancer type
bThe number of clusters is determined according to the curve of the within
cluster variances

Fig. 4 The molecular subtypes identified by LRAcluster. (a) is for LGG, (b) for PRAD and (c) for THCA. The scatter plots show all the samples in the
corresponding reduced 2-dimensional subspace. Different colors represent different molecular subtypes identified by LRAcluster, c indicates the
number of identified clusters and s shows the silhouette value
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LRAcluster receives the rank r of the matrix Θ as the
user-defined parameter instead of the original parameter
μ. This setting makes the dimension reduction more
straightforward: r is just the target dimension of the re-
duced subspace. From computational view, μ and r have
the same function as they are both used to penalize the
complexity of the probabilistic model.
LRAcluster does not penalize the association between

molecular features and the reduced subspace (latent fac-
tors) via sparsity assumption. It is a better strategy to
find the molecular features associated the identified clus-
ters or subtypes by molecular signature analysis: find the
significantly differential features between the samples in
that cluster and all the other samples (please see the
heatmap of the selected molecular features of TCGA
pan-cancer analysis in Additional file 1: Figure S3). Be-
sides, LRAcluster will prefer the inter-omics features
with large co-variances implied by the low-rank assump-
tion (for example, the significantly correlated CNVs and
mRNA expressions). The inter-omics regulatory infor-
mation can be modeled as a separate pre-processing step
to find the cancer driving factors and then only the mo-
lecular features significantly associated with these drivers
are used as the input of LRAcluster.
Joint non-negative matrix factorization (jNMF) is an-

other strategy to find the shared principal subspace
across multiple omics datasets [34, 35]. Theoretically,
NMF can be treated as a matrix version of latent factor
analysis. jNMF will also encounter the optimization diffi-
culty of non-convey loss function. But the advantage of
jNMF is that the model can also get the molecular fea-
tures (or called as modules) significantly associated each
dimension.

Additional file

Additional file 1: This file contains Supplementary Figures S1-S3.
Figure S1. The curve of “explained variance” against the target rank r.
Figure S2. The curve of silhouette value against cluster number. Figure
S3. Heatmap of the molecular signatures associated with the identified
clusters of the TCGA pan-cancer dataset. (DOCX 2330 kb)
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