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Abstract

Background: In cell differentiation, a less specialized cell differentiates into a more specialized one, even though all
cells in one organism have (almost) the same genome. Epigenetic factors such as histone modifications are known to
play a significant role in cell differentiation. We previously introduce cell-type trees to represent the differentiation of
cells into more specialized types, a representation that partakes of both ontogeny and phylogeny.

Results: We propose a maximum-likelihood (ML) approach to build cell-type trees and show that this ML approach
outperforms our earlier distance-based and parsimony-based approaches. We then study the reconstruction of
ancestral cell types; since both ancestral and derived cell types can coexist in adult organisms, we propose a lifting
algorithm to infer internal nodes. We present results on our lifting algorithm obtained both through simulations and
on real datasets.

Conclusions: We show that our ML-based approach outperforms previously proposed techniques such as
distance-based and parsimony-based methods. We show our lifting-based approach works well on both simulated
and real data.
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Background
Cell differentiation is the process by which a less spe-
cialized cell becomes a more specialized one; it often
proceeds in a hierarchical manner, with totipotent cells
sequentially committing to fates of more restricted devel-
opmental potential [1, 2]. Epigenetic and transcription
factors play a significant role in cell differentiation [3–5],
therefore motivating a study of epigenetic changes across
different cell types.
Arendt [6] proposed a sister-cell-type model for the

hierarchical relationship between cell types. In this model
[6], “novel cell types arise in pairs (sister cell types) from
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an ancestral cell type through sub-specialization” [2].
Under this model [6], the evolutionary relatedness of cell
types is expected to be congruent with the ontogenetic
hierarchy of cellular differentiation, because the “devel-
opment of the sister cell types is the same up to the last
stages of differentiation” [2]. The authors claim that mul-
tifunctionality has been a general feature of ancient cell
types and that, with “increasing specialization during evo-
lution, these multiple functions were then distributed in a
complementary manner to sister cell types” [6].
Evolution and cell differentiation share a number of

attributes. First, as mentioned before, we know that cell
differentiation transforms less specialized cell types into
more specialized ones. Since this transformation is unidi-
rectional, the paths of differentiation can be represented
as a tree structure, much as is done with the phyloge-
netic trees used to represent evolutionary histories [7].
The similarity between the two extends further: cell types
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themselves have evolved into larger collections frommore
restricted collections in early ancestors: there are phy-
logenetic relationships among the various types of cells.
Second, observed changes in the epigenetic state are
inheritable, again much as mutations in the genome are
(although, of course, through very different mechanisms
and at very different scales); and finally, epigenetic traits
are subject to stochastic changes. One major difference
between evolution and cell differentiation is that func-
tional changes in cell differentiation are primarily driven
by programmed mutational events rather than by selec-
tion. However, the program of mutational events is itself
the result of evolution, so that, as observed by [6], the cell
differentiation tree often recapitulates the phylogeny of
cell types.
We focus here on one important epigenetic mark—

histone modification. Histones are proteins that package
the DNA into nucleosomes [8]. These proteins are sub-
jected to various types of chemical modifications, called
histone modifications, such as methylation, acetylation,
phosphorylation, ubiquitination, etc. These modifications
alter their interactions with the DNA and thereby influ-
ence transcription and genomic function. Histone mod-
ifications have been found to vary across cell types and
to play an important role in gene regulation [9]. Since
histones are present in every 200 bp length of DNA,
we need genome-wide high-throughput technologies to
study the modifications of these proteins. ChIP-Seq is
such a technology [10, 11]. The study of ChIP-Seq his-
tone modification data can help us understand the role of
histone modifications in developmental biology and cell
differentiation [12].
The term “cell-type tree” was defined by our group to

refer to a tree relationship between various cell types [13].
The nodes of this tree represent cell types while the edges
represent directed differentiation/evolution events from
one cell type to another. We know that the genome is con-
sistent across cell types of the same individual and that
it is also highly similar between individuals of the same
species, but that epigenomic states of various regions of
the genome differ across various cell types. These epige-
nomic states are believed to affect cell differentiation
process through a complex interplay between histonemod-
ifications, DNA methylation, transcription factors, etc.
Kin et al. [2] recently constructed a cell-type tree using

RNA-Seq data and a parsimony-based approach under
assumptions very similar to ours, using the same term of
“cell-type tree” to denote the “hypothetical tree-like rela-
tionship of cell types in ontogeny and phylogeny”. Liang
et al. [14] recently developed a statistical model for cell
differentiation and applied it to ENCODE and FANTOM
RNA-Seq data. As in Kin et al. work [2], they found that
the RNA-Seq data contain significant tree structures. In
earlier work [7], we also calculated a statistical measure

to show that the distances we computed are in fact rep-
resentative of a tree. Thus multiple studies on different
kinds of datasets—ChIP-Seq in our case, RNA-seq in the
other two papers—support the tree-like relationship of
cell types and underscore the usefulness of the cell-type
tree (as noted in [2]). Prior to these genome-wide compu-
tational approaches, hierarchical developmental relation-
ships among cell types were elucidated through a series of
laborious experiments involving in vitro differentiation of
cell types from various stem cells [15–17].
In cell differentiation, both ancestral and derived cell

types can coexist within the body. Therefore, it becomes
important to be able to infer which cell types should be
treated as the ancestor, or parent, of another. Our ear-
lier work [7, 13] focused on the use of distance-based and
parsimony-based phylogenetic methods to infer the tree,
not the ancestors. Here we propose anML approach to the
inference of cell-type trees on histone modification data
and proceed to derive a new algorithm to infer the internal
nodes by a process known as lifting. (Since both ances-
tral and derived cell types can coexist in the body, some
of the node labels should be simply “lifted”—copied—into
the parent node). To our knowledge, this is the first lifting
approach used in the study of cell differentiation. We also
provide simulations and tests on real data, indicating that
our ML approach to the inference of cell-type trees out-
performs distance-based and parsimony-based building
approaches and that our lifting algorithm not only works
well on simulations, but also gives biologically meaningful
results.

Methods
A histone-modification ChIP-Seq library contains ChIP-
Seq data for one ChIP-Seq experiment. In our case, each
library typically contains data for one histone modifica-
tion for one replicate of a cell type.
Our approach to build cell-type trees using a ML frame-

work is illustrated in Fig. 1. We explain the various steps
below.

Model of differentiation for histone marks
We use the model of [7], in which histone marks can be
independently gained or lost in regions of the genome
as cells differentiate from a less specialized type to a
more specialized one. This independence assumption is
consistent with practice in phylogenetic inference and
enormously simplifies computations.

Data preprocessing and data representation
ChIP-Seq data are converted into peak data using a peak-
finder. The presence of a peak signifies the presence of a
histone mark in that genomic region. We have used pub-
licly available peak lists (from the ENCODE database) for
our study.
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ChIP−Seq Data

Phylogenetic analysis

Inferring ancestral nodes

Cell−type tree
Fig. 1 Flowchart for building cell-type trees using a
maximum-likelihood framework. Data preprocessing: the mapped
reads in the ChIP-Seq data are used to find peaks in the data. Data
representation: peak data is converted to a binary matrix using
windowing/overlap representation. Phylogenetic analysis: using
distance-based, parsimony-based or maximum-likelihood-based
phylogenetic approach. Inferring ancestral or internal nodes: we
establish a parent-child relationship between the cell types (leaf data)
using a process called lifting

To represent the peak data of each cell type, we use two
different data representations.

1. Windowing representation: The genome is divided
into bins of fixed size; if the bin contains at least one
peak, we code it 1, otherwise we code it 0. The
coding of each library is thus independent of that of
any other library (a ChIP-Seq dataset and its
representation are both called libraries). We used
bins of 200 bp because 147 bp of DNA wrap around
the histone and two histones are connected by linker
DNA of about 50 bp; thus each bin approximates the
presence or absence of just one histone modification.

2. Overlap representation: This representation takes
into account all libraries at once. The aim is to find
interesting regions in the genome based on peaks.
Denote the ith peak in library n as Pni = [

PniL,PniR
]
,

where PniL and PniR are the left and right endpoints (as
basepair indices). Consider each peak as an interval
on the genome (or on the line of real numbers) and
build the interval graph defined by all peaks in all
libraries. An interval graph has one vertex for each
interval and an edge between two vertices whenever
the two corresponding intervals overlap [13]. We
simply want the connected components of the
interval graph. We define an interval in the genome
is an interesting region if and only if it corresponds
to a connected component of the interval graph.
More details on the overlap representation and an
algorithm to identify interesting regions in linear
time appear in [7].

The output of either the windowing representation or
overlap representation is a string of ones and zeros to rep-
resent each data library. Both representations gave fairly
similar results in earlier work [7], so in this study we chose
the overlap representation, for its compactness.

ML-based phylogenetic analysis
We use an ML-based approach to build cell-type trees on
the overlap data representation, carrying out the infer-
ence with the RAxML tool [18]. We run RAxML on the
binary data obtained using the overlap representation and
obtain a cell-type tree. For our experiments, we used the
GAMMAmodel of rate heterogeneity (BINGAMMA) and
turned on the rapid bootstrapping option (set to 100).

Inferring ancestral/internal nodes through lifting
We now describe an algorithm for inferring ances-
tral/internal nodes using a process called lifting, to estab-
lish a parent-child relationship between the various cell
types (at the leaves). Lifting techniques have been used in
the context of tree alignment problems [19]. We first infer
a tree using RAxML; we then root the tree using prior bio-
logical knowledge. (One could root the tree by placing a
root between two nodes of an unrooted tree connected by
an edge). Denote by T the resulting rooted binary tree.We
now run the lifting procedure on this tree T, so that they
obey path constraints. The basic idea of the lifting pro-
cedure is to compute the likelihood of the tree after the
lifting each possible leaf node (if its sibling is also a leaf )
and subtract it from the likelihood of the unlifted tree, and
then to actually lift the leaf with the highest probability
if this difference is greater than some threshold. The old
tree is now updated with the lifted tree and this procedure
is continued till the lifting stops. The pseudocode for the
lifting algorithm is given below.
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Algorithm for lifting
1. Set R = T .
2. If number of leaves in R is less than or equal to 4, go

to step 7.
3. Let L be the set of leaves whose sibling is also a leaf.

For each leaf node L ∈ L we compute the
likelihood/probability P(L) of lifting L using the
following procedure.

(a) Divide the tree R into two smaller trees
according to L, R1

L and R2
L (see example in

Fig. 2). R1
L is built by first lifting L to its parent

and then removing L and its sibling (from R).
R2
L is a small tree of 2 nodes, the earlier leaf

node L which is connected to its sibling node
(parent is L).

(b) Estimate the probabilities of R1
L and R2

L
(branch lengths estimated using RAxML and
probabilities calculated using built in methods
in R software packages like phangorn [20]).
The total probability is the product of these
two probabilities.

4. Compute the best lift L∗ = argmaxL∈L P(L).
5. LetW = log(P(L∗)) + α log(K) − log(P(R)), where

K is the length of the data representation sequence, α
a user-defined, real-valued constant, P(R) is the
likelihood of tree R. W plays a role similar to a BIC
criterion [21].

6. IfW > 0, we lift, update the tree R = R1
L∗ , and mark

the corresponding edge (parent of L∗ and L∗) in T as
lifted; we then return to step 2.

7. Output T and stop.

The output tree T is the desired cell-type tree with
labelled ancestral nodes. We terminate the algorithm
when the number of leaves is four or less since we use
RAxML.

Results and discussion
We show the results on both real and simulated data.

Using real data
In an earlier work [7], we had shown the usefulness of
using cell-type trees on different histone marks from
the ENCODE project database: H3K4me3, H3K27me3,
H3K4me1, H3K9me3, and H3K27ac. For testing the lift-
ing algorithm, it is desirable to have as many samples as
possible. We thus focus in this study on histone modifi-
cation H3K4me3, using ChIP-Seq data for human (hg19)
from the University of Washington ENCODE group [22,
23]. H3K4me3 has been assayed in the largest number of
cell types and is usually associated with gene activation
[24]. Table 1 gives the list of the 37 cell types for which
we gathered H3K4me3 data. The cells are classified into
groups based on cell type or tissue origin. (Keratinocytes
(NHEK) is included in the Epithelial group). For human
Embryonic Stem Cells (hESC) we have data for a differen-
tiation time course in cell culture (day 0, 2, 5, 9, 14), so we
shall use hESC T2 to mean data for hESC cells on day 2.
We use only one replicate per cell type for this work.
We use the ENCODE peaks as input to our program.

We convert the input data into 1s and 0s using the over-
lap representation. We then use RAxML for getting a
maximum likelihood based tree. In this first step, we
then compare our results with those obtained with a

M

A B

C C
D

M

A

A

B

Tree R Tree R L

1

LTree R
2

L = A

Fig. 2 Example of lifting leaf node A (L in the algorithm) in tree R. Tree R is divided into two smaller trees R1L and R2L as described in the algorithm
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Table 1 Cell types, short description, and general group for
H3K4me3 data. For details see the ENCODE website [23]

Cell name Short description Group

AG04449 fetal buttock/thigh fibroblast Fibroblast

AG04450 fetal lung fibroblast Fibroblast

AG09319 gum tissue fibroblasts Fibroblast

AoAF aortic adventitial fibroblast cells Fibroblast

BJ skin fibroblast Fibroblast

CD14 Monocytes-CD14+ from human
leukapheresis production

Blood

CD20 B cells replicate Blood

hESC undifferentiated embryonic stem
cells

hESC

HAc astrocytes-cerebellar Astrocytes

HAsp astrocytes spinal cord Astrocytes

HBMEC brain microvascular endothelial
cells

Endothelial

HCFaa cardiac fibroblasts- adult atrial Fibroblast

HCF cardiac fibroblasts Fibroblast

HCM cardiac myocytes Myocytes

HCPEpiC choroid plexus epithelial cells Epithelial

HEEpiC esophageal epithelial cells Epithelial

HFF foreskin fibroblast Fibroblast

HFF MyC foreskin fibroblast cells expressing
canine cMyc

Fibroblast

HMEC mammary epithelial cells Epithelial

HPAF pulmonary artery fibroblasts Fibroblast

HPF pulmonary fibroblasts isolated from
lung tissue

Fibroblast

HRE renal epithelial cells Epithelial

HRPEpiC retinal pigment epithelial cells Epithelial

HUVEC umbilical vein endothelial cells Endothelial

HVMF villous mesenchymal fibroblast cells Fibroblast

NHDF Neo neonatal dermal fibroblasts Fibroblast

NHEK epidermal keratinocytes Epithelial

NHLF lung fibroblasts Fibroblast

RPTEC renal proximal tubule epithelial cells Epithelial

SAEC small airway epithelial cells Epithelial

SKMC skeletal muscle cells Skeletal muscle

WI 38 embryonic lung fibroblast cells Fibroblast

distance-based approach (neighbor-joining [25]) and a
parsimony-based approach (TNT [26]), as explained in
[7]. Figure 3 summarizes the results, using color codes for
the major groupings of Table 1. In order to quantify the
quality of the groupings, we compute the total number
of cell types in a subtree that belong to one group. Since
our groups are based on cell type only, there could be
many subdivisions possible within each group, therefore
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Fig. 3 Compares cell-type trees obtained on H3K4me3 data (only one
replicate) using two different methods on the overlap representation:
(a) using a maximum-likelihood based approach, (b) using a
parsimony-based approach, (c) using a distance-based approach

we choose the two largest such subtrees available for each
group such that each subtree contains only the leaf nodes
of that group.
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Table 2 Groupings for cell-type trees on H3K4me3 data

hESC Epithelial Fibroblast Blood Astrocytes Myocytes Endothelial Skeletal Muscle

(5) (8) (16) (2) (2) (1) (2) (1)

D 5,0 4,1 6,3 2,0 2,0 1,0 1,1 1,0

P 5,0 4,2 6,4 2,0 1,1 1,0 1,1 1,0

ML 5,0 6,1 15,1 2,0 2,0 1,0 1,1 1,0

Second to ninth columns show the number of cell types (of the same group) belonging to the largest and second-largest clades; the total number of cell types of that group
is in the top row. Rows correspond to various methods. Overlap representation is used. ML—maximum-likelihood-based approach, P — parsimony-based approach, D—
distance-based approach

Table 2 shows the results for the ML-based, parsimony-
based, and distance-based methods. Cell-type trees were
built without inferring ancestral/internal nodes (no lift-
ing). The ML approach gives significantly better clades
than the other two. For example, the subtrees containing
Fibroblasts and Epithelial cell types are greatly improved.
Of the 16 Fibroblast cell types that we considered, the
ML method grouped 15 in the largest clade, a major
improvement from the 6 grouped by the distance-based
and parsimony-based approaches. For Epithelial cell types
the improvement is from 4 to 6, out of 8 cell types
in total.
We now consider a set of 19 cell types to evaluate the

lifting algorithm (on H3K4me3 data) to infer ancestral
nodes. The cell types include the hESC time course of 5
days (day 0, 2, 5, 9, 14), HUVEC (umbilical vein endothe-
lial cells), HBMEC (brain microvascular endothelial cells),
WI 38 (embryonic lung fibroblast cells), AG04450 (fetal
lung fibroblast), HPF (pulmonary fibroblasts isolated from
lung tissue). As explained in [7], we expect the follow-
ing developmental pathways to occur one after the other
in time during development: (1) hESC from days 0 to 14;
(2) hESC to HUVEC to HBMEC; (3) hESC to WI38 to
AG04550 to HPF. We now use the overlap representation
and RAxML to get the cell-type tree. The tree was now
rooted at the common ancestor of all the embryonic stem
cells at different days (see Fig. 4a). The lifting algorithm is
then used. The α parameter is set high enough such that
lifting takes place as much as possible, the larger the value
of α the more the number of lifts. The results are shown in
Fig. 4b. We find that there is a path from hESC to HUVEC
to HBMEC as expected. We also find a path from hESC
to AG04550 to HPF. However we see that WI38 could
not be lifted before AG04450. When we look at the data
for hESC data, we see that embryonic stem cells on day
5 is an ancestor (internal node) to day 9, and day 9 is an
ancestor to day 14; and we also see day 0 is an ancestor
to day 2. However day 5 is incorrectly lifted above day 0.
On the other hand, the fact that day 2 ends up on a side
branch of the tree is not surprising in view of our previous
observation [7] that day 2 shows overall increased diver-
gence in histone modification. This most likely reflects
a temporary non-specific response to the growth factor

cocktail that was applied on day 0 to activate a mesoderm
developmental pathway.
We repeated these experiments by picking a random

number of columns from the overlap representation (sam-
pling without replacement) and we found that our results
are quite consistent, if we choose 50,000 or even only
10,000 columns (out of a total of 200,152 columns).

Using simulated data
In this paper, we use simulated studies to compare the
quality of our maximum-likelihood approach and lifting
algorithm. We randomly generate a set of rooted binary
trees with a fixed number of leaves— containing either 12,
50, and 100 leaf nodes (random trees created using “ape”
library in R [27]). Ten trees for each kind of tree (12, 50,

HBMEC
WI 38
WI 38 TAM

HPF
AG04450

HRPEpiC
RPTEC

HUVEC
CD20

CD14
NHEK

SAEC
HMEC

HEEpiC
hESC T14

hESC T9
hESC T5

hESCT0
hESC T2

a

b
Fig. 4 Cell-type trees obtained on H3K4me3 data on a set of 19 cell
types: (a) before lifting, (b) after lifting
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or 100 leaf tree) are generated. Each of these trees then
had their edges marked (randomly) as lifted (signifying lift
from child to parent in that edge) with some probability.
This is the true tree. Data representation length (K) of
1000 bits (1 or 0) for each leaf node was then simulated
using each tree (used phangorn library in R).
A RAxML tree is generated on this leaf data and then

this tree is given as input to the lifting program (for
α = 0.1). For the output tree, each edge which contains
a lift from child to parent, is marked as lifted. This way
we can compare the edges in the output tree with the
true tree. Edges marked as lifted in the true tree should
be shown as lifted in the output tree. Based on this, for
each kind of trees (12, 50 or 100 leaf tree), we find the
total number of true positives (TP), false positives (FP),
true negatives (TN), false negatives (FN). We measure the
following statistics [28] from this information:

(1) True positive rate TPR = TP
TP+FN .

(2) False positive rate FPR = FP
FP+TN .

(3) F-score or F1-score F = 2TP
2TP+FP+FN

(4) Accuracy ACC = TP+TN
TP+TN+FP+FN

We also compute the Robinson-Foulds metric or RF dis-
tance [29] which computes the distance between the true
tree and the unlifted tree we get after applying RAxML.
The results are shown in Table 3. We see that we get

high true positive rate, low false positive rate, a reasonably
high F-score, and an accuracy of above 90 %. These results
thus show that our lifting approach produces good quality
results for trees which are both small and large. Since we
expect cell-type trees to be build on only a few dozen cell
types (since there are about 200 cell types in humans and
we don’t have data for many of these), we feel the range of
tree sizes that we have considered in the simulation study
is sufficient. We also get low RF distances for both 12-leaf
and 50-leaf trees. The slightly higher RF distances we get
for 100-leaf tree is because the data representation of 1000
is not large enough for bigger trees.
To show the robustness of our approach, we repeat the

above experiments (for 12-leaf trees) by varying the length

Table 3 Statistics for trees with fixed number of leaf nodes

12-leaf 50-leaf 100-leaf

TPR 0.750 0.736 0.789

FPR 0.070 0.064 0.036

F 0.677 0.629 0.748

ACC 0.906 0.917 0.946

RF 1.3 5.900 12.20

We simulate 10 random trees (data representation length is 1000) for each of kind
of tree (12, 50 or 100 leaf tree) and ran the lifting algorithm (for α = 0.1). We then
calculated the following statistics shown in the table: True positive rate (TPR), False
positive rate (FPR), F-score or F1-score (F), Accuracy (ACC), RF distance (RF)

Table 4 Statistics for trees with different length of data
representations

K = 500 K = 1000 K = 5000

TPR 0.783 0.750 0.880

FPR 0.088 0.070 0.067

F 0.621 0.677 0.733

ACC 0.899 0.906 0.927

RF 0.700 1.300 0.400

We simulate 10 random 12-leaf trees for varying number of data representation
lengths (500, 1000 and 5000) and ran the lifting algorithm (for α = 0.1). We then
calculated the following statistics shown in the table: True positive rate (TPR), False
positive rate (FPR), F-score or F1-score (F), Accuracy (ACC), RF distance (RF)

of data representation (K) per cell type. We use the fol-
lowing values — 500, 1000, and 5000 bits for each node.
Various statistics are calculated by fixing the α threshold
to 0.1. The results are shown in Table 4. We find that the
different statistics are stable across different data repre-
sentation lengths and the accuracy is around 90 %, and the
statistics (like accuracy) improve with larger K which is
expected. The RF distance is around 1 for different values
of K. This shows that the threshold α is stable for a large
variation of data representation lengths. We note that the
choice of threshold α is dependent on the dataset used.
The larger the value of α the greater the chances of lifting.
For example if all the datasets for whose cell-type tree we
are building are cell types which share a lineage in devel-
opment, then we would like to lift as many cell types as
possible; however if the dataset considered has only one
or two cell types which have a lineage in cell-development
then we would expect less lifting. So the value of α can be
set by the biologist based on biological knowledge, since
our method can be used as an exploratory tool. The value
of α also depends on the length of the data representation,
though it is robust over a reasonably wide range of data-
representation as shown in Table 4. Now we show that
for a fixed length of data representation, we can vary α

parameters over a reasonably wide range. The results are
shown in Table 5. In this experiment we fixed K = 1000,
and simulated these data values for each of the 12-leaf
trees and randomly chose lifting paths. We see from the

Table 5 Statistics for trees with different values of α

α = 0.1 α = 1 α = 2

TPR 0.750 0.750 0.871

FPR 0.070 0.063 0.141

F 0.677 0.667 0.643

ACC 0.906 0.916 0.861

We simulate 10 random 12-leaf trees for data representation length of size 1000 and
ran the lifting algorithm for varying values of α. We then calculated the following
statistics shown in the table: True positive rate (TPR), False positive rate (FPR), F-score
or F1-score (F), Accuracy (ACC)
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table that even when α values vary from 0.1 to 2, the vari-
ous statistics calculated have stable values. This shows the
robustness of the parameters in our method.

Conclusions
We proposed a maximum-likelihood based approach to
estimate cell-type trees from histone modification data.
We showed that our maximum-likelihood based approach
outperforms previous approaches such as distance-based
or parsimony-based methods, on H3K4me3 histone mod-
ification data. We also proposed the first lifting-based
approach to infer internal nodes in cell-type trees and
showed the usefulness of this technique in both real and
simulated data. The lifting approach is important since in
cell differentiation, ancestral cell types can coexist with
derived cell types in adult organisms. Our approach is easy
to use and is probably the only current approach to build
cell-type trees with ancestral inference. Hence we feel that
our approach will be an effective way to help biologists
and bioinformaticians to study the cell differentiation pro-
cess. The lifting process we developedmay also havemany
other applications, be in the study of cancer genetic data
where normal cells differentiate into cancerous cells, and
in other diverse fields like the evolution of languages.
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