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Abstract

Despite the enormous medical impact of cancers and intensive study of their biology, detailed characterization of
tumor growth and development remains elusive. This difficulty occurs in large part because of enormous heterogeneity
in the molecular mechanisms of cancer progression, both tumor-to-tumor and cell-to-cell in single tumors. Advances
in genomic technologies, especially at the single-cell level, are improving the situation, but these approaches are held
back by limitations of the biotechnologies for gathering genomic data from heterogeneous cell populations and the
computational methods for making sense of those data. One popular way to gain the advantages of whole-genome
methods without the cost of single-cell genomics has been the use of computational deconvolution (unmixing)
methods to reconstruct clonal heterogeneity from bulk genomic data. These methods, too, are limited by the
difficulty of inferring genomic profiles of rare or subtly varying clonal subpopulations from bulk data, a problem that
can be computationally reduced to that of reconstructing the geometry of point clouds of tumor samples in a
genome space. Here, we present a new method to improve that reconstruction by better identifying subspaces
corresponding to tumors produced from mixtures of distinct combinations of clonal subpopulations. We develop a
nonparametric clustering method based on medoidshift clustering for identifying subgroups of tumors expected to
correspond to distinct trajectories of evolutionary progression. We show on synthetic and real tumor copy-number
data that this new method substantially improves our ability to resolve discrete tumor subgroups, a key step in the
process of accurately deconvolving tumor genomic data and inferring clonal heterogeneity from bulk data.
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Background and introduction
One of the major challenges of understanding tumor
genomics is the existence of massive heterogeneity both
between patients (inter-tumor heterogeneity) and within
single tumors (intra-tumor heterogeneity). Clinically sim-
ilar tumors may exhibit strikingly different genomic pro-
files [1–3] and patterns of progression [1, 2]. Even within a
single tumor, there can be dramatic differences in genomic
profiles at regional [4–6] and even cell-to-cell levels
[7–15]. The genomes of tumors thus exhibit significant
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variation from individual to individual (inter-tumor het-
erogeneity) as well as cell-to-cell or region-to-region
within single tumors (intra-tumor heterogeneity). This
heterogeneity presents significant challenges to charac-
terizing progression of individual tumors and finding
the commonalities among progression processes across
tumors.
New technologies have made it possible to study tumor

genomics in much finer detail, but often at the expense
of creating even harder computational problems in mak-
ing sense of the data. Single-cell sequencing [9, 11, 13–17]
has offered the promise of reconstructing tumor genomes
at the cellular level, but for the moment remains noise-
prone and too costly to apply to large numbers of cells in
large numbers of tumors. As a result, attempts to recon-
struct tumor heterogeneity in large patient populations
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have so far largely relied on computational inferences
using a class of method called “mixed membership
modeling” (also known as unmixing or deconvolution)
applied to genomic data from bulk tumor cell populations
[18, 19]. Such methods interpret genomic data as mix-
tures of small numbers of major cell populations and seek
to reconstruct the underlying cell populations from the
mixed data. They were originally used largely as a way of
“purifying” tumor data by separating contributions from
tumor versus normal cells [20] but are now widely used
to reconstruct clonal subpopulations and/or the progres-
sion among them from various genomic data sources (see,
for example, [21–30]). Although such methods are now
finding widespread use, they still fall far short of being
able to reconstruct the true complexity of tumor hetero-
geneity within or between tumors that can be observed
from true single-cell data [9, 13–15, 31, 32]. For a more
complete review of computational challenges to recon-
structing tumor heterogeneity, see [12].
Our work has pursued a particular agenda of recon-

structing models of intra-tumor heterogeneity of indi-
vidual tumors by taking advantage of inter-tumor
heterogeneity across a population of tumors [19, 21, 33].
Specifically, we seek to construct a model of evolution
of cell populations making up all of the tumors in a
patient population, so as to explain each individual tumor
as a distinct mixture of those inferred cell populations.
In recent work [33], we showed that it was possible to
produce a more nuanced analysis of the mixture compo-
sition of tumor cell populations by using the assumption
that tumors falling into different subtypes or progression
pathways will be composed of distinct mixtures of cell
types. A key step in reconstructing these mixtures, and
the focus of the present paper, is to partition a popula-
tion of tumors into clusters, where each cluster of tumors
is approximately explainable as a mixtures of a distinct
subset of a common set of cell types. By finding these sub-
sets of tumors prior to mixture reconstruction, we can
infer more sophisticated mixture models accounting for
this kind of clonal substructure and improve accuracy of
mixture reconstruction. Given a clustering of tumors into
subtypes, we can then apply methods for mixed member-
ship modeling to reconstruct models of the cells defining
these clusters. We can further organize these cell models
into a tumor phylogeny, describing how evolution from a
common ancestral cell type could lead to a spectrum of
cells sufficient to explain all of the observed tumors across
all of the clusters as distinct linear mixtures of those basic
cell types.
Identifying these subgroups of tumors can be inter-

preted geometrically as a problem of partitioning point
clouds of tumor genomic data into distinct low-
dimensional subregions of a larger ambient genomic space
of all tumors. That is, we can conceptualize tumors as

points in a geometric space, where each gene or genomic
location profiled yields a coordinate for each tumor. Dis-
tinct genomic profiles will then lie at distinct points in that
high-dimensional space. Mixtures of different kinds of
cells would be expected to form low-dimensional objects
whose vertices correspond to the positions of the genomic
profiles of the component cells. Distinct mixtures, then,
would sit in distinct subregions of that high dimensional
space, corresponding to mixtures of distinct sets of high-
dimensional component vectors. The problem of finding
tumors composed of distinct cell types can then be math-
ematically represented as the problem of finding point
clouds that sit in these separate low-dimensional sub-
regions. That problem itself can be posed as a special
form of clustering problem. Many clustering methods
have been used to study tumor genomic data, including
k-means and similar methods, hierarchical methods, and
Gaussian mixture models (see, for example, [34]). All of
these methods are designed, however, for the problem
of partitioning a high-dimensional data set into disjoint
point clouds, not into discrete lower-dimensional subre-
gions within a single contiguous point cloud.
To pose the problemmore formally, we can think of each

tumor sample x as a vector of genomic profiles (expression
or copy number levels) at n genomic sites, (x1, . . . , xn).
Our model depends on a hypothesis that distinct tumors
will approximately evolve along similar progression path-
ways and thus evolve similar cell types over the course of
their progression. We can then conceptualize each tumor
x as a noisy mixture of a subtype of a genomic profiles of
a common set of cell types c1 = (c11, . . . , c1n), . . . , ck =
(ck1, . . . , ckn). Any given tumor can then be modeled as
a linear combination of those cell types x ≈ a1c1 +
a2c2 + . . . + akck . This would in principle cause tumors
to be approximately confined to a k-dimensional space,
as is assumed in our prior unmixing approaches [19, 21].
Because tumors cluster into distinct subtypes defined by
similar progression pathways, though, we would expect
different tumors to sample from different subsets of that
common set of cell types and thus to have different sub-
sets of non-zero ai coefficients. If a given tumor subtype
evolves a subset of k′ of those k cell types in its pro-
gression, then tumors of that subtype will approximately
occupy a k′-dimensional subspace of the k-dimensional
space defined by linear combinations of the full set of
cell types. Our goal in the present work is to partition
tumors into clusters that appear to occupy these low-
dimensional subregions called subspaces so that we can
more accurately infer the genomic profiles of the k′ cell
types corresponding to each cluster and thus build an
accurate mixture model of each cluster.
In the present work, we tackle this problem of better

decomposing genomic point clouds into low-dimensional
subspaces for the purpose of improving deconvolution of



Roman et al. BMC Genomics 2016, 17(Suppl 1):6 Page 99 of 192

cell subpopulations within mixed data sets. Specifically,
we seek to partition a point cloud of tumors in a high-
dimensional genomic space into subsets of tumors that
occupy distinct low-dimensional subspaces and that can
be interpreted as being composed of distinct cellular sub-
populations. We use an approach based on medoidshift
clustering [35], a non-parametric method for unsuper-
vised clustering that is well suited to working with the
sparse, high-dimensional point clouds characteristic of
tumor genomic data.We adapt themedoidshift method to
the present problem using a novel distance measure and
two-stage kernel strategy designed to deal with the high
noise of genomic data and the non-standard application to
discovering discrete subspaces of a contiguous geometric
object.

Methods
Overview of medoidshift
Medoidshift clustering is a method within the class of
mode–seeking clustering algorithms [35]. It may also be
considered a modification of meanshift clustering [36]
that allows for cluster centers that are data points (which
may be integral to data interpretation), as well as faster
runtime in the case of the addition of data to a set
for which medoidshift has already been computed [35].
Medoidshift clustering works by finding local centers of
density as follows. Assume the data X ∈ R

m×n consist of
m data points in an n-dimensional ambient space. Then
for a shadow kernel function �(·), and neighborhood size
h ∈ R, and scaling constant co ∈ R, we can define a mea-
sure of the contribution of a point to the center of mass of
another point. For a data point x ∈ X, we can define the
kernel density estimator f (·) at that point by

f (x) = co
m∑
i=1

�

(∣∣∣∣
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as described in [35], where co is a scaling constant, �(·)
is as described in [35], and ||·|| is a distance function.
Medoidshift clustering works by assigning a representa-
tive to each putative cluster using the data point nearest
the center of mass of a neighborhood of points (i.e.,
the centroid of the neighborhood). We can therefore set
the representative of x, say y, as follows, using the same
notation as our previous equation:

yk+1 = argmin
y∈N(x)

m∑
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where N(x) is the neighborhood of x, yk+1 is the (k + 1)st
candidate for medoid, yk is the kth medoid candidate,
φ = −�′, and other variables are defined as above. y0
can be any point within N, although in practice we choose
the point with smallest distance to x in the kernel space.
Sheikh et al. [35] offers a proof of convergence for the

algorithm, as well as a more detailed outline of medoid-
shift in general.We note that strictly speaking some kernel
function is always applied to the data; however, in the case
that we use a linear kernel where Euclidean distances hold,
for the sake of simplicity in reference, we call this approach
“no kernel” or “kernel-free”.
For the present applications, on both synthetic and real

tumor data, we have chosen a hyperparameter neighbor-
hood size of 1 (i.e., h = 1), and scaling factor of 1 (i.e.,
c0 = 1), given that we can normalize data to the [0, 1]
range, because h = 1 encodes the belief that each clus-
ter is approximately unit length in the space in which
it is embedded. In other words, by setting h = 1, we
allow points within unit distance, which may or may not
be transformed using a kernel function, to strongly influ-
ence the choice of medoid for a point, but decrease the
influence for points outside that neighborhood. For unit
length clusters, this minimizes the influence on centroids
for points outside that cluster. Additional preprocessing
and normalization required for the real data is described
in Subsection 2.4. “Validation on real tumor data”.

Two-stage medoidshift clustering
Converting medoidshift into a method for decomposing
a point cloud into distinct subspaces, rather than spa-
tially separated clusters, can be accomplished with an
appropriate choice of distance measure and kernel func-
tion to ensure low distance between tumors in a common
subspace and high distance between those in distinct sub-
spaces, even if they are close in the ambient genomic
space by more conventional Euclidean distances. A sim-
ilar problem is encountered by more general manifold
learning methods. One popular method for reconstruct-
ing low–dimensional geometries embedded in higher–
dimensional ambient spaces and measuring the distances
in the planes and hyperplanes of the embedded man-
ifolds is ISOMAP [37], which uses path distances in
a nearest-neighbor graph to measure distance between
points on low-dimensional manifolds defined by data in
a high-dimensional ambient space. Tumor data would
be expected to largely conform to the assumptions of
the ISOMAP method [37, 38]. However, ISOMAP has
been shown to have difficulty when the data occupy a
low-dimensional manifold but are perturbed by ambient-
dimensional noise [39], a property that is characteristic of
the tumor genomic data we seek to resolve [40, 41]. We
apply an approach based on a similar strategy to ISOMAP
[37] for identifying low-dimensional manifolds based on
path distances in a neighbor graph of the data points, but
intended to deal better with the noise characteristics of
genomic data.
Our approach uses a two-stage strategy to balance the

desire for ISOMAP-like manifold reconstruction with tol-
erance to genomic noise characteristics. In the first stage
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we use kernel-free clustering with squared Euclidean dis-
tance intended largely to suppress noise in the data. In this
stage, representatives of the data points are a reduced set
of data points representing local centers of mass in the
ambient space. Because medoidshift clustering is a mode–
seeking algorithm [35], the representatives of points deter-
mined by medoidshift clustering after one round will be
nearer to the more dense regions of the data cloud. Under
our model assumptions — unbiased noise and noise vari-
ance small relative to the signal— the representatives after
the first round should constitute a denoised version of the
original data. Prior work [42] shows that these assump-
tions are reasonable for genomic copy number data, which
appears to exhibit unbiased noise with variance on the
order of 10 percent of the signal.
In the second stage of clustering, we use a kernel func-

tion K, where, K = 1 − eD/h, where h is a scalar band-
width and D is the distance between points. Distances
are measured as shortest path length in the point neigh-
bor graph, in a similar fashion to ISOMAP [37], with
distances between neighboring points measured by the
square of the Euclidean distance. We begin with the rep-
resentatives derived from the end of the first, kernel-free
stage of medoidshift clustering, and use the kernel-based
medoidshift clustering until convergence to yield a small
set of final representatives. The negative exponential ker-
nel function has the effect of causing the clustering to
identify extreme points of the point cloud in different sub-
spaces as cluster representatives, rather than centroids in
the more conventional sense. The combination of the spe-
cialized kernel and the square Euclidean path distance
transforms the clustering into an approach for identifying
points in different subspaces rather than those isolated in
conventional Euclidean space. By itself, though, this spe-
cialized clustering is very sensitive to outliers in the data.
Under the interpretation that the result of the first stage
yields a denoised version of the data, however, the sec-
ond stage will decompose the underlying geometry of the
denoised point cloud in order to assign individual tumors
to discrete subspaces, interpreted to represent distinct
evolutionary trajectories among the possible progression
pathways of the tumors.
All applications of medoidshift clustering in the present

work were run on a desktop workstation with an Intel
Core i7-4770K processor at 3.5 GHz per core, 32 GB of
RAM, and Matlab running in 64–bit mode on Ubuntu.

Validation on synthetic data
We generated seven scenarios of synthetic data to cor-
respond to different possible tumor progression models,
each involving small numbers of possible states of pro-
gression along a tumor phylogeny capturing the progres-
sion pathways of a patient population. For each synthetic
data set, we begin by defining a tumor phylogeny: an

evolutionary tree describing how a set of cell types might
evolve by progression from a common ancestral cell type.
Each such phylogeny defines a mixture scenario, in which
each path from root to leaf in the phylogeny corresponds
to a mixture of cell types we would expect to see in a
subtype of tumors. The length of the path will define the
dimension of the corresponding point cloud (one dimen-
sion per cell type in the mixture). Sharing of cells between
paths will manifest as sharing of basis vertices between
subspaces. The scenarios are illustrated in Fig. 1, which
provides, for each scenario, a line-graph icon describing
its simplicial complex structure and a representation of
the progression pathways to which that simplicial com-
plex structure corresponds. For example, Fig. 1a, derives
from an evolutionary scenario in which an initial progen-
itor cell type evolves to an early progression state which
then evolves two late progression child states. That sce-
nario results in two tumor subtypes sharing the progenitor
and early progression state but differing in their late pro-
gression state. Geometrically, that mixture scenario would
yield two three-dimensional (triangular) simplices sharing

Fig. 1 Visual representation of geometric structures tested with
synthetic data and corresponding evolutionary scenarios
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a two-dimensional edge. The seven scenarios are as
follows:

1. Two triangles sharing an edge (Fig. 1a)
2. Two triangles sharing a point (Fig. 1b)
3. Two tetrahedra sharing a point (Fig. 1c)
4. Two tetrahedra sharing an edge (Fig. 1d)
5. Two tetrahedra sharing a face (Fig. 1e)
6. A triangle and a tetrahedron joined at an edge (Fig. 1f)
7. A triangle and a tetrahedron joined at a point (Fig. 1g)

For each scenario, we generated 100 replicates with each
replicate consisting of 500 points in 10 dimensions, cho-
sen to approximate the real data after application of PCA.
We varied the noise standard deviation from 0 (no noise)
to 0.2 in increments of 0.05. This increasing noise was to
allow us to examine the performance of the approaches
in the neighborhood of the estimated 0.1 standard devi-
ation noise of real data [42]. We then analyzed the data
with three variants of clustering: medoidshift with no
kernel function, medoidshift using the kernel function
for every step of the medoidshift, and our proposed
two-stage medoidshift. We used the ISOMAP-derived
distance measure for both the no-kernel function and
kernel function medoidshift clusterings. A more detailed
description of the simulation technique is provided below.

Simulation procedure
To simulate a scenario in a p-dimensional principal com-
ponents space, we first define a set of k basis vectors
B ⊂ R

p, representing genomic profiles of the cell types
for that scenario. We can then describe a subsimplex in
terms of a subset b = (b1, . . . , bk′),⊂ B of the basis vec-
tors, representing the subset of tumors using a particular
subset of k′ of the cell types. We then generate a sam-
ple tumor from such a cell population by generating a set
of mixture fractions representing the amount of each cell
type in each tumor. For a given tumor iwe generate a mix-
ture fraction fij for each of the k′ cell types in b by defining
fij ∼ unif [0, 1]. We can then generate noiseless samples
for each tumor i and gene j as follows:

yij =
∑k′

r=1 firbrj∑k′
r=1 fir

(3)

In order to simulate error in the measurements, we
add then noise to the samples. For a noiseless sam-
ple yik , we construct a noisy sample xij by adding 0-
biased normal noise in each dimension. That is, for j =
1, . . . , 10, xij = yij + N (0, σ), where we enumerate over
σ ∈ {0, 0.05, 0.1, 0.15, 0.2} to represent the increasing
noise scenarios visualized in Fig. 2.
We assessed accuracy of cluster assignment using the

adjusted Rand index [43–45], a measure of cluster qual-
ity chosen because it deals well with situations in which

the number of clusters is not known a priori and may
differ between the ground truth and across inferences
being assessed. The adjusted Rand index is computed as
follows. Assume we have a known ground-truth partition
of the data consisting of n data points; call this partition
X = X1,X2, . . . ,Xr , where there are r total clusters in
the ground truth. Suppose we have a partition of the data
generated by the algorithm we are testing; call this parti-
tion Y = Y1,Y2, . . . ,Ys, where there are s total clusters
in the partition generated by the algorithm we are assess-
ing. Then we can construct a matrix N to describe the
amount of overlap in each of the clusters in X by rows
and each of the clusters in Y by columns. More specif-
ically, for entry nij ∈ N , where nij is the ith row, jth
column, nij = |Xi ∩ Yj|. Finally, to account for the sizes
of the clusters in the ground truth and found from the
algorithm we would like to assess, we can use a vari-
able to describe the sizes of the clusters. Let ai,∀i ∈
1 . . . r be

∑
j=1...s(nij). Similarly, let bj,∀j ∈ 1 . . . s be∑

i=1...r(nij). Then we can represent the adjusted Rand
index of the algorithm we are testing using the following
formula:

ARI =
∑

i,j
(nij
2
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2
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Validation on real tumor data
We examined two real tumor data sets, both taken from
the Cancer Genome Atlas (TCGA) data repository [3],
one of high-grade serous ovarian adenocarcinoma (OV)
data [46] and one of lung squamous small cell carci-
noma (LUSC) [47]. We applied our method to array
comparative genomic hybridization (aCGH) data sets pro-
filing copy number variation data for each tumor. We
favored copy number data over expression data because
copy numbers, as a measure of DNA rather than RNA,
are less prone to confounding effects of cell-cell com-
munication and from contamination by normal stromal
cells [21]. aCGH data also yield relatively low noise lev-
els, approximately 10 percent of the signal [42], which
fits into the range of noise levels at which our mixture
reconstruction method was previously found to provide
a substantial improvement over other approaches [33].
In each case, we restricted our analysis to the autosomal
chromosomes.
After downloading the copy number (CN) data, we

pre-processed and compressed the data in order to load
the entire dataset into memory on a workstation. Each
data file from TCGA contains calls for copy number
alterations, in the form of the log2 ratio of the alteration
in the copy number of the DNA compared to normal, as
well as the start and end locations for the call, and the
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Fig. 2 Adjusted Rand indices (ARIs) for 100 replicates of synthetic data under seven mixture scenarios with varying noise. The first column (panels x.1)
shows the performance of medoidshift without a kernel function; the second column (panels x.2) show the performance of using the negative
exponential kernel function; and the third column (panels x.3) is our new 2-stage medoidshift clustering method. Each row has increasing noise; the
first row (panels 1.y) has no noise, the second row has σ = 0.05 noise added, the third row has σ = 0.1 noise added, the fourth row has σ = 0.15
noise added, and the fifth row has σ = 0.2 noise added

chromosome on which the call is made. For each dataset,
we scanned through each base pair, and whenever an
amplification in copy number was observed in a sample,
we designated a new unit, which we called a block. Within
a block, then, each sample has a constant copy number.
Then, for each chromosome in a dataset, we could rep-
resent the data in the form of an m × n matrix M, where
there are m samples, and n blocks for that chromosome
for that dataset. We then used principal components
analysis (PCA) [48] to reduce the dimension of the
data to the top 10 principal components (PCs), a way
of increasing the point density, as is required by mode-
seeking algorithms such as medoidshift to determine
representatives [35]. Ten dimensions were chosen based
on past experience that this is approximately the upper
limit for the number of distinct mixture components this
class of method will be able to resolve from data sets
of a few hundred tumors. In order to further normalize
the data into the range [0, 1] for each dimension, which

is built into the model as an assumption with respect
to the neighborhood examined for each data point, we
peformed the following computation:

M̂i,j =
Mi,j − minMs,j

s
maxMq,j

q
− minMr,j

r

(5)

where M̂i,j is the normalized value, and Mi,j is the ith
row and jth column of the matrix M described above. To
encode all of the data of the genome into one unit, we
then concatenated each chromosome’s block information
together, where each block in each chromosome repre-
sented additional features (columns). In terms of the data
matrices M described above, if we let Mi represent the
matrix M above for the ith chromosome, we construct
a data matrix D, where D is the horizontal concatena-
tion of Mi, ∀i = 1 . . . 22, for each of the 22 non-sex
chromosomes.
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The ovarian cancer data set, obtained on 15 July 2015
from TCGA [3], consisted of 472 samples with both clini-
cal and CN data. Blocking the CN data and taking the top
10 PCs of the data yielded a 472 by 10 matrix. The lung
squamous small cell carcinoma dataset used was obtained
from TCGA [3] on 21 July 2015, consisting of 408 sam-
ples with both clinical and CN data. Blocking the CN data
and taking the top 10 PCs of the data yielded a 408 by 10
matrix.
To assess how the different clusters found in the data

might become manifest in clinical data, we constructed
Kaplan–Meier curves and applied the log-rank statistic
to test significance of the correlation between cluster
assignment and censored survival [49] for each real data
set.
For the OV data, we further examined correspondence

of our cluster assignments to those of the TCGA, which
identified four tumor OV subtypes based on analysis
of RNA expression data: differentiated, immunoreactive,
mesenchymal, and proliferative. We tested significance of
the overlap between our clustering and their subtyping by
chi-squared test.
We further conducted a functional genomic analysis to

better understand the possible biological significance of
the clusters.We first converted the block coordinates back
into the corresponding chromosome coordinates and then
used BioMart [50] to find lists of elevated genes for each
cluster. For each cluster, we used the cluster representative
as determined by the two-stage clustering. For each repre-
sentative, we identified each block showing at least 4-fold
amplification as a block of interest at a 10kb resolution.
We used Biomart [50] to extract a list of genes overlap-
ping each block and pooled genes across blocks for each
cluster.We applied DAVID [51] with default parameters to
identify ontology terms overrepresented in the resulting
gene lists, identifying the top cluster of DAVID functional
annotations for each of the clusters found through our
method.

Results
Synthetic data
We first applied our methods to synthetic data generated
from the seven scenarios of Fig. 1. The adjusted Rand
indices (ARIs) for each trial appear in Fig. 2. Each row of
the figure shows results for all three cluster variants —
no kernel, kernel, and our proposed two-stage method —
across all seven scenarios at a single noise level, with
noise increasing on each successive row. The kernel-free
medoidshift was essentially unusuable on the synthetic
data, with ARI at or near zero (no correspondence of true
to inferred clusters) for all scenarios at modest noise lev-
els. Even in the noise-free case, the kernel-free method
is only occasionally able to produce non-zero ARI. The
one-stage kernel-based method is reasonably effective in

most scenarios at the lowest noise levels, but with very
high variance even for modest noise. At higher noise lev-
els, it, too, usually yields mean ARI at or near zero. Our
proposed two-stage method yields far more consistent
results. While it somewhat underperforms the one-stage
kernel method in noise-free case, it is far less sensitive
to increases in noise. The two-stage method gives qual-
itatively similar results across noise levels, with modest
decreases in accuracy at each increasing noise level. Fur-
thermore, the two-stage method yields far lower variances
across replicates, suggesting it is meeting the goal of sup-
pressing the high sensitivity to outliers produced by the
negative-degree kernel function alone.
We also evaluated run time on the synthetic data. Mean

run times across all scenarios and noise levels for each
method are 1.2854 s, 1.2914 s, and 0.0121 s for no ker-
nel medoidshift, kernel medoidshift, and 2-stage medoid-
shift respectively. The 2-stage method requires less time
because the costly path-distance computations needed
to derive the ISOMAP distances are only computed for
cluster representatives after the first step of the two-step
method, when the number of data points has been signif-
icantly reduced. The no-kernel and kernel techniques, by
contrast, must compute the path costs from all points to
all points.

Real tumor data
Experimental data analyzed in the manuscript were taken
from The Cancer Genome Atlas [3]. Contributing cen-
ters for LUSC and OV were Harvard Medical School
(LUSC and OV). Copy-number data were collected using
the Aglient Human Genome CGHMicroarray 244A (OV)
and Aglient Human Genome CGH Custom Microarray
2x415K (LUSC). The experimental procedures used in
collecting these data are as described in the primary
literature from the TCGA Research Network [3].
We next analyzed the two real tumor data sets, begin-

ning with the ovarian cancer (OV) TCGA data. We per-
formed two–stage medoidshift clustering on the matrix of
PCs of CN data, which yielded three clusters. Figure 3a
shows the point cloud and cluster assignment, visualized
in the space of the first three PCs. The OV data show a
clear simplicial substructure, approximately described as
three arms projecting from a common center. We would
expect that the center would correspond approximately
to normal diploid cells and the arms to mixtures of nor-
mal cells with three progression subtypes. The clustering
corresponds generally, although not perfectly, to the arm
structure, as intended.
To assess whether the clustering is biologically signif-

icant, we performed Kaplan-Meier survival analysis [49]
to test for significant differences in survival time between
pairs of clusters. We found that a comparison of cluster
1 to cluster 2 yielded a log rank test statistic chi–squared
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Fig. 3 Visual representation of ovarian tumor data (OV) in principal
components space (panel (a)), and of lung squamous small cell
carcinoma (LUSC) (panel (b)). Data are colored based on their cluster
membership as determined by 2-stage medoidshift clustering

value of 12.5571, cluster 2 to cluster 3 yielded a chi-
squared value of 50.5965, and cluster 1 to cluster 3 yielded
a chi-squared value of 180.9646. All of the chi-squared
values are strongly significant (p < 0.01), suggesting that
the clustering into subsimplices of the simplicial com-
plex does capture a clinically significant subgrouping of
tumors.
We further compared our clusters to assignments of

four molecular subtypes (differentiated, immunoreactive,
mesenchymal, proliferative) derived as part of the TCGA
data analysis [46] by non-negative matrix factorization
clustering (NMF) [52] applied to RNAseq expression
data. We obtained the TCGA subtyping information from
Verhaak et al. [53]. We established a contigency table of
tumors comparing our cluster assignments to the TCGA
subtypes, excluding 14 samples for which no subtyping
label was provided and found a χ2 value of 15.48091566,
yielding a weakly significant p-value of 0.0168. Our cluster
1 associated most strongly with the mesenchymal subtype
and cluster 3 with the proliferative subtype, with cluster 2
too small for any association to be apparent.
Further ontology analysis via DAVID [51] on each of

the clusters yielded enrichment for a variety of terms. In
the interest of space, we focus on the most significant
term grouping identified DAVID for each of our clusters.

Table 1 shows these DAVID term for each of our clusters,
with highly similar terms merged. We then sought to
tie the enriched terms to existing analysis in the litera-
ture. The terms found appear consistent with activation of
genes associated with epithelial differentiation in cluster 1,
a set of pathways previously observed to be active in sub-
sets ovarian tumors [54]. Cluster 2 shows genes that may
be consistent with an immune-active subtype, although
the cluster is too small for results to be significant. The
top cluster 3 terms seemmost associated with cytoskeletal
structure and movement, which would be consistent with
the proliferative subtype identification but could have
many other interpretations. We also searched for corre-
spondence between pathways dysregulated by the genes
of interest from the TCGA findings [46] and pathways
associated with genes found in our cluster amplicons as
assessed by Entrez description [55]. Anecdotally, we found
genes in several key pathways identified by the TCGA
study, including NOTCH signaling and Wnt/β-catenin
signaling [46], although we cannot attach significances to
these assignments.
We next analyzed the lung squamous small cell carci-

noma (LUSC) TCGA data set. We performed two–stage
medoidshift clustering on the matrix of PCs of CN data,
which yielded a result of two clusters. Figure 3b shows
the point cloud and cluster assignment, again visualized
in the space of the first three PCs. In this case, the cluster-
ing performs more poorly. The method captures a subset
of tumors that appears to lie along the fringe of the point
cloud, but misses an apparent substructure in which a
large fraction of the points appear to lie along two distinct
two-dimensional surfaces. We suspect the poorer perfor-
mance in this case is caused by highly uneven sampling of
the manifold, with points in the two-dimensonal “wings”
heavily concentrated along a single one-dimensional “line”
of each wing. We might expect such a geometric struc-
ture to occur if each wing represents a mixture of normal

Table 1 Summary of DAVID ontology terms most strongly
associated with each ovarian (OV) and lung (LUSC) cluster

Cancer type Cluster number Terms

OV 1 Keratinization, small proline-rich,
epidermal cell differentiation,
epithelial cell differentiation

OV 2 Antigen processing, MHC class II,
asthma, allograft rejection,
type I diabetes mellitus, cell adhesion

OV 3 Keratin, coil 1a/b/2/12, intermediate
filament, cytoskeleton,
non-membrane-bound organelle

LUSC 1 Zinc finger, KRAB, C2H2, transcriptional
regulation, DNA-binding, metal binding

LUSC 2 Keratin, peripherin, intermediate
filament family orphan 1
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cells with a single progression state found in all tumors of
that wing and a second, more advanced, progression stage
reached by only a minority of tumors.
We again performed Kaplan-Meier analysis on the clus-

ters and observed a test statistic of 3.6413, which is only
weakly significant (p = 0.0339). While the result sug-
gests there is some meaningful separation of the data by
survivability, the conclusion must be considered tentative.
The tentative results in the LUSC dataset with respect

to survivability lead us to cautiously evalutate the results
from ontology analysis. We again used DAVID [51] for
amplified regions of the cluster representative for the
LUSC dataset, and found terms in the amplified regions’
gene annotations dealing with the keratin family and zinc
binding, which have been noted generally as having a role
in tumors [56, 57]. Some members of the keratin fam-
ily have been singled out for study in lung cancers [57],
although given the poorer performance of our method on
the LUSC dataset, we hesitate to draw conclusions from
this correspondence.

Conclusion and discussion
We have developed and implemented a novel clustering
approach for partitioning mixtures of genomic data into
submanifolds of interest. Our approach is meant to more
accurately estimate of patterns of underlying substruc-
ture in tumor genomic data sets indicative of the shared
pathways of progression between tumors that can be used
to reconstruct heterogeneity within single tumors. The
model is designed to exploit the geometric and statisti-
cal properties we would expect to arise in genomic point
clouds produced by tumors evolving along a common set
of possible progression pathways. Tests on synthetic data
show the novel two-stage method proposed here is more
effective than either pure kernel-based or kernel-free vari-
ants of medoidshift clustering at decomposing simplicial
complex structure in the presence of ambient noise sim-
ilar to what we would expect from genomic data. We
believe the standard kernel-less method performs poorly
because it is not designed for the task of partitioning
distinct low-dimensional sub-manifolds of a contiguous
higher-dimensional manifold. The negative-weight kernel
method solves that problem but at the cost of a very noise-
sensitive clustering unsuitable for genomic noise profiles.
The proposed two-stage method overcomes these prob-
lems by using kernel-less clustering to effectively denoise
data followed by the negative-weight kernel to decompose
the simplicial complex structure in the denoised data.
The real tumor data shows both the power of the

approach and some of its current limitations. The method
is effective at decomposing simplicial complex structure
evident in the ovarian cancer data, a kind of geomet-
ric structure we would predict to arise due to the nature
of subtyped progression pathways found in such data.

Survival analysis confirms that the derived clusters cor-
respond to a biologically and clinically significant par-
titioning of tumors. The method performs more poorly
on the lung squamous small cell carcinoma data, where
a simplicial substructure is visually evident in the data
but does not correspond well to the clustering. We
attribute this problem to highly uneven sampling of
tumors within the sub-manifolds, a problem that is con-
sistent with a model of multistage progression in which
tumors may be poorly sampled from late progression
stages. The poorer performance in this case suggests
avenues for improvement by building expectations from
more sophisticated progression models into the clustering
objective.
These methods might also be improved by considering

other forms of genomic data. The methods are applied
here to DNA copy number data and previous meth-
ods from our group have used both copy number [21]
and gene expression data [19, 33]. Combining distinct
data sources on a common tumor, as well as consider-
ing alternatives such as genomic methylation data, might
be expected to lead to improved mixture separation rel-
ative to any one data type. Furthermore, even limited
amounts of single-cell genomic data could prove valuable
in improving mixture deconvolution of bulk tumor data
by more precisely identifying genomic profiles of pure
unmixed cell types.
We further note that this clustering is not intended

to be a standalone method but rather is meant as part
of a broader pipeline for deconvolving mixed genomic
data and reconstructing virtual single cell profiles, mix-
ture compositions, and progression pathways [19, 21, 33].
Additional work is still needed to better adapt the present
methods for use in the full unmixing process, optimize
other steps of that process, and explore ways to better
solve the unified inference problem these steps collec-
tively represent. Finally, we note that while our particular
interest is analyzing tumor heterogeneity, the methods
developed here may have value for analyzing other kinds
of genomic data, other forms of heterogeneous cell popu-
lations, or deconvolving substructured mixtures in other
problem domains.
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