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Abstract

Background: Chronological aging-associated changes in the human DNA methylome have been studied by multiple
epigenome-wide association studies (EWASs). Certain CpG sites have been identified as aging-associated in multiple
studies, and the majority of the sites identified in various studies show common features regarding location and
direction of the methylation change. However, as a whole, the sets of aging-associated CpGs identified in different
studies, even with similar tissues and age ranges, show only limited overlap. In this study, we further explore and
characterize CpG sites that show close relationship between their DNA methylation level and chronological age during
adulthood and which bear the relationship regardless of blood cell type heterogeneity.

Results: In this study, with a multivariable regression model adjusted for cell type heterogeneity, we identified 1202
aging-associated CpG sites (a-CpGs, FDR < 5 %), in whole blood in a population with an especially narrow age range
(40 - 49 years). Repeatedly reported a-CpGs located in genes ELOVL2, FHL2, PENK and KLF14 were also identified.
Regions with aging-associated hypermethylation were enriched regarding several gene ontology (GO) terms (especially
in the cluster of developmental processes), whereas hypomethylated sites showed no enrichment. The genes with
higher numbers of a-CpG hits were more often hypermethylated with advancing age. The comparison analysis
revealed that of the 1202 a-CpGs identified in the present study, 987 were identified as differentially methylated also
between nonagenarians and young adults in a previous study (The Vitality 90+ study), and importantly, the directions
of changes were identical in the previous and in the present study.

Conclusions: Here we report that aging-associated DNA methylation features can be identified in a middle-aged
population with an age range of only 9 years. A great majority of these sites have been previously reported as aging-
associated in a population aged 19 to 90 years. Aging is associated with different types of changes in DNA
methylation, clock-like as well as random. We speculate that the a-CpGs identified here in a population with a narrow
age-range represent clock-like changes, as they showed concordant methylation behavior in population spanning
whole adulthood as well.
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Background
The epigenome includes DNA methylation (DNAmet),
post-translational histone modifications and chromatin re-
modeling. Tens of millions of nucleotides referred to as
CpG sites, which are prone to DNAmet, exist in the hap-
loid human genome. Furthermore, the genome-wide
DNAmet profile is maintained through cell divisions.
DNA methyltransferases apply methyl groups on CpG
sites to form 5-methylcytosine, whereas demethylation
may occur either passively due to dysfunction of the trans-
ferring enzyme or actively through 5-hydromethylcytosine
formation. Genomic regions spanning approximately 0.5
kilobases with a high density of CpG sites are called CpG
islands, and these are commonly localized near transcrip-
tion start sites. CpG sites in such islands are often less
methylated; thus, the genes are available for initiation of
transcription. Moreover, DNAmet plays crucial roles in
gene expression by not only blocking the promoter region
but also altering the activities of regulatory elements, such
as enhancers and insulators. Alternatively, gene body
methylation may influence alternative splicing [1, 2]. Thus,
the cell identity is in part determined and maintained by a
cell type-specific genome-wide methylation pattern, which
may therefore be used in the laboratory as a marker to
characterize the cell types [3–5].
The genome-wide DNAmet profile of the cell

changes; DNAmet patterns are altered in diseases, such
as Alzheimer disease, cancer and type 2 diabetes, and
are also influenced by the accumulating effects of
environmental factors such as toxin exposure and diet
[1, 6, 7]. Single CpG sites undergo hypo- and hyperme-
thylation either randomly by stochastic factors or via
more systematic mechanisms [1]. For example, expos-
ure to environmental factors such as smoking induces
hypomethylation of a well-characterized single CpG site in
the gene F2RL3; this represents an example of a non-
random change in DNAmet because the magnitude of the
change is dose and exposure-time dependent [8, 9].
Furthermore, the epigenome is modified by the bio-

logical aging process. As also Heyn et al. [10] reported
and Zampieri et al. [1] reviewed, in general, aging in-
duces a decrease in average DNA methylation level
genome-wide (global hypomethylation). This was dem-
onstrated by whole-genome bisulfite sequencing of new-
borns and centenarians with as high as ~90 % genomic
coverage. The comparison of methylation states between
the two extremes of the human lifespan also revealed
how the systematic methylation patterns of the CpG
sites are eventually lost and how inter-individual differ-
ences increase with advanced age. In addition, hyper-
methylation in regions near promoters can cause
down-regulation of essential genes that influence vitally
important pathways; Heyn et al. [10] reported that
aging-accelerated hypermethylation events occurred in

13 % of the CpG sites among the millions of sites in the
genome. Therefore, methylation alterations may be
considered as one important factor in the development
of aging-associated diseases [1, 10].
Many studies have addressed the aging-associated

DNAmet changes in blood cells using Illumina array
technology-based methods, which cover 27000 or 485000
CpG sites in the genome [1]. The methylation levels of
specific CpG sites are known to be associated with
chronological aging in a wide variety of tissues [11–13].
However, as a whole, the sets of aging-associated CpGs
identified in different studies, even with comparable tis-
sues and age ranges, show limited overlap. Only few
EWASs on age have taken the cell type heterogeneity into
account [14–17]. We and others [4] hypothesize that lack
of cell type adjustment may have potentially distorted the
results obtained, and this may have contributed to the lack
of concordance observed between the studies.
In this study, we aimed to discover and characterize

regions where the DNAmet levels are associated with
chronological age (a-CpGs) in a middle-aged population
(aged 40–49 years) through analysis where the cell type
heterogeneity was adjusted for. Middle-aged individuals
were selected from the Young Finns Study (YFS) [18]
follow-up in 2011; the selection in the present study is a
balanced sample (i.e. the number of subjects in each age
group was equal and the groups had similar sex-
distribution), and it therefore provides an excellent
opportunity to inspect the effects of aging on DNA
methylome. Furthermore, this sample comprises individ-
uals in an extremely narrow age range of only nine years.
The subjects’ DNA methylomes were characterized
using Illumina Infinium HumanMethylation450 Bead-
Chips and the cell type heterogeneity and sex were
adjusted for in the analysis.
Additionally, our findings were interpreted together

with compatible data obtained using the same
450BeadChip technology, including our previous re-
sults obtained from an EWAS on age (The Vitality 90
+ Study, V90+), in which the subjects’ ages ranged
from 19 to 90 years [15], as well as other results
compiled by Steegenga et al. [19]. The results from
the YFS were interpreted by considering that rates of
aging-associated DNAmet changes fluctuate, especially
during the growth period before adulthood and at the
end of the lifespan [11, 20]. Accordingly, the a-CpGs
found in the YFS that overlap with those established
from adult samples with wider age ranges, such as
V90+ study, may be speculated to be DNAmet re-
gions with constant rate of change throughout adult-
hood. Thus, we aimed to explore the a-CpGs where
level of methylation changes in a clocklike fashion
throughout adulthood from those that show a more
random aging-associated pattern.
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Results
Aging-associated alterations in DNA methylation
In this study, the genome-wide DNAmet levels in whole
blood samples of middle-aged individuals were measured
using 450BeadChip technology. The sample heterogen-
eity (i.e., the proportions of CD8T and CD4T cells,
monocytes, granulocytes, and NK and B cells) were esti-
mated by comparing DNAmet profiles to the reference
dataset [4] (Additional file 1: Figure S1). The cell type
proportions were verified as important determinants of
variation in DNAmet using Spearman’s correlation ana-
lysis, in which the cell type proportions were correlated
with the main principal components (PCs). The PCs
were defined with principal component analysis (PCA)
from the DNAmet data without cell subtype adjustment
(Additional file 2: Table S1a). The analysis revealed that
PC1 to PC6 together explained a large proportion (24 %)
of the variance in the DNA methylome data. Among
those PCs, several PCs had considerable large (-0.5 >
r >0.5) correlation coefficients; thus, adjustments for the
cell type proportion in the analysis were mandatory. The
hypothesis whether DNAmet level of a CpG site is asso-
ciated with chronological age was tested at each CpG

site using generalized linear regression analysis (‘beta re-
gression’), where sex and cell type proportions were ad-
justed for.
We found 1202 a-CpGs (i.e. CpG sites where age was

a statistically significant variable in the multivariable re-
gression model, FDR < 5 %) in middle-aged individuals
(aged 40–49 years), of which 622 (52 %) were hypo-
methylated and 580 (48 %) were hypermethylated with
advancing age. These hypo- and hypermethylated sites
were annotated on 440 and 437 genes, respectively. Lists
of the most significant aging-associations in YFS are
shown in Tables 1 and 2 and in Additional file 3: Table
S4. Frequently reported CpG sites (summarized by
Steegenga et al. [19]) located in the ELOVL2
(cg16867657, cg24724428 and cg21572722), three sites
in the FHL2 (cg06639320, cg22454769 and cg24079702),
two sites in the PENK (cg16219603, cg16419235), and
two sites in the KLF14 (cg08097417, cg09499629 and
cg07955995) were also identified as hypermethylated in
the present study.
Interestingly, similar to correlation analysis results

shown in Additional file 2: Table S1a, the cell type pro-
portions were important determinants of variation in

Table 1 The top 20 hypermethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypermethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (q-value < 0.05 which corresponds to false discovery rate <5 %) and 3) the top-ranking p-values. The full list of
a-CpGs is shown in Additional file 3: Table S4. The q-value denotes the Benjamini-Hochberg-corrected p-value

ProbeID Gene name CHR Coordinate Betareg estimate of age q-value

cg16867657 ELOVL2 6 11152863 0.022 0.00E + 00

cg24724428 ELOVL2 6 11152874 0.021 4.80E-07

cg21572722 ELOVL2 6 11152880 0.013 3.46E-06

cg06639320 FHL2 2 105382171 0.018 3.46E-06

cg00059225 GLRA1 5 151284550 0.013 5.13E-06

cg08097417 KLF14 7 130069673 0.020 1.87E-05

cg22454769 FHL2 2 105382199 0.021 5.03E-05

cg07553761 TRIM59 3 161650671 0.016 6.12E-05

cg01588592 ETV3L 1 155335949 0.011 1.14E-04

cg11176990 LOC375196 2 39041037 0.014 1.54E-03

cg09499629 KLF14 7 130069676 0.018 1.54E-03

cg22158769 LOC375196 2 39041043 0.020 2.43E-03

cg18898125 NEFM 8 24826286 0.012 2.49E-03

cg21911021 ZIK1 19 62786823 0.020 3.07E-03

cg27217742 RGS12 4 3335078 0.013 3.07E-03

cg17737681 DLX1 2 172660382 0.015 3.29E-03

cg24079702 FHL2 2 105382203 0.015 5.99E-03

cg16219603 PENK 8 57523140 0.013 7.00E-03

cg23930856 TFAP2B 6 50919683 0.013 7.22E-03

cg11152943 TRAPPC9 8 141318170 0.013 7.57E-03
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DNAmet levels of the 1202 a-CpGs as well (Additional
file 2: Table S1b). In this second correlation analysis, the
PCs were defined with PCA from DNA methylation data
of the 1202 a-CpGs (aging-associated CpG sites, FDR <
5 %); methylation data in PCA were not adjusted for the
cell subtype heterogeneity. Correlation analysis revealed
that PC1-PC6 determined more than 50 % of variance in
methylation levels of these a-CpGs and these PCs corre-
lated clearly with age and the cell counts. It is also worth
of mentioning that of the 1202 a-CpGs in our initial
aging-association analysis, there were 526 multivari-
able regression models (corresponding 526 CpG sites)
where all cell count variables (monocytes, granulo-
cytes, NK, CD8T and CD4T cells) were detected as
statistically significant (FDR < 5 %) predictors of DNA
methylation levels.
The importance of the cell count considerations was

explored with an additional set of regression models,
where the DNA methylation level in each CpG site
genome-wide was explained with age and sex only while
the cell counts were not adjusted for. In this analysis,
only 56 sites were classified as aging-associated (FDR <
5 %) and these sites were all included to the original

pool of 1202 a-CpGs. The 56 a-CpGs are pointed out in
the Additional file 3: Table S4.
Aging-associated hypermethylation and hypomethyla-

tion differ in their features. The exploration of aging-
associations in the YFS revealed that hypermethylation
was more frequent within genes with more association
hits as shown in Additional file 4: Table S5 and Fig. 1).
Specifically, there were 70 genes in total either with
more than one hypomethylated or more than one hyper-
methylated a-CpGs per gene. Of those, 22 genes com-
prised more than one hypomethylated a-CpGs per gene
and 48 genes comprised more than one hypermethylated
a-CpGs per gene as shown in Additional file 4: Table S5.
Next, the genomic locations of the a-CpGs were inves-

tigated, revealing that 388 of the 1202 a-CpGs were lo-
cated on CpG islands rather than island shores, shelves
or non-island regions, and a majority (N = 331) of those
were hypermethylated (Additional file 1: Figure S2). The
remaining sites were distributed to shores, shelves and
non-island regions with opposite manner as shown in
Additional file 1: Figure S2; the aging-associated hypo-
methylation was more abundant on those regions. The
a-CpG locations on genes were also investigated; no

Table 2 The top 20 hypomethylated a-CpGs in middle-aged individuals. The hypermethylated and hypomethylated a-CpGs are
shown separately in Tables 1 and 2, respectively. The top-ranking hypomethylated a-CpGs were selected with the following criteria:
1) direction of the association based on the value of beta regression (denoted as ‘betareg’) estimate of age; 2) more than one hit
identified per gene (q-value < 0.05 which corresponds to false discovery rate < 5 %) and 3) the top-ranking p-values. The full list of
a-CpGs is shown in Additional file 3: Table S4. The q-value denotes the Benjamini-Hochberg-corrected p-value

ProbeID Gene name CHR Coordinate Betareg estimate of age q-value

cg00791074 MTHFD1L 6 151227862 -0.018 7.51E-04

cg18618815 COL1A1 17 45630323 -0.018 5.99E-03

cg14169886 PRDM16 1 3101709 -0.014 5.99E-03

cg01820374 LAG3 12 6752344 -0.014 9.24E-03

cg19421125 LAG3 12 6753117 -0.022 1.02E-02

cg14829066 NTRK3 15 86360145 -0.013 1.49E-02

cg03290281 C6orf195 6 2577606 -0.021 1.49E-02

cg05561193 DCLK2 4 151218492 -0.017 1.96E-02

cg20249566 NWD1 19 16691739 -0.024 1.97E-02

cg23928726 PEX10 1 2334858 -0.014 1.97E-02

cg20007894 SCAND3 6 28648421 -0.019 2.08E-02

cg16355231 PEX10 1 2334839 -0.019 2.14E-02

cg15058210 HDAC4 2 239861814 -0.018 2.16E-02

cg06030846 TMEM108 3 134581182 -0.011 2.16E-02

cg25994988 UBASH3B 11 122157592 -0.011 2.16E-02

cg18345924 NCAM2 21 21294102 -0.016 2.18E-02

cg00638021 COL1A1 17 45622061 -0.013 2.26E-02

cg19344626 NWD1 19 16691749 -0.024 2.36E-02

cg01288258 ITFG2 12 2792128 -0.011 2.41E-02

cg05221385 TAF10 11 6590080 -0.010 2.43E-02
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enrichment of a-CpGs was detected in the regions of 3′
untranslated regions (UTRs), 5′UTRs or close distances
to transcription start sites or gene bodies (Additional file
1: Figure S3a and b). The distributions of the a-CpGs on
chromosomes were also investigated; hypermethylated a-
CpGs were over-represented on chromosome 18, whereas
hypomethylated sites were not enriched on any chromo-
some (hypergeometric test, nominal p-value of 0.05)
(Additional file 1: Figure S3c). In addition, we ensured
using visual examination that there were no spatial local
cluster(s) of a-CpGs on Chr-18.

Sex specificity of the aging-associated CpG sites
To evaluate the sex specificity of the aging-associations,
an interaction model with variables corresponding to
sex, age and the interaction of sex and age (age*sex) was
constructed. No sex-specific a-CpGs were identified, as
analysis revealed that no interaction term had a false dis-
covery rate (FDR) below 5 % (q-value < 0.05) in the
interaction models. Furthermore, we analyzed women
(N = 111) and men (N = 73) separately as well: sex-
specific a-CpGs were explored among all CpG sites with
an multivariable regression model (‘beta regression’)
where age and cell type proportion variables were used
to predict DNA methylation level in each CpG site.
These analyses revealed that there were 105 and 173 a-
CpGs (FDR < 5 %) among men and women, respectively;
these CpG sites were all included to our original pool of

1202 a-CpGs which were detected using whole sample
(N = 184). Importantly, as shown in Additional file 1:
Figure S5, when the directions of change among the
1202 a-CpGs were cross-compared between men and
women (without p-value cut-off ), all sites, except one,
showed concordant behavior regarding hypermethylation
or hypomethylation during aging (i.e. whether the esti-
mate of age variable in the regression model was nega-
tive or positive value). This behavior was also identical
to the directions of change among the 1202 a-CpGs in
the initial analysis (N = 184). As a conclusion, these re-
sults were in line with our interaction analysis: there
were no significantly sex-specific a-CpGs among middle-
aged individuals.

Functional roles of a-CpGs in the YFS
The gene ontology (GO) functions and processes of the
genes with a-CpGs were investigated using the Gene
Ontology enRIchment anaLysis and visuaLizAtion
(GOrilla) tool [21]. The analysis was conducted separ-
ately for genes with hypermethylated a-CpGs and for
hypomethylated a-CpGs (N = 440 and N = 437, respect-
ively). The analysis revealed an unambiguous differences
between hypo- and hypermethylated a-CpGs, as 73 GO
process terms and to 8 GO function terms were enriched
to genes with hypermethylated a-CpGs (Tables 3 and 4, re-
spectively; Additional file 2: Table S2.), whereas there was
no enrichment of terms among the genes with hypomethy-
lated a-CpGs (Bonferroni-adjusted p-value threshold of
0.05). The most statistically significant processes were ana-
tomical structure development (GO:0048856, p= 1.02*10-11)
and morphogenesis (GO:0009653, p = 5.02*10-10), both of
which cluster under the term ‘developmental process’.
In addition, Pscan [22] was used to predict whether

there were common regulators for groups of genes. The
hypermethylation-associated genes were predicted to be
regulated by 11 common transcription factors (Additional
file 2: Table S3), several of which were zinc coordinating.
For hypomethylation-associated genes, no common tran-
scription factors were found. A large proportion of the 11
regulators of genes with hypermethylated a-CpGs in the
YFS were zinc coordinating, and four (E2F1, EGR1, SP1,
TFAP2A) were identical to those identified in the V90+
study [15].

Comparisons to other studies
In the explorative cross-comparison analysis, the a-CpGs
identified in middle-aged individuals of the YFS were
compared to aging-associated DNA methylome alter-
ations between nonagenarians and 19–30-year-old indi-
viduals evidenced in our previous study (the V90+
study) [15]. The a-CpGs identified in the V90+ study
were strongly associated with aging while the cell type
heterogeneity was adjusted for in the analysis. A total of

Fig. 1 Numbers of aging-associated CpG sites (hits) per gene in
regard to hypermethylation and hypomethylation is visualized as bars.
Aging-associated hypermethylation was more frequent within genes
with more association hits. First, the genes were categorized into
groups based on the number of hypermethylated or hypomethylated
a-CpG hits per gene. Next, the frequencies of hypermethylated and
hypomethylated a-CpGs within the groups were calculated. The
number of a-CpGs for each group is shown inside each bar
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the 1202 a-CpGs established in the YFS cohort, 999 a-
CpGs were also aging-associated in the V90+ sample
(FDR < 5 %, Additional file 3: Table S4). Of these 999 a-
CpGs, 464 (46 %) were hypermethylated, and 535 (54 %)
were hypomethylated with advancing age. Furthermore, in
987 of the overlapping 999 a-CpGs the direction of the
aging-associated change was the same: in the present and

in the V90+ study, 455 a-CpGs were hypermethylated,
and 532 were hypomethylated with advancing age (Fig. 2).
Finally, a-CpGs that were characterized from whole

blood samples as aging-associated using 450 BeadChip
technology and previously reported by Hannum et al.
(number of hits, 89) [13], Garagnani et al. (number of hits,
9) [12] and Florath et al. (number of hits, 162) [23] and
presented as summary table in Steegenga et al [19] were
further compared with our data. The corresponding age of
the samples ranged between 19 -101, 9–83 and 50–75
years, respectively. The comparison revealed 21 common
CpG sites out of the 999 a-CpGs in two or more studies
in addition to the YFS and the V90+ study (Fig. 3).

Discussion
In this study, we identified 1202 a-CpGs where the
DNAmet level was associated with aging in middle-aged
individuals (i.e. with an age range of 40 to 49 years), in
whom the growth and development of youth has ended
yet old age and its associated diseases had not begun. Of
the 1202 a-CpGs, 622 (52 %) were hypomethylated, and
580 (48 %) were hypermethylated with advancing age,
with annotations on 440 and 437 different genes, re-
spectively. In general, the functional features of these
aging-associated sites are mostly similar to those identi-
fied from cohorts with larger age differences. Our study
highlights also that a large number of sites undergo
aging-associated DNAmet level changes throughout
adulthood and we speculate that a great proportion of
those probably change with a clock-like manner.
A large fraction of the DNAmet sites are altered dur-

ing the lifespan, as shown by previous studies performed
using 450BeadChip technology [15, 24] and whole-
genome bisulfite sequencing [10]. Furthermore, the rates
of these changes may fluctuate at different stages of the
lifespan. Studies have shown that a-CpGs behave differ-
ently during the growth period before adulthood and at
the end of the lifespan [11, 20]. Nonetheless, there are
genes (ELOVL2, SFMBT1, KLF14, PENK, and FHL2)
with CpG sites that are consistently detected as being
aging-associated despite of differences in sample tissue

Table 3 Several GO process terms were enriched within genes
with hypermethylated a-CpGs in the analysis with GOrilla [21, 43].
This table represents the main clusters of processes (53 redundant
GO terms were filtered out of 73 terms using REViGO [44]). The full
list of processes is shown in Additional file 2: Table S2

GO term Description of the process p-value (-log10)

GO:0048856 Anatomical structure development 10.9914

GO:0050794 Regulation of cellular process 8.9788

GO:0007389 Pattern specification process 8.2343

GO:0032502 Developmental process 8.2041

GO:0009893 Positive regulation of metabolic process 8.0511

GO:0044708 Single-organism behavior 7.5544

GO:0035108 Limb morphogenesis 7.5544

GO:0003002 Regionalization 7.3585

GO:0051239 Regulation of multicellular organismal
process

7.301

GO:0006357 Regulation of transcription from RNA
polymerase II promoter

7.2248

GO:0065007 Biological regulation 7.1675

GO:0007610 Behavior 7.08

GO:0048598 Embryonic morphogenesis 7.0778

GO:0048518 Positive regulation of biological process 6.8761

GO:0048519 Negative regulation of biological process 6.7122

GO:0008285 Negative regulation of cell proliferation 6.4921

GO:0048523 Negative regulation of cellular process 5.8827

GO:0010842 Retina layer formation 5.8041

GO:0051961 Negative regulation of nervous system
development

5.7423

GO:0032774 RNA biosynthetic process 5.4225

Table 4 GO function terms were enriched within genes with hypermethylated a-CpGs in the analysis with GOrilla. Table contains
the full list of enriched GO function terms (Bonferroni-adjusted p < 0.05) obtained from analysis with GOrilla [21, 43]

GO term Description of the function p-value (-log10)

GO:0043565 Sequence-specific DNA binding 10.001

GO:0000981 Sequence-specific DNA binding RNA polymerase II transcription factor activity 7.322

GO:0001071 Nucleic acid binding transcription factor activity 6.721

GO:0003700 Sequence-specific DNA binding transcription factor activity 6.721

GO:0003677 DNA binding 6.625

GO:0005326 Neurotransmitter transporter activity 5.148

GO:0005488 Binding 4.967

Kananen et al. BMC Genomics  (2016) 17:103 Page 6 of 12



types or age distributions [11–13, 15]; notably, these
genes were also identified in the present study as being
aging-associated (Tables 1 and 2; Additional file 3: Table
S4). However, a recent meta-analysis on three DNAmet
data sets obtained using 450BeadChip illustrated dis-
crepancies in the lists of regions where DNAmet levels
were altered during the entire human lifespan, ranging
from 0 to 100 years of age [2]. Because blood sample
heterogeneity has been shown to have a great impact on
EWASs [4, 15], our speculation is that the discrepancies
might be due to the presence of different cell types.
In the primary analysis, we aimed to identify a-CpGs

in middle-aged individuals representing general popula-
tion with age range of only one decade. Then, we cross-
compared the results to those obtained with similar
analysis pipeline from a population aged 19 to 90 years
(Vitality 90+ study) [15]. Among the 1202 a-CpGs char-
acterized from the YFS with an age range of nine years,
987 sites had an identical association direction as de-
tected in the Vitality 90+ study, as shown in Fig. 2 and
in Additional file 3: Table S4. We hypothesize that sites
displaying aging-associated methylation changes in
both populations possibly represent sites where the
change in DNA methylation follows a clock-like pat-
tern. We further speculate that the non-overlapping
CpG sites identified in the population with a wider age
range (19 to 90 years of age) may possibly represent

sites where the aging-associated change is accelerated
in either early or late adulthood; the a-CpGs identified
only when comparing group of nonagenarians to young
adults may represent changes that reflect e.g. aging-
associated pathologies or accumulation of aging-
associated impairments.
As aging influences the immune system of men and

women differently and as the risk rates of several dis-
eases between sexes are unequal [25, 26], 1) an inter-
action analysis was performed to address the sex
specificity of a-CpGs, and 2) the aging-associations
were also evaluated in separate analyses among men
and women. These analyses revealed no sex-specific
single a-CpGs; thus, the identified a-CpGs are univer-
sally altered in both men and women. These results are
in accordance with our previous results from the V90+
study, in which the DNAmet states of nonagenarians
were compared with 19–30-year-old individuals [15],
and with results published by others [24, 27]. However,
studies have shown that as a whole, the DNA methy-
lomes of males age more rapidly than those of females
[13, 28].

Fig. 2 The direction of aging-association in 1202 a-CpGs is visualized
as scatterplot. Each dot corresponds to single a-CpG; directions of
associations correspond to estimates of age which are fetched from
the regression models. Of 1202 sites, 987 CpG sites were similarly
associated with aging in both the YFS and in the V90+ study. The
analyses in both studies were adjusted for leukocyte cell subtype
proportions, and the studies consisted of the samples with distinct
age ranges: the YFS comprised 40 to 49 years old subjects whereas
the V90+ study consisted of 19–30-year-old individuals and
nonagenarians. The corresponding data illustrated in the Fig. 2 is
presented in Additional file 3: Table S4

Fig. 3 The top 21 most commonly reported a-CpGs and their
direction of association with aging. The top 21 a-CpGs were selected
with following criteria: the a-CpG was identified in present study
and in the V90+ study, as well as in two or more other studies
(Hannum et al. [13], Garagnani et al. [12] or Florath et al. [23]); the
sites were reported as aging-associated in blood samples and the
data were obtained using 450 BeadChip technology. Methylation
level differences in YFS between the highest and the lowest age
groups (between 40- and 49-year-old individuals; calculated from
the medians of residuals after adjusting for effects of sex and cell
type proportions), are illustrated as bars. The bars are colored
according to the hypomethylation or hypermethylation status
(grey = hypomethylated, black = hypermethylated). Gene annotation
is shown for each bar, where applicable (na = no gene annotation).
The corresponding data is presented in Additional file 3: Table S4
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Aging-accelerated hypomethylation may be thought as
an erosion-like event, whereas hypermethylation may be
thought as an actively guided process. In practice, the
difference between these features is manifested, for ex-
ample, through the enrichment of GO terms for groups
of genes and for signaling pathways [1, 15]. The distinct
roles of the methylation status were demonstrated in the
present study with the numbers of a-CpG hits in a gene,
as we observed notable enrichment of hypermethylation
events located in genes with more than one a-CpG
(Fig. 1). The functional roles of genes with a-CpGs were
established by GO term enrichment analysis, which re-
vealed obvious difference between hypo- and hyper-
methylated a-CpGs, even though the analysis was
conducted with an equal number of genes in the GO
term analyses. A high number of GO terms were
enriched to genes with hypermethylated a-CpGs
(Tables 3 and 4; Additional file 2: Table S2), whereas
there was no GO term enrichment within genes with
hypomethylated a-CpGs. The most statistically signifi-
cant processes enriched to genes with hypermethylated
a-CpGs were ‘anatomical structure development’ and
‘morphogenesis’, both of which cluster under the term
‘developmental process’. The enrichment of hypermethy-
lated a-CpGs to these processes has been reported previ-
ously [14, 23, 24, 29]. Reynolds [30] and Yuan [16]
reported also that the CpG sites hypermethylated dur-
ing aging are enriched to common processes and ex-
hibit shared features, whereas hypomethylated a-CpGs
are a less homogenous group. Furthermore, age-
associated hypermethylation interactome hotspots have
been reported [31].
In addition to the details mentioned above, we observed

other similar hypermethylation characteristics in the YFS,
as those reported in previous studies [1, 15]. For example,
the majority (85 % out of 388) of a-CpGs localized in
CpG-islands (instead of shores, shelves or other regions)
were hypermethylated, and an excess of hypermethylated
a-CpGs were also found on chromosome 18. However,
there was no enrichment of a-CpGs on chromosome 19.
In the V90+ study, the hypermethylated a-CpGs located in
the genes encoding zinc-associated proteins were more
abundant on chromosome 19 [15], where zinc-finger
genes are clustered. The zinc-finger genes (such as
ZNF154) located in chromosome 19 are proposed to be
repressors of endogenous retroviruses (ERVs) [32], and
the repressor activity may be disturbed by hypermethyla-
tion. Interestingly, CpG sites located in the gene ZNF154
and almost all other genes encoding zinc-fingers on
chromosome 19 were absent from our pool of 1202 a-
CpGs. Thus, as the hypermethylation of CpG sites located
in genes encoding zinc-fingers was observed in the oldest
age group, we hypothesize that rates of methylation level
changes at the CpG sites located in ERV repressor genes

(e.g. ZNF154) may fluctuate throughout the lifespan and
that the rates may be enhanced in association with other
senescence-related factors. Therefore, it is possible that
DNAmet-based dysfunction of the repression system
might explain the increased expression of ERVs in old age
[33]. Future studies are required to address these
questions.
To further inspect the roles of the genes with aging-

accelerated DNAmet changes, analysis of the common
regulators (transcription factors) of groups of genes with
hypermethylated and hypomethylated a-CpGs was con-
ducted with Pscan [22]. The results were again surpris-
ingly concordant with those in the V90+ study. There
were 11 regulators with unique identifiers for hyper-
methylated a-CpGs (Additional file 2: Table S3), whereas
hypomethylated a-CpGs had no common regulators. A
great proportion of the 11 regulators of genes with
hypermethylated a-CpGs in the YFS were zinc coordin-
ating, and four (E2F1, EGR1, SP1, and TFAP2A) were
identical to those identified in the V90+ study results
[15]. Overall, the results from analysis of the functional
roles of the genes with a-CpGs were surprisingly well in
line with the observations from the V90+ study and sup-
ported the proposition that aging-associated hyperme-
thylation is a more tightly regulated process, whereas
aging-associated hypomethylation is induced more by
environmental effects and stochastic factors.
Finally, we demonstrated the lack of concordance in

previously reported pools of a-CpGs by comparing three
published lists of overlapping a-CpGs produced using
450BeadChips from whole blood samples from subjects
with age ranges of 50–75, 19–101 and 9–83 [12, 13, 23].
Although 987 of the a-CpGs in the YFS showed similar
association directions as in the V90+ study (Fig. 2 and
Additional file 3: Table S4), we observed only 61 over-
lapping a-CpGs in the YFS and the V90+ study, which
were also reported as aging-associated in one or more
other robustly compatible studies (same sample type and
array technology). Of these, only 21 a-CpGs were ob-
served in two or more of the studies in the comparison
(Fig. 3). To the best of our knowledge [4, 15], the main
factor that contributes to the DNAmet profiles in blood
cells is cell type heterogeneity; thus, we speculate that
the lack of cell type adjustments may account for the
majority of disparity in the cross-comparisons. The
results of aging-association analysis and combined PCA-
correlation analysis in this study supports our specula-
tion. Cell type heterogeneity should be taken into
account when analyzing samples composed of mixed cell
types, but a limited number of such studies have been
conducted [4, 14–17].
Notably, our study had an obvious limitation, it would

substantially benefit from being a follow-up; therefore,
future studies are needed. Nevertheless, the analysis is
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powered by well-designed sample characteristics because
each age group was matched by sex and sample size
and because adjustments were made for cell type het-
erogeneity. Thus, the analysis was sensitive enough to
detect DNAmet changes within an age range span-
ning nine years.

Conclusions
Here we report that aging-associated DNA methylation
changes can be identified in a middle-aged population
with a narrow age range of 9 years. Aging-associated
DNAmet changes are not uniform, but occur due to dif-
ferent reasons, at different rates and directions in differ-
ent parts of the genome and are not alike in all cell
types. Thus, due to this diverse nature of aging-
associated DNA methylation changes, all confounding
factors should be accounted for in the analysis, in order
to obtain comparable results. Our results support the
notion that cell type heterogeneity should be adjusted
for when analyzing tissues consisting of mixed cell types.
Moreover, our results imply that considerable proportion
of DNAmet changes show clock-like behavior through-
out adulthood.

Methods
Study population
The Young Finns study (YFS) comprises a series of six
cohorts, representing general population, born in 1962,
1965, 1968, 1971, 1974 and 1977 from five cities with
university hospitals in Finland (Helsinki, Kuopio, Oulu,
Tampere and Turku) [18]. A subsample of 184 individ-
uals was randomly assigned from a follow-up in 2011.
The sample collection in 2011 is described in more de-
tail elsewhere [34]. The categories of age in the methyla-
tion analysis were 40, 43, 46 and 49 years old, with
group sizes of 50, 44, 55 and 35, in which 58 %, 68.2,
56.4 and 60 % were women, respectively. All of the par-
ticipants were of western European descent. The study
followed the guidelines of the Declaration of Helsinki
and was approved by the Ethical Review Committee of
Turku University Hospital. All participants provided in-
formed consent.

DNA methylome quantification
Sample preparations
Leukocyte DNA of the YFS cohort was obtained from
EDTA-blood samples using a Wizard® Genomic DNA
Purification Kit (Promega Corporation, Madison, WI,
USA) according to the manufacturer’s instructions.
Genome-wide DNA methylation levels were obtained
using Illumina Infinium HumanMethylation450 Bead-
Chips [35–37] in the Core Facility at the Institute of
Molecular Medicine Finland (FIMM), University of
Helsinki according to the protocol by Illumina.

The methylation data set was preprocessed identically
with a previously described analysis pipeline which was
used in the DNA methylation analysis of the V90+ study
samples [15, 38, 39]. Briefly, methylation signal data was
preprocessed as a methylumiset object using R software
(R > = 2.15.3) with array-specific algorithms imple-
mented in the R package wateRmelon [40] and BMIQ
[38]. The resulting β values ranged linearly from 0 (non-
methylated, 0 %) to 1 (completely methylated, 100 %).
The quality of DNA samples and methylation data was
carefully ensured by standard examinations with princi-
pal component analysis (PCA) and visualizations with
density plots, boxplots and dotplots. Three of the YFS
samples were excluded due to atypically low probe in-
tensities compared with control probe intensities.
The YFS sample was lacking leukocyte cell type char-

acterizations; thus, the proportions were determined by
the estimation algorithm implemented in the estimate-
CellCounts function of the minfi Bioconductor package
[4] using R software (R > = 2.15.3). The algorithm utilizes
the selection of 600 control probes that represents spe-
cific signatures of CD8T and CD4T cells, monocytes,
granulocytes, and NK and B cells (Additional file 1:
Figure S1). The reference data used in the estimation is
available in the FlowSorted.Blood.450K Bioconductor
package [4].

Quality control of the DNA methylome data
As the cell type proportions contribute to most of the
variation in genome-wide DNAmet [4, 15], the signifi-
cance of the estimated cell counts in the DNAmet data
was investigated by PCA, and the main PCs of DNAmet
were correlated with the cell counts (Additional file 2:
Table S1a). Spearman’s correlation analysis indicated a
clear connection between methylation profiles and esti-
mated cell proportions. Thus, the estimated cell counts
as well as the genome-wide methylation data was shown
to behave as expected.
As part of the quality control step, a well-known CpG

site with phenotype association was selected. Smoking is
strongly associated with the hypomethylation of
cg03636183, located in the gene F2RL3 [8, 9]; our data
from the YFS replicated this finding, as we observed a
difference between daily smokers and others (Wilcoxon
rank sum-test, P = 2.4*10-6; Additional file 1: Figure S4).
Analysis with multivariable regression model (function
lm() in R) revealed that the cell type heterogeneity, age
or sex of the samples did not alter the finding of
cg0363618.

Detection of aging-associated methylation regions
Aging-associated CpG sites, the a-CpGs, were explored
using a generalized linear regression model, referred to
as the ‘variable dispersion beta regression’ in an iterative
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manner for each methylation locus (CpG site). The age
(categories of 40, 43, 46 and 49) was employed as a vari-
able to predict the site-specific methylation outcome in
the form of a β value (ranging from 0 to 1); this was
done in each equation using the mean model and a
linker function of logit. The cellular heterogeneity was
adjusted in the initial multivariable regression analyses:
in addition to age and sex variables, variables corre-
sponding to each estimated blood cell subtype propor-
tion (CD8T and CD4T cells, monocytes, granulocytes,
NK and B cells; all ranging linearly from 0 to 1) were in-
cluded to the regression models as predictors of DNA
methylation level. Additionally, sex-specific a-CpGs were
explored among all CpG sites using two approaches: 1)
with an interaction model where age, sex, sex*age and
cell type proportion variables were used to predict DNA
methylation level, and 2) with an regression model
where age and cell type proportion variables were used
to predict DNA methylation level separately for men
and women. Furthermore, to explore the relevance of
the cell count considerations in the regression analyses,
an additional set of age-association analyses was per-
formed. In these regression models, the DNA methyla-
tion level of each CpG site was explained with age and
gender variables only and the cell proportions were
not adjusted for. The analyses were performed using
R software (R > = 2.15.3), and the regression analyses
were mainly conducted with algorithms implemented
in the betareg package [41]. The nominal Benjamini-
Hochberg adjusted p-value (q-value) was set to 0.05.
The a-CpGs were annotated based on the assembly
provided by the R package, FDb.InfiniumMethyla-
tion.hg19 [42]. For the purpose of visualization in
Fig. 3, standardized weighted residual values of the
methylation levels were extracted for each CpG site
from regression models in which only sex and cell
type proportion variables were set as predictors.

Analysis of the functional roles of a-CpGs
The enriched gene ontology (GO) terms of the genes
with a-CpGs were discovered using GOrilla [21, 43],
and the significant terms were further clustered by
REViGO [44]. The GOrilla analysis was performed for
the process, function and component categories with
two un-ranked lists, of which the first list comprised
genes with hypomethylated or hypermethylated a-
CpGs (Additional file 3: Table S4), and the second
comprised the genes in the background (N = 20,902;
analysis date, 9.3.2015). Furthermore, the prediction
of common transcription factors of the groups of
genes with either hypermethylated or hypomethylated
a-CpGs (as two separate analyses) was conducted
using Pscan with the default settings (JASPAR
database; analysis date, 10.3.2015) [22]. The nominal

p-value was set to at the Bonferroni-corrected value
of 0.05 in each analysis.

Availability of supporting data
The methylation data presented in this manuscript have
been submitted to the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) under the
accession number GSE69270.

Additional files

Additional file 1: Figures S1-S5. 1) A figure of estimated proportions
of CD8T, CD4T, NK, B cell, monocyte and granulocyte cells of peripheral
blood samples in YFS. Proportions are visualized as boxplots, categorized
by age group and organized to separate panels by sex. 2) A figure of
aging-associated CpG site locations in regard to CpG islands (CGIs).
Number of aging-associated CpG sites are visualized with stacked bars. 3)
A figure (a-c) presenting locations of a-CpGs. 4) A figure showing results
for association of DNA methylation level in cg03636183 with smoking. 5)
A figure presenting sex specificity of the aging-associated CpG sites
(a-CpGs). (DOCX 357 kb)

Additional file 2: Tables S1-S3. 1) Two summary tables (a and b) of
the results from Spearman correlation analyses between age, the cell
counts and the first principal components (PCs). PCs were defined from
either the whole methylation data or 1202 a-CpGs using PCA. 2) A table
of the GO terms of the bio processes that are enriched to genes with
aging-associated CpG-sites. 3) A table of common transcription factors for
genes with hypermethylated a-CpGs characterized using Pscan.
(DOCX 31 kb)

Additional file 3: Table S4. A full table of 1202 a-CpGs with detailed
information. (XLSX 183 kb)

Additional file 4: Table S5. A summary table where the 70 genes with
more than one hypomethylated or more than one hypermethylated a-
CpGs per gene are presented. (XLSX 15 kb)
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