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Abstract

Background: The CLE (CLAVATA3/Endosperm Surrounding Region-related) gene family encodes small signaling
peptides that are primarily involved in coordinating stem cell fate in different types of plant meristems. Their roles
in vascular cambium have highlighted their potential function in wood formation. Apart from recent advances on
identification and characterization of CLE genes, little is known about this gene family in a tree species.

Results: Fifty PtCLE genes were identified from the Populus trichocarpa genome and were classified into four major
groups based on sequence similarity. Analysis of the genomic organization of PtCLE genes indicates that genome
duplication, as well as the diversity in the CLE motif, have contributed to the expansion of CLE gene family in
poplar. A comparison with functionally characterized Arabidopsis CLE protein sequences showed that many PtCLE

proteins are closely related to their predicted Arabidopsis counterparts. Particularly, PtCLE3, PtCLE12, PtCLET4 and
PtCLE38 comprised an identical CLE motif to AtCLE41/TDIF, which is known as a regulator of vascular cambium
homeostasis, strongly supporting the idea that similar signaling pathways exist in both species to regulate wood
formation and secondary growth. Transcriptome profiling revealed that PtCLE genes generally were differentially
expressed while some PtCLE genes exhibited tissue-specific expression patterns. Moreover, compared to their
Arabidopsis counterparts, PtCLE genes showed either similar or distinct expression patterns, implying functional
conservation in some cases and functional divergence in others.

Conclusions: Our study provides a genome-wide analysis of the CLE gene family in poplar, and highlights the
potential roles of key PtCLE genes in the regulation of secondary growth and wood formation. The comparative
analysis revealed that functional conservation may exist between PtCLEs and their AtCLE orthologues, which was
further supported by transcriptomic analysis. Transcriptional profiling provided further insights into possible
functional divergence, evidenced by differential expression patterns of various PtCLE genes.
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Background

Small regulatory peptides, a growing class of signaling
molecules mediating cell-cell communication, are essen-
tial for plant growth, development and responses to en-
vironmental stimuli [1-6]. The CLE (CLAVATA3/
Endosperm Surrounding Region-related) peptide family
is one of the well-studied peptide families in plants. The
CLE genes have been found in many plant species and
some plant parasitic nematodes, while the functions of
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most CLE genes are still unknown [2, 3, 7-13]. However,
accumulated data have revealed that CLE genes played
vital roles in stem cell homeostasis of different types of
plant meristems including the SAM (Shoot Apical Meri-
stem; AtCLV3), the RAM (Root Apical Meristem;
AtCLE40, AtCLE19 and AtCLE22), the vascular meri-
stem (AtCLE41/TDIF) and the root nodule meristems
(LjCLE-RS1/2; MtCLE12/13; GmRIC1/2) [14-27].

Other than their roles in stem cell homoeostasis, CLE
genes have been found to participate in a range of bio-
logical processes [2-6]. AtCLE1, AtCLE3, AtCLE4, and
AtCLE7, for example, were predominantly expressed in
the Arabidopsis root pericycle, and their expressions
were induced under nitrogen-deficient conditions [28].
Over-expression of AtCLE1, AtCLE3, AtCLE4, and
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AtCLE7 repressed the emergence and growth of lateral
roots, which required CLV1, suggesting that CLV1 medi-
ated a nitrogen-responsive CLE peptide signaling path-
way that negatively regulated later root development
under nitrogen deficiency [28]. AtCLES is specifically
expressed in the endosperm and young embryos [29].
The mutation of AtCLE8 caused smaller and defective
seeds/embryos, while ectopic expression of the AtCLES
gene resulted in larger seeds/embryos, indicating that
AtCLES played crucial roles in embryogenesis and endo-
sperm development [29]. Overexpression of HgCLEI, a
CLE-like nematode gene, resulted in a wus-like pheno-
type and a short-root phenotype. Consistently, overex-
pression of HgCLEI rescued the clv3-1 mutant
phenotype [30]. Further studies have shown that mul-
tiple receptors, including CLV1, RPK2, CRN/SOL2 and
CLV2, are required for the successful nematode infection
of Arabidopsis roots [31, 32].

It has been shown that a number of CLE genes, in-
cluding AtCLE6, AtCLEI10, AtCLE19, AtCLE41/TDIF
and AtCLE44, played roles in vascular development [5,
33, 34]. In particular, exogenous application of
AtCLE41/TDIF peptides inhibited xylem vessel differen-
tiation, but had no effect on the SAM and/or RAM de-
velopment. Consistently, over-expression of AtCLE41/
TDIF resulted in a xylem vessel strand-discontinuous
phenotype in a PXY/TDR-dependent manner [18, 22,
23]. Intriguingly, both over-expression and exogenous
peptide application promoted cambial cell proliferation
[19, 23]. In combination, the data suggested that
AtCLE41/TDIF promoted the proliferation of vascular
cambium cells while preventing them from differentiat-
ing into xylem through the TDR/PXY receptor [19, 22,
23]. Recently, it has been suggested that the AtCLE41/
TDIF-PXY/TDR signaling module is evolutionarily con-
served on regulating the secondary growth in poplar tree
species [35]. By tissue-specific over-expression of
PttCLE41 and PttPXY genes, Etchells and colleagues
(2015) generated poplar trees that exhibited enhanced
growth and increased wood formation [35].

Poplar has been proposed as a model plant in under-
standing the molecular basis of tree growth and develop-
ment, particularly the formation of wood which is
commercially used for manufacturing, such as fuel and
construction materials [36]. However, little is known
about CLE genes in this economically important tree
species. As the conservation of their fundamental roles
in the regulation of maintenance and differentiation of
meristematic tissues, particularly the cambium, as well
as other cellular processes, it is of great interest to study
the CLE gene family in poplar, with an focus on CLE
genes exhibiting expression in vascular tissues which
might be important for wood formation. With the avail-
ability of the genome sequence of poplar (Populus
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trichocarpa), we carried out a genome-wide analysis to
identify CLE genes as a first step to gain insights into
their potential roles in various aspects of poplar growth
and development, enabling a better understanding of the
CLE gene family in a tree species.

Results and discussion

Identification and annotation of the CLE family in Populus
trichocarpa

Systematic TBLASTN and BLASTP analyses were per-
formed using previously reported CLE proteins and CLE
motifs from various plant species as queries searching
against the Populus trichocarpa genome (http://
www.phytozome.net/). The retrieved candidate genes
were then filtered for proteins with an N-terminal signal
peptide and a C-terminal conserved CLE motif [9]. The
analysis was iterated until no new CLE candidate was
identified. As a result, a total of 50 PtCLE (Populus tri-
chocarpa CLE) genes were identified (Table 1). Twenty-
six PtCLE genes were reported previously [11], thus our
current work identified 24 additional PtCLE members
(Table 1).

Similar to Arabidopsis CLE proteins, PtCLEs displayed
few sequence features with each other, apart from the
secretion signals and the CLE motifs (Fig. 1; Additional
files 1, 2, 3, 4, 5, 6 and 7). In line with the AtCLE mem-
bers, the presence and location of putative N-terminal
signal peptide cleavage sites were predicted in each
PtCLE (Fig. 1; Additional file 1). It has been shown that
deletion of the putative CLE signal peptide inactivated
the CLE protein activity in vivo, suggesting that the sig-
nal peptide is essential for in vivo functions of CLE pep-
tides [37].

The CLE proteins contain one or more C-terminal
conserved CLE motif(s), which was reported to be a 12—
13 amino acid hydroxyprolinated, triarabinosylated pep-
tide, and was the functional domain of CLE proteins [38,
39]. MEME (Multiple Expectation Maximization for
Motif Elicitation) was employed to investigate the pres-
ence and distribution of CLE motifs in all PtCLE pro-
teins. Only one single CLE motif was found to be
present across all PtCLEs (Fig. 1; Table 1; Additional files
1,2, 3,4, 5, 6 and 7). The presence of multiple CLE do-
mains was not observed in any of the PtCLE proteins al-
though CLE proteins containing multiple CLE domains
have been reported previously (Table 1; Fig. 1; Add-
itional files 1, 2, 3, 4, 5, 6 and 7; [10, 11]).

The CLE motif, a segment that contains the mature
CLE peptide sequence, is highly conserved across all
CLE proteins [37, 40]. As expected, the consensus se-
quences of the CLE motif between AtCLE and PtCLE
are highly conserved (Fig. 1b-c; Additional file 3; Add-
itional file 5), suggesting functional conservation be-
tween PtCLEs and AtCLEs. Similar to AtCLEs, residues
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Table 1 A list of fifty PtCLE genes identified in this study
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Gene Gene ID Group Protein Motif (13 AA) Gene Gene ID(2.2) Group Protein Motif (13 AA)
symbol length(AA) symbol length(AA)

PtCLE1 Potri.001G016100.1 | 113 EREVPTGPDPLHH  PtCLE26  Potri.009G029000.1 V 118 IHKSSSGPNPVGN
PtCLE2 Potri.001G049700.1 V 137 AHEVPSGPNPESN  PtCLE27  Potri.009G068800.1 | 84 KRKVYTGPNPLHN
PtCLE3  Potri.001G075200.1 V 162 AHEVPSGPNPISN  PtCLE28  Potri.010G039800.1 I 109 KRRVPNGPDPIHN
PtCLE4  Potri.001G217500.1 V 109 LRAAPSGPDPLHH  PtCLE29  Potri.010G111200.1 | 104 KRTIHTGPNPLHN
PtCLES Potri.001G237700.1 V 109 IHKSPSGPNPVGN  PtCLE30  Potri010G124900.1 V 105 KRRVPSCPDPLHN
PtCLE6 Potri.001G274200.1 | 88 KRKIFTGPNPLHN  PtCLE31  Potri010G130400.1 | 110 KRLVPTGPNPLHH
PtCLE7  Potri.001G376100.1 Il 73 FRLSPGGPDPRHH  PtCLE32  Potri010G160600.1 IV 156 KRLVPSGPNPLHN
PtCLE8 Potri.001G376200.1 Il 79 DRLSPGGPDPQHH  PtCLE33  Potri.010G169300.1 I 93 KRRVRRGSDPIHN
PtCLE9 Potri.002G121800.1 I 79 KRKVPNASDPLHN  PtCLE34  Potri010G206700.1 V 86 IHKAPSGPSPIGN
PtCLE10  Potri.002G226300.1 I 74 KRRVPAGPNPLHN  PtCLE35  Potri011G063700.1 Il 76 KRVSPGGPDAQHH
PtCLET1  Potri.002G228000.1 IV 87 RRKIPAGPNPLHN  PtCLE36  Potri.011G096800.1 |lI 73 FRLSPGGPDPRHH
PtCLET2  Potri.002G241300.1 V 131 AHEVPSGPNPISN  PtCLE37  Potri.011G096900.1 Il 78 DRVSPGGPDPHHH
PtCLET3  Potri.003G124000.1 I 88 YRAVPGGPNPLHN  PtCLE38  Potri.012G019400.1 V 116 AHEVPSGPNPISN
PtCLET4  Potri.003G156000.1 V 115 AHEVPSGPNPISN  PtCLE39  Potri012G059600.1 | 107 KRLVPTGPNPLHH
PtCLET5  Potri.003G178500.1 V 134 FHEVPSGPNPESN  PtCLE40  Potri012G138100.1 Il 87 HKAVPGGPNPLHN
PtCLE16  Potri.004G053700.1 Il 66 KRVSPGGPDAKHH  PtCLE41  Potri012G138200.1 IV 87 RRLVPSGPNPLHN
PtCLE17  Potri.005G034000.1 V 66 SRAVPSGPDPLNN  PtCLE42  Potri013G023500.1 V 74 NRWPSCPDPIHN
PtCLE18  Potri.006G036700.1 | 99 KRKVYTGPNPLHN  PtCLE43  Potri013G119100.1 Il 79 KRLSPGGPDPKHH
PtCLE19  Potri.008G086100.1 Il 123 KRRAPRGSDPIHN  PtCLE44  Potri014G156600.1 I 74 KRKVPTGSNPLHN
PtCLE20  Potri.008G093500.1 IV 118 KRLVPSGPNPLHN  PtCLE45  Potri.015G139900.1 |lI 88 HKLVPGGPNPLHN
PtCLE21  Potri.008G115600.1 | 113 KRLVPTGPNPLHH  PtCLE46  Potri015G140000.1 IV 152 RRLVPCGPNPLHN
PtCLE22  Potri.008G120800.1 V 106 KRRVPSCPDPLHN  PtCLE47  Potri017G074600.1 I 97 KRRVPNGPDPIHN
PtCLE23  Potri.008G130800.1 | 103 KRIHTGPNPLHN ~ PtCLE48  Potri.019G090800.1 IlI 85 DRLSPGGPDPHHH
PtCLE24  Potri.008G191500.1 |l 107 KRKVPNGPDPIHN  PtCLE49  Potri.019G090900.1 Il 85 DRLSPEGPNHEHH
PtCLE25  Potri.009G020300.1 V 100 LRAVPSGPDPLHH  PtCLE50  Potri.019G091100.1 Il 76 KRISPGGPDPKHH

A complete list of PtCLEs identified in the present study. The names in bold indicate the PtCLE proteins which were also identified in Oelkers et al. [11]

R2, P5, G7, P8, P10 and H12 of the CLE motifs in
PtCLEs are highly conserved (Fig. 1b-c). Only moderate
conservation was observed for amino acids (V/S)4, (N/
D)9 and (N/H)13, although a similar probability of oc-
currence presented in both AtCLEs and PtCLEs (Fig. 1b-
¢; Additional file 3; Additional file 5). These conserved
residues might provide a framework for the physical
binding with their presumed receptors. Studies have
been reported that residues D, H, G, P5, R and P10 of
the CLE domain were critical for proper AtCLV3 func-
tion in SAM as evidenced by Ala-substitutions [41]. In
addition, residues in the flanking sequences and the hy-
droxylation/arabinosylation modifications of residue P8
are also critical to the AtCLV3 function [42-44]. Fur-
thermore, a Gly-to-Thr substitution in the CLE motifs
resulted in a strong dominant-negative effect [26]. How-
ever, to what extent the conservation of these residues in
the CLE motif across poplar and Arabidopsis could re-
flect their functional relevance awaits further investiga-
tion. Furthermore, the CLE motif exhibited residue

divergence at positions 1, 3, 6 and 11 (Fig. 1b-c, Add-
itional file 3; Additional file 5), which may provide the
basis for distinct functions of the individual PtCLEs and/
or the specificity of the putative receptor(s) binding.

Four or five residues proximal to the CLE motif at the
N-terminus are required for proper endoproteolytic pro-
cessing and optimal function in stem cell regulation [44,
45]. A comparison of the six residues (6-AA) proximally
adjacent to the CLE motifs revealed high divergence
across all PtCLEs, but a degree of residue conservation
was found for multiple PtCLEs (Additional files 6 and
7). A Lys residue is presented before the conserved Arg
residue of the 12-AA CLE motif in many PtCLEs (Add-
itional files 6 and 7). This may suggest that the import-
ance of this residue for endopeptidase recognition,
which has been shown in the case of AtCLV3 and
AtCLE1 [44]. Additionally, 17 out of 50 PtCLEs carried
an Arg residue immediately following the CLE motif at
the C-terminus, indicating a possible decrease of peptide
activity as has been reported previously [46].
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Fig. 1 Multiple sequence alignment of representative PtCLE proteins and the consensus sequence for the CLE motifs of poplar and Arabidopsis. a The
multiple sequence alignment of representative PtCLE proteins. The predicted proteolytic cleavage sites are indicated by the small arrowheads. The CLE
motif is boxed. b-c Weblogo plots were used for display the CLE motifs of poplar and Arabidopsis

The PtCLE proteins are classified into four major distinct
groups

Although PtCLE proteins shared little sequence similar-
ity, the CLE motifs were well conserved. Therefore, all
the CLE motif sequences, as well as the full length pro-
teins, were used as the basis to build phylogenetic trees
separately. Phylogenetic analyses using several methods
supported the classification of PtCLE proteins into four
major groups (Fig. 2a; Additional file 8). The CLE motifs
of the four groups were aligned, which resulted in con-
sensus sequences supporting for classification of these
four groups (Fig. 2b).

The consensus sequences of the CLE motifs in all
groups (positions 7—13) were highly conserved with five
residues that were almost invariant, except for position
11 of Group II and position 12 of Group IV (Fig. 2b).
However, residue divergence across the first six N-
terminal residues of the CLE motif was observed in all
groups, especially in Group IV, in which high variance
was observed (Fig. 2b). The CLE motifs of Groups I, II
and III lacked the conservation of the Ser residue at pos-
ition 6, which was invariant in Group IV (Fig. 2b). The
Lys residue at position 1 of Group I was highly

conserved, whereas the residue at the same position of
other groups was rather variable (Fig. 2b). Group II con-
tained a group-specific Ser residue at position 4, which
may be largely responsible for its separation into a dis-
tinct group (Fig. 2b). However, whether the conserved
residues and/or distinct group-specific residues contrib-
ute to CLE functionalities requires biological validation.
Previously, CLE proteins identified from various plant
species were categorized into thirteen groups [11]. A
closer examination of the CLE consensus sequences re-
vealed that Groups I, II, III and IV of PtCLEs corre-
sponded to Groups 7, 2, 9 and 5 presented in [11],
respectively. The comparison indicated a similar signa-
ture of the CLE motifs in both classifications. It was re-
ported that Arabidopsis CLE was classified into four
functional groups based on the effects of peptide treat-
ment on plants [47], which was well correlated with the
phylogenetic analysis of AtCLEs [23, 48, 49]. The classi-
fication presented in [11] contained at least one func-
tional CLE in each group, which helped to understand
the possible function(s) of individual PtCLE group.
Nevertheless, the correlation of phylogenetic analyses
between ours and [11] implied strong functional
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representation for the CLE motifs for each of the four groups
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Fig. 2 The PtCLE proteins are classified into four major groups. a Phylogenetic analysis of PtCLE proteins. The tree was generated from the alignment
of the CLE motifs of all PtCLE protein sequences with 1000 bootstrap replicates. The distinct groups are shown by colored branches. b Weblogo
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similarities between interspecies orthologs as validated
by many functional characterized CLE genes from Arabi-
dopsis, rice, Medicago, Lotus japonicus and soybean [2,
3]. For instance, Group IV members, which correspond
to the Group 5 as classified in [11], were predicted to
confer similar phenotypic effects on vascular develop-
ment in poplar to those observed in Arabidopsis [11, 18,
22, 23]. However, determining whether these predicted
gene functions are evolutionarily conserved requires fur-
ther biological investigation.

Genomic organization of PtCLE genes

Similar to AtCLE genes, PtCLE genes often lacked in-
trons. Only thirteen PtCLE genes contained intron(s),
seven of which contained one intron and six of which
contained two introns (Fig. 3a). PtCLE genes scattered
over on different chromosomes although some cluster-
ing can be observed (Fig. 3b). Furthermore, some of the
PtCLE genes were found to be located adjacently to each
other (Table 1; Fig. 3b). For instance, PtCLE7 and
PtCLES, PtCLE36 and PtCLE37, PtCLE40 and PtCLE41,
PtCLE45 and PtCLE46 were located in tandem on chro-
mosomes 1, 9 12 and 15, respectively. Additionally,
PtCLE48, PtCLE49 and PtCLES0 were organized sequen-
tially in tandem on chromosome 19 (Table 1; Fig. 3b).
However, sequence comparison within those tandem
pairs showed low sequence similarity, and the CLE mo-
tifs were not totally identical, implying that these genes
might not arise from recent tandem duplication events
(Table 1; Fig. 3b; Additional files 2 and 3). These

observations may indicate, in some cases, that diversity
in the CLE motifs was favored during evolution which
may give rise to distinct roles of PtCLEs and expansion
of the PtCLE gene family.

Interestingly, a number of PtCLE genes located on dif-
ferent chromosomes encoded identical, or nearly identi-
cal CLE motifs, suggesting that these PtCLE genes were
possibly duplicated genes arising from segmental dupli-
cation events (Additional file 9). For instance, the CLE
motifs of the positionally adjacent pairs PtCLE7/PtCLE8
were almost identical to that of PtCLE36/PtCLE37, while
those of PtCLE40/PtCLE41 were nearly identical to that
of PtCLE45/PtCLE46 (Table 1; Fig. 3; Additional files 2
and 3). Moreover, PtCLE3, 12, 14 and 38 comprised
identical CLE motifs, while PtCLE21, 31 and 39 shared
the same CLE motifs (Table 1; Additional file 9). A set
of five pairs, PtCLE7/PtCLE36, PtCLE18/PtCLE27,
PtCLE20/PtCLE32, PtCLE22/PtCLE30 and PtCLE28/
PtCLE47, carried identical CLE motifs within pairs
(Table 1; Additional file 9). These results suggested that
genome-scale duplication of PtCLE genes occurred in
different regions of poplar chromosomes. In tomato,
neighboring SICLE genes, sharing no significant similar-
ity within pairs, were found on different chromosomes,
suggesting that these neighboring SICLE were not likely
to arise through tandem duplication [13]. However, it
was observed that many AtCLE gene pairs, e.g., AtCLE9/
AtCLEI0 and AtCLE5/AtCLE6, may have arisen through
duplication. Additionally, many A¢tCLE genes were found
in regions of the genome that were rich in repetitive
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sequences [48]. These results suggested that rearrange-
ment and gene duplication were plausible mechanisms
for the expansion of the AtCLE gene family [48]. There-
fore, like AtCLEs, genome duplication and reshuffling
contributed to the expansion of PtCLE gene family [48].
Moreover, unlike Arabidopsis, the subsequent diversity
in the CLE motifs of PtCLEs also has driven the expan-
sion of this family.

Probing the roles of PtCLE genes by phylogenetic
analyses and expression profiles between Arabidopsis and
poplar

As the first attempt to investigate potential role(s) of
PtCLEs, the phylogenetic relationships between AtCLEs
and PtCLEs were analyzed (Additional files 10 and 11).
The phylogenetic analysis classified the PtCLEs and
AtCLEs into several clades with varying degrees of
phylogenetic distance based on the conserved CLE mo-
tifs that were used to construct the phylogenetic tree
(Fig. 4; Additional file 10). Although the phylogenetic
tree is based on the CLE motif alone, the clades defined
by this tree correlated very well with phylogenetic

relationship defined using full-length CLE proteins
(Additional file 11).

Overall, our analysis indicated that the PtCLE proteins
were quite closely related to their predicted Arabidopsis
counterparts, which allowed interspecies identification
of putative functional orthologs (Fig. 4; Additional files
10 and 11). Some clades segregated AtCLE and PtCLE
proteins, whereas other clades contained CLE proteins
of both species (Additional files 10 and 11). Each of
these clades contained at least one functionally charac-
terized member, allowing us to infer possible functions
for the PtCLEs in the same clade (Additional files 10
and 11). Thus, the potential function of PtCLEs in each
clade was predicted using functionally characterized
AtCLEs [1-6, 49, 50]. As aforementioned, many PtCLE
proteins contained perfectly matched CLE motifs (Add-
itional file 9). Particularly, some PtCLE proteins com-
prised CLE motifs that matched completely with the
CLE motifs of AtCLE proteins (Fig. 4; Additional file 9).
It is presumed that PtCLEs with identical CLE motifs or
PtCLEs carrying the same CLE motifs as that of AtCLEs
might share similar protein functions [37, 40]. In
addition to the CLE motif, the expression domain of
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CLE genes is also important for their functional specific-
ities as have been shown that many AtCLE proteins
acted interchangeably when ectopically expressed [37,
40, 45, 49, 51]. Therefore, we assessed potential roles of
PtCLE genes using a combination of phylogenetic ana-
lyses and available transcriptomic data.

The roles of AtCLV3, AtCLE1/AtCLE3/AtCLE4,
AtCLE9/AtCLE10 and AtCLE41/TDIF have been func-
tionally characterized previously [14, 15, 18, 19, 22, 23,
28, 33, 52]. We thus further identified PtCLEs sharing
identical or nearly identical CLE motifs with those well-
studied AtCLEs. Three PtCLEs (PtCLE4, PtCLE17 and
PtCLE25) were grouped together with AtCLV3, of which
PtCLE4 and PtCLE17 shared a nearly identical CLE
motif with AtCLV3 (Fig. 4a; Additional files 10 and 11).
AtCLV3, perceived by various parallel receptor com-
plexes, restricted expression of the stem cell-promoting
transcription factor WUS, which in turn activated
AtCLV3 expression, thus forming a negative feedback
loop that maintained a balanced stem cell population
[14, 15, 53-56]. Indeed, PtCLE4 showed a highest ex-
pression level in shoot apex and a moderate expression
level in shoot and leaf primordia of all materials tested,
strongly supporting a possible role for PtCLE4, similar
to AtCLV3, in regulating poplar shoot development
(Fig. 5; Additional file 12). However, we cannot exclude
the possibility that PtCLE17 and PtCLE25 also play roles
in shoots.

AtCLEI, AtCLE3 and AtCLE4 repressed the lateral
root development in a CLV1-dependent manner in Ara-
bidopsis [28]. Two PtCLEs, PtCLE7 and PtCLE36, shared
an identical CLE motif as that of AtCLE1/AtCLE3/
AtCLE4 (Fig. 4b). PtCLE36 was found to predominantly
expressed in the xylem (Fig. 5; Additional file 12), unlike
what has been observed for AtCLE3 [28], suggesting a
different role of PtCLE36. However, it still will be of
great interest, as the first step, to investigate whether the

expression of PtCLE7 and PtCLE36 are induced under
nitrogen deficient conditions.

AtCLE9/AtCLELO inhibited protoxylem vessel forma-
tion via CLV2 by repressing the expression of ARRS and
ARR6 in Arabidopsis roots [52]. A pair of PtCLEs
(PtCLE20 and PtCLE32) comprised the same CLE motif
as that of AtCLE9/AtCLE10 (Fig. 4c). Similar to
AtCLE10, PtCLE20 was highly expressed in vascular tis-
sues (Fig. 5; Additional file 12). Numerous CLV2-like
proteins have been mined from poplar [57], which favors
the idea that a similar AtCLE9/AtCLE10-CLV2 signaling
pathway regulates root vascular development in poplar
as well.

A subclade of four PtCLEs (PtCLE3/PtCLE12/
PtCLE14/PtCLE38) grouped together with AtCLE41/
TDIF, sharing an identical CLE motif (Table 1; Fig. 4d;
Additional file 3; Additional file 9), which strongly sup-
ported a conserved role of these peptides in the regula-
tion of vascular cambium homeostasis in poplar and
Arabidopsis. Intriguingly, in all materials tested, PtCLEI2
had the highest expression level in phloem, and was al-
most absent from xylem (Fig. 5; Additional file 12). This
expression pattern was similar to that of its putative
Arabidopsis counterpart AtCLE41/TDIF [19]. PtCLE3,
another PtCLE gene encoding an identical CLE motif
with that of AtCLE41/TDIF, was highly expressed in
cambium and moderately expressed in phloem, which
may suggest a broader role for PtCLE3 in poplar (Fig. 5;
Additional file 12). In Arabidopsis, the plasma
membrane-bound receptor PXY/TDR perceived the
AtCLE41/TDIF to promote the (pro-)cambial prolifera-
tion by regulating WOX4 expression, and to suppress
(pro-)cambial cell differentiation into xylem cells [22,
23]. Recently, Etchells et al. [35] showed that tissue-
specific expression of PttPXY and PttCLE41 produced
transgenic trees with increased wood production and a
larger biomass. Notably, PttCLE41 was the same CLE
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normalized for analysis. Color scale represents log2 expression values

Fig. 5 Transcriptional profiling of PtCLE genes in representative shoot and vascular tissues. The microarray data were downloaded from GEO and

PtCLE20
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PICLE4
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PICLES
PtCLE24
PICLE34
PICLE39
PtCLE36
PtCLE1
PtCLE10
PtCLE45
PtCLE44
PICLET1
PICLE3
PtCLE19
PICLE28
PtCLE48
PtCLE22
PICLE13
PtCLE29
PtCLE26
PtCLES
PCLE27
PtCLE21
PtCLE12
PICLE15
PICLE2
PtCLE47

J

protein as PtCLE38 identified in this study (Table 1;
Fig. 4f). Altogether, it seems possible that PtCLE12 also
plays a similar role in the regulation of cambium devel-
opment and wood formation. However, we cannot ex-
clude the possibility that PtCLE14 carrying the same
CLE motif as AtCLE41/TDIF, is also involved in (pro-
Jcambium stem cell homoeostasis (Fig. 5; Additional file
12). Taken all together, this pointed to the existence of a
similar AtCLE41/TDIF-TDR/PXY module in regulating
secondary growth in trees. However, whether the other
three PtCLE proteins (PtCLE3/PtCLE12/PtCLE14),
which contained an identical CLE motif as that of
PttCLE41/PtCLE38, sharing a similar function remained
unknown. Four hundred receptor-like kinases (RLKs)
and eighteen WUS-related proteins have been identified
in poplar, which supports the idea that the existence of
multiple CLE-RLK-WOX signaling pathways [58, 59].

In summary, we grouped and compared the PtCLE
proteins with their most closely-related AtCLE proteins
to assess their potential roles based on functional studies
[2-4, 6, 35, 49, 50]. The study indicated that PtCLE pro-
teins are generally closely related to their predicted Ara-
bidopsis counterparts. Intriguingly, many PtCLE proteins
comprised exactly the same CLE motifs as that of their
Arabidopsis counterparts, strongly suggesting functional
conservation between specific AtCLEs and PtCLEs.
However, It is also possible that those PtCLEs carrying

identical CLE motifs play distinct roles in planta which
could be achieved via tissue-specific expression pattern.
Additionally, a few sets of PtCLEs shared an identical or
nearly identical CLE motif, whereas no closely-related
AtCLEs could be identified in the phylogenetic clades
(Additional files 9, 10 and 11), raising the possibility that
these PtCLEs may have unique functions in woody trees.
It is of great interest to examine whether those PtCLEs
possessing similar CLE motifs are functionally redundant
as what has been observed in the AtCLE gene family [17,
26]. Nevertheless, it is important to assess to what extent
these observations are supported by biological
validation.

Uncovering putative functions of PtCLE genes in shoot
and vascular development

Previous studies have demonstrated that CLE peptides
played various roles in plant growth and development
[1-6]. To deepen our understanding of the potential
functions of PtCLE proteins, in silico expression data for
30 out of 50 PtCLE genes were obtained from different
Populus species other than P. trichocarpa for further
analysis (Additional file 13). A total of six developmental
microarray sets including samples derived from various
organs and tissues were retrieved and normalized for
further study with an emphasis on shoot organogenesis
and vascular development (Additional file 13).
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PtCLE genes generally exhibited differential expression
patterns in the materials tested (Fig. 5; Additional files
12 and 13), similar to what was observed for the expres-
sion of AtCLEs [51]. Other than PtCLE4, PtCLEII,
PtCLE22, PtCLE29, and PtCLE45 are also highly
expressed in shoot apex and/or shoot and leaf primordia
(Fig. 5; Additional file 12). Among these, PtCLE22 and
PtCLE29 showed consistent expression patterns in two
tested samples. PtCLE4S is limited to the shoot apex,
whereas PtCLEII expression is relatively restricted to
the shoot and leaf primordia, indicating a spatially and
temporally expression fashion (Fig. 5; Additional file 12).
However, whether any of these PtCLE proteins are in-
volved in controlling the stem cell homoeostasis in shoot
apex or in primordia remained to be proven.

The (pro-)cambium, a stem-cell tissue, gives rise to
the phloem and xylem which perform essential roles in
transportation of water, mineral nutrients and signaling
molecules [60]. In Arabidopsis, the AtCLE41/TDIP-
TDR/PXY-WOX4 signaling module plays an important
role in (pro-)cambium proliferation and differentiation
[19, 22, 23]. Additionally, a number of AtCLEs are
shown to control vascular development, which assigned
CLEs as central players mediating cell-cell communica-
tion in plant vascular development [5]. In our analysis,
we found that a number of PtCLE genes are predomin-
antly expressed in various vascular tissues, except the
aforementioned PtCLE3 and PtCLEI2 (Fig. 5; Additional
file 12). PtCLES, PtCLE26 and PtCLE34 are expressed at
the highest level in cambium and xylem, while PtCLE10/
PtCLE13/PtCLE21/PtCLE27/PtCLE35/PtCLE36  exhib-
ited a peak expression level in xylem. PtCLE20 and
PtCLESO are predominantly expressed in the cambium
(Fig. 5; Additional file 12). The expression of PtCLE24,
PtCLE28 and PtCLE39 is mainly detected in the phloem
(Fig. 5; Additional file 12). The transcriptional activities
of the remaining PtCLE genes are highly dynamic (Fig. 5;
Additional file 12).

Interestingly, we found that PtCLE gene pairs encod-
ing identical CLE motifs, including PtCLE3/PtCLE12,
PtCLE21/PtCLE39, and PtCLE28/PtCLE47, exhibited
both overlapping and distinct expression patterns with
respect to different tissues (Fig. 5; Additional file 12).
This points to functional divergence of these PtCLE
genes in planta despite that they share the same CLE
motif. We further investigated whether expression
trends are similar between AtCLE genes and their puta-
tive poplar orthologues. In addition to previously high-
resolution expression data for the entire Arabidopsis A-
type CLE genes [51], we compiled and visualized the ex-
pression profile of AtCLE genes in selected tissues by e-
Northerns browser of BAR (Additional file 14; [61]). In
silico expression data for 14 out of 32 AtCLE genes were
available. In the case of AtCLE46, it was highly expressed
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in meristematic tissues and xylem-rich samples (Add-
itional file 14). A similar expression trend was observed
for its putative poplar orthologues PtCLES and PtCLE26,
both of which exhibited significant expression levels in
cambium and developing-/differentiating-xylem (Fig. 5;
Additional file 12). However, only some CLE genes of
Arabidopsis and poplar are presented in the microarrays,
making it difficult for in-depth investigation. Neverthe-
less, it is also likely that other PtCLE genes which are
not available on the microarrays show significant expres-
sion in some tissues. Thus we analyzed the available EST
sequences and RNA-seq data to explore the expression
of the PtCLE genes that are not presented in the micro-
array. The corresponding ESTs and RNA-seq reads were
extracted from public databases, demonstrating that
these PtCLE genes were transcribed based on the num-
bers of ESTs detected and the FPKM (the number of
fragments per kilobase of exon per million fragments
mapped) values for RNA-seq data (Additional file 15). In
several cases, there are no matched EST(s) were identi-
fied in P. trichocarpa, but matched EST(s) from sibling
species or high FPKM value could be detected (Add-
itional file 15). The matched ESTs varied in numbers,
suggesting that they are expressed differentially or the
ones with few ESTs are probably expressed at low level
or restrict to particular tissues or developmental stages.
Altogether, our data indicated a complicated expression
profile amongst the PtCLE genes, which is well corre-
lated with their diverse roles in poplar growth and
development.

Conclusions

The CLE genes are well known for their roles in co-
ordinating stem cell fate in different types of plant
meristems including the vascular cambium, which is
the most notable growth characteristic in tree species.
In this study, the CLE gene family in P. trichocarpa,
a tree species with extensive wood formation, was
identified and classified into four major groups based
on sequence similarity. The potential roles of PtCLE
genes, with an emphasis on shoot organogenesis, sec-
ondary growth and wood formation, were analyzed by
comparative studies and transcriptional profiling. A
number of PtCLE proteins and their putative Arabi-
dopsis orthologues were identified based on identical
or nearly identical CLE motifs and comparable tissue
expression expression patterns, pointing to possible
functional conservation of these CLE proteins. Con-
versely, some PtCLE genes appeared to be regulated
in completely different ways from their Arabidopsis
counterparts, which may provide insights into the
functional divergence of CLE signaling in tress spe-
cies. The comparative studies further indicated close
parallel regulation of AtCLEs and PtCLEs orthologues,
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which highlighted potential strategies such as manipu-
lation of key plant peptide signaling molecules for
higher yields and more sustainable wood sources.

Methods

Identification of PtCLE proteins and protein features
analysis

All known CLE proteins were retrieved and used as
queries to perform the BLASTP and TBLASTN pro-
grams searching against the Populus trichocarpa genome
sequence (http://www.phytozome.net; [62]). Each identi-
fied hit subsequently was used as a new query to con-
duct a BLASTP search querying against the poplar
assembly genomic sequence (Version 2.2) to avoid any
missed PtCLE protein. The searches were run repeatedly
until no new candidates were found.

SignalP  (http://www.cbs.dtu.dk/services/SignalP), Mul-
tiple Expectation Maximization for Motif Elicitation
(MEME)  (http://meme.nbcr.net/meme/cgi-bin/meme.cgi)
[63], and Weblogo (http://weblogo.berkeley.edu/logo.cgi)
[64] were used for domain predictions and determination
of domain features. SignalP was run for determining the
signal peptides using both neural network (NN) and hidden
Markov model (HMM) modes. In the cases that SignalP
yielded low scores, the TargetP (http://www.cbs.dtu.dk/ser-
vices/TargetP), iPSORT (http://ipsorthgcjp) and Secreto-
meP (http://www.cbs.dtu.dk/services/SecretomeP-2.0) were
used to identify signal sequences.

Genomic organization analysis

The exon/intron boundaries of each PtCLE genes were
investigated using gene structure display server (http://
gsds.cbi.pku.edu.cn) [65] and refined manually with ex-
pression data of EST sequences and cDNA sequences
that were deposited in Phytozome (http://phytozome.j-
gi.doe.gov/pz/portal. html#!info?alias=Org_Ptrichocarpa).
The chromosomal locations of PtCLE genes were deter-
mined using PopGenlE (http://popgenie.org/gp) [66].

Alignment and phylogenetic analysis

Multiple alignments were performed using ClustalX
[67], then refined and displayed using GeneDoc (http://
www.psc.edu/biomed/genedoc). Phylogenetic trees were
constructed by MEGAS5 using either the conserved CLE
motifs or full-length CLE proteins [68]. Bootstrap ana-
lysis was conducted with 1000 replicates to verify the
significance of nodes.

Gene expression analysis

Microarray data were obtained from the Gene Expres-
sion Omnibus database (GEO) at NCBI website. As a re-
sult, six developmental microarray datasets were
collected as shown in Additional file 13. The down-
loaded raw CEL files were analyzed using the Affy
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package in R language [69], followed by the background
correction and microarray expression normalization
using the RMA method [70]. Differential gene expres-
sion was determined according to [71], which was
followed by a multiple testing correction [72]. Heatmaps
were generated based on the expression profiles, in
which cluster of PtCLE proteins were determined as
well. The EST (Expressed Sequence Tags) sequences and
RNA-seq data were obtained from Phytozome. Tran-
script abundances based on RNA-Seq data in mixed tis-
sues were calculated as numbers of fragments per
kilobase of exon in a gene per million fragments mapped
(EPKM).

Availability of supporting data

Phylogenetic data have been deposited to TreeBase and
are accessible via the URL: http://purl.org/phylo/tree-
base/phylows/study/TB2:518866. Additional supporting
data are included as additional files.

Additional files

Additional file 1: A list of full-length sequences of all PtCLE proteins.
The signal peptide cleavage sites of every PtCLEs are indicated. (PDF
27 kb)

Additional file 2: The multiple alignment of all full-length PtCLE proteins.
The C-terminal CLE motifs of each PtCLE were boxed. (PDF 38 kb)

Additional file 3: The multiple sequence alignment of the CLE motifs
derived from PtCLE proteins. The conserved residues are shaded in grey.
(PDF 28 kb)

Additional file 4: The multiple sequence alignment of all AtCLE and
PtCLE proteins using their full-length proteins. The CLE motifs were
boxed in red. The conserved residues are shaded in grey. (PDF 46 kb)

Additional file 5: The multiple sequence alignment of all AtCLE and
PtCLE proteins using their CLE motifs. The conserved residues are shaded
in grey. (PDF 14 kb)

Additional file 6: The multiple sequence alignment of all PtCLE proteins
using their CLE motifs and five N-terminal residues flanking the CLE mo-
tifs (18-AA in length). The conserved residues are shaded in grey.
Weblogo plot was used for graphical representation of the multiple se-
quence alignment of the 18-AA fragments. (PDF 72 kb)

Additional file 7: The multiple sequence alignment of all AtCLE and PtCLE
proteins using their CLE motifs and five N-terminal residues flanking the CLE
motifs (18-AA in length). The conserved residues are shaded in grey. Weblogo
plot was used for graphical representation of the multiple sequence alignment
of the 18-AA fragments. (PDF 58 kb)

Additional file 8: Phylogenetic analysis of PtCLE proteins by the
Neighbor-joining method with 1000 bootstrap iterations. The tree was con-
structed using full-length PtCLE proteins. The percentage of trees in which
the associated clades clustered together is shown (>40 %). (PDF 107 kb)

Additional file 9: A list of AtCLE and PtCLE proteins with identical CLE
motifs. (PDF 12 kb)

Additional file 10: Phylogenetic analysis of AtCLE and PtCLE proteins by
the Neighbor-joining method with 1000 bootstrap iterations. The tree was
constructed using the conserved CLE motifs. The percentage of trees in which
the associated clades clustered together is shown (>40 %). (PDF 70 kb)

Additional file 11: Phylogenetic analysis of AtCLE and PtCLE proteins by
the Neighbor-joining method with 1000 bootstrap iterations. The tree was
constructed using full-length proteins. The percentage of trees in which the
associated clades clustered together is shown (>40 %). (PDF 39 kb)
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Additional file 12: Transctiptional profiling of PtCLE genes in various
organs and tissues using the available microarray data. The microarray
data were downloaded from GEO and normalized for analysis. Color scale
represents log2 expression values. (PDF 2632 kb)

Additional file 13: A list of microarray datasets used in this study. Note
that available microarray data were derived from different Populus species
other than P. trichocarpa. (PDF 31 kb)

Additional file 14: The expression pattern of AtCLE genes in shoot- and
vascular-related tissues. Gene expression is displayed as normalized log2-
transformed values. (PDF 148 kb)

Additional file 15: The EST sequences and RNA-seq data for PtCLE
genes which are not presented in the microarray. The expression level for
RNA-seq data was presented as numbers of fragments per kilobase of
exon in a gene per million fragments mapped (FPKM). (PDF 237 kb)
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