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Abstract

Background: Aluminium (Al) toxicity is the main factor limiting the crop production in acid soils and barley
(Hordeum vulgare L) is one of the most Al-sensitive of the small-grained cereals. The major gene for Al tolerance in
barley is HVAACTT (HYMATE) on chromosome 4H which encodes a multidrug and toxic compound extrusion (MATE)
protein. The HYAACT1 protein facilitates the Al-activated release of citrate from root apices which protects the
growing cells and enables root elongation to continue. A 1 kb transposable element-like insert in the 5
untranslated region (UTR) of HVAACTT is associated with increased gene expression and tolerance and a PCR-based

marker is available to score for this insertion.

Results: We screened a wide range of barley genotypes for Al tolerance and identified a moderately tolerant
Chinese genotype named CXHKSL which did not show the typical allele in the 5" UTR of HvAACTT associated with
tolerance. We investigated the mechanism of Al tolerance in CXHKSL and concluded it also relies on the Al-
activated release of citrate from roots. Quantitative trait loci (QTL) analysis of double haploid lines generated with
CXHKSL and the Al-sensitive variety Gairdner mapped the tolerance locus to the same region as HVAACTT on

chromosome 4H.

Conclusions: Our results show that the Chinese barley genotype CXHKSL possesses a novel allele of the major Al

tolerance gene HVAACTT.
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Background

Aluminium (Al) is the most abundant metal in the earth
crust. Al can be toxic to plants when the concentration
of soluble Al increases in acidic soils (<pH 5.0) due to
the formation of the phytotoxic AI** species. An early
symptom of Al toxicity is the inhibition of root elong-
ation which limits water and nutrient uptake [1-3]. The
inhibition of root growth in wheat (Triticum aestivum
L.) occurs within minutes or hours in simple hydroponic
solutions [4] due to decreases in root cell division and
elongation [5]. Longer treatments result in thickened
roots, damaged root cap, and lesions in the epidermal
and cortical tissues near the root apices [6—8]. Add-
itional symptoms of stress in wheat and maize roots
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include the appearance of large swollen cortical cells
near the root tip [9, 10].

An important mechanism of resistance in many spe-
cies relies on the exclusion of Al from root tissues by
the release of organic anions from the root apices. The
organic anions such as malate and citrate chelate the
harmful Al cations in the apoplast and prevent them
damaging the root tissues [11-13]. Barley (Hordeum vul-
gare L.) is one of the most Al-sensitive cereal species yet
it still shows genotypic variation [14]. A mechanism for
Al tolerance described in barley relies on the Al-
activated release of citrate from root apices. This is con-
trolled by a single major locus called Alp on chromo-
some 4HL [15-17]. The gene underlying the Alp locus is
HvAACTI1 which encodes a member of the multidrug
and toxic compound extrusion (MATE) family [8, 14,
17, 18]. This gene has been linked with tolerance in
many genotypes of barley including Murasakimochi,
Dayton, Honen, WB229, Svanhals, Br2 and Brindabella
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[16, 19-22]. Tolerant genotypes of barley show a consti-
tutively higher expression of HVAACTI in root apices
than sensitive genotypes. Furthermore, constitutively
over-expression of HVAACTI in transgenic barley and
wheat plants significantly increases the Al-activated cit-
rate efflux and their tolerance to Al in hydroponic solu-
tion and in acid soil [8].

The higher expression of HYAACT1 in tolerant barley
was recently linked to the presence of a 1023-bp
transposable-element like insertion in the 5’ untranslated
region (UTR) of HYAACT! [23]. This insertion alters the
usual distribution and level of HvVAACTI expression
such that it becomes constitutively high in the root api-
ces [11, 23]. This mutation is only found in cultivated
Al-tolerant barley genotypes from East Asia where acid
soils are prevalent and likely represents an important
mutation that has helped the expansion of barley from
the Near East where the soils are rarely acidic [23].

A PCR-based marker can be used to detect the pres-
ence or absence of the insert in the 5 UTR of HVAACTI
and this is a convenient method for screening barley for
Al tolerance [19, 23]. The PCR product from tolerant
barley genotypes is approximately 1 kb larger than the
product from sensitive barley genotypes [23]. Another
gene-specific marker called HYMATE-21 was designed
to target polymorphism at the 3" UTR of HYAACT1 and
this marker has been used successfully to score more
than 50 varieties differing in Al tolerance [18]. All toler-
ant varieties tested possessed the 21-bp deletion com-
pared with the sensitive varieties. Using association
analysis the HYMATE-21 marker could explain 66.9 % of
phenotypic variation for Al tolerance [18]. Meanwhile,
several simple sequence repeats (SSR) markers such as
Bmac310, Bmag353 and HVMO3 are closely linked with
tolerance and commonly used for genetic analysis [16,
20, 24].

In this study, we identified a Chinese barley variety,
CXHKSL, which was moderately tolerant to acid soil
(Additional file 1: Table S1) but which gave a non-
standard result for the 5 UTR HVAACTI marker. This
indicated that Al tolerance in CXHKSL might be con-
trolled or regulated in a different way. We investigated
the Al tolerance mechanism in CXHKSL and mapped
the trait using a double haploid (DH) population derived
from CXHKSL and the Al-sensitive variety Gairdner.

Methods

Genetic materials

CXHKSL is a six-rowed Chinese variety that is tolerant
to acid soils. The Al-sensitive variety, Gairdner, is an
Australian malting barley. The Al tolerant variety, Day-
ton, was used as a control when investigating tolerance
mechanisms of CXHKSL. One DH population consisting
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of 210 lines derived from a cross between CXHKSL and
Gairdner was used for QTL mapping study.

Al tolerance and root growth

The relative Al tolerance of the different varieties and
selected double haploid lines (DHLs) were evaluated
with hydroponic culture methods. Sterilized seeds
were germinated in the dark for 2 days at 4 °C and
then 2 days at 28 °C. Root length of the seedlings
was measured and they were placed in an aerated
nutrient solution containing 500 pM KNOj, 500 pM
CaCl,, 500 pM NH4NO;, 150 pM MgSO,4, 10 uM
KH,PO4, 2 uM Fe:EDTA, 11 pM H3;BO,; 2 pM
MnCl,, 0.35 uM ZnCl, and 0.2 pM CuCl,. For barley,
Al tolerance was estimated by measuring net root
length after 4 days in 0, 1, and 4 pM AICl; (pH =
4.3), respectively. Relative root length (RRL) was esti-
mated as: (net root growth in Al treatment/net root
growth in control solution) x 100 % [8]. Meanwhile,
4-day old control and 4 uM AICl; treated seedlings
roots were stained with haematoxylin for 15 min and
rinsed for 10 min to compare the density of Al accu-
mulation at root apices. Haematoxylin could form a
purple-red complex with Al and provides an indirect
of non-complexed Al in root apices, with the intensity
of staining correlated with sensitivity of Al toxicity
[25].

Al tolerance was also scored using acid soil collected
from the Northern Tasmania (pH =4.3). Three seeds of
each DHL and parent varieties were sown in the acid
soil in each replicate. Two independent experiments in-
cluding six replicates were conducted in April and June
2013, respectively. Four replications were applied in each
experiment. Both root length and root morphology were
used to assess Al tolerance. Root length (mm) of each
seedling was measured seven days after sowing. Mean-
while, root tips were screened for the absence or pres-
ence of thickening caused by Al toxicity.

Assaying citrate efflux and malate efflux from root apices
Seedlings were grown for 4 days in the nutrient solu-
tion described above (without added AICI3). To study
if the expression of HVAACTI need longer Al treat-
ment duration, half of the plants of each genotype
were subjected to 0.2 mM CaCl, solution containing
10 uM AICl; (pH =4.3) for overnight pre-treatment.
Ten root apices (3-5 mm) with 4 replicates were ex-
cised from the same line and washed in 1 ml 0.2 mM
CaCl, solution (pH=4.3) for on a platform shaker
(60 rpm). After 30 min washing, 1 ml 0.2 mM CaCl,
solution (pH =4.3) with 30 uM AICl; was added and
shaken for 2 h at 60 rpm. The solutions were centri-
fuged to dryness on a rotary vacuum drier for citrate
efflux detection. The enzyme assay used to determine
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citrate concentration is described by Wang et al. [16].
The initial citrate content in each sample was calcu-
lated from a standard curve. Malate concentration
was measured with an enzyme assay as described pre-
viously [26].

Molecular marker analysis

Three primer pairs were used to investigate allelic vari-
ation in the 5’'UTR of HVAACTI. These were to detect
the presence or absence of a ~1 kb transposon-like in-
sertion previously described in Al-tolerant genotypes of
barley. The first pair of primers was from Fujii et al. [23]
with forward sequence 5-GGTCCAACACTCTACCCT
CCTT and reverse 5-GGTGCGAG -TTGCCCCTAGC-
TATTA. The second pair of primers described by Bian
et al. [18] was forward 5-CTTCATTTCAACCAAG-
CACTCC and reverse 5-GCTTTTGGTCGAACAAA-
GTATCG. The third pair of primers was designed to
amplify a slightly larger fragment that included the
above two pairs of primers comprised, forward 5'-
TGTCGATATGGTGCTCTT -CG and reverse 5'-
AGCTCCATGACAATTCTGGG. PCR reactions were
performed at 20 pl-volume including 10 pl Hotstar-
Taq™ master mix (Qiagen), 2 pl primer mix (1:1 mix of
forward and reverse primers at 10 nM), 3 pul DNA tem-
plate, and 5 pl HyO. Cycling conditions were as follows:
1 cycle of 1 min at 95 °C, 35 cycles of 1 min at 95 °C,
30 s at 60 °C, 40 s at 72 °C, and finally with an extension
step of 1 min at 72 °C. All PCR reactions were run at
C1000™ Thermal cycler (BIO-RAD). PCR products
were separated at 1 % agarose and visualized by staining
with 1 % Red safe under Gel Doc™ XR* imagining sys-
tem (BIO-RAD).

Another HVAACTI-specific marker, HvMATE-21,
was used to genotype the population as well as three
closely HvAACTI-linked SSR markers: Bmac310,
Bmag353 and HVMO03 [14, 16, 19]. HYMATE-21 was
a PCR marker that detected the presence or absence
of a 21-bp fragment in the 3" UTR of HYAACTI1. PCR
reactions were carried out in a total volume of 15 pl
containing 25~ 30 ng genomic DNA, 0.5 M of for-
ward and reverse primers, 7.5 pul GoTaq® Hot Start
Colorless Master Mix, 2X (Promega). The amplifica-
tion of SSRs were performed by: 1 cycle of 3 min at
94 °C, 35 cycles of 1 min at 94 °C, 1 min at the an-
nealing temperature 55 °C and 1 min at 72 °C, with a
final extension step of 5 min at 72 °C. The PCR pro-
files for HVYMATE-21 were almost the same as that
for SSR markers except the annealing temperature
was 60 °C. All PCR reactions were run on Mastercy-
cler Gradient 5331 (Eppendorf AG, Germany). The
PCR products were separated on 5 % denatured poly-
acrylamide gels and visualized by a rapid silver stain-
ing method [27].
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Isolation and sequence analysis of coding region of
HvACCT1 gene in CXHKSL and Dayton

The published complete coding DNA sequence (CDS) of
HvAACTI gene (Genebank: AB302223.1) was retrieved
from the National Center for Biotechnology Information
(NCBI, http://www.ncbi.nlm.nih.gov/gene) and aligned
with barley reference genome data using IPK blast server
(http://webblast.ipk-gatersleben.de/barley/viroblast.php).
Based on the best hit sequence, a total of 4 pairs of
primers (Additional file 2: Table S2) were used to amp-
lify the whole HVACCTI open reading frames (ORFs).
The amplified PCR products was purified and cloned
with pGEM"-T Vector System (Promega). The final CDS
were constructed using sequencing results from 12 inde-
pendent clones (3 clones for each pair of primers). Se-
quence analysis was completed with software DNAMAN
(version 7.0; Lynnon Biosoft, USA). The sequence data
of CDS have been deposited to NCBI Genbank Database
with accession number of KU725980 for variety
CXHKSL and KU725981 for Dayton.

HVAACT1 expression

RNA was isolated from root apices (also from plants
used for citrate efflux measurement) by RNeasy'™ plant
kit (Qiagen) and purified by inclusion of RNase-free
DNase (Qiagen). One microgram total RNA was used to
synthesize cDNA by reverse transcriptase system (Invi-
trogen). 1.0 pl oligo primer was added into 11.5 pl reac-
tion mixture including 1 pg RNA. The mixture was
incubated at 70 °C for 10 min, and transferred to ice im-
mediately. Each aliquot included 4 pl buffer, 2 ul 0.1 M
DTT, 1 ul ANTP mix, and 0.5 pl superscript III Reverse
Transcriptase was added into the mixture, and incubated
at 42 °C for 1 h. RNA degradation step was performed
by addition of 0.25 pl RNase H (Thermo Scientific™) and
incubated at 37 °C f or 30 min.

Quantification real time polymerase chain reac-
tion(RT-PCR) was run in a C1000TM Thermal cycler
(BIO-RAD) with 10 ul reaction mixture containing
4.0 pl of ¢cDNA diluted to 1:40, 5 pl of SYBR Green
Jumpstart Taq Readymix (Sigma) and 1 pl primer mix
(1:1 mix of forward and reverse primers at 10 nM). Three
pairs of primers used to measure expression of HVAACT]I
(HvAACTI-forward 5-AGCAGCCAAGACCTTGAGAA
and reverse 5-AGCAG GAATCCACAACCAAG; New-
HvAACTI-1-forward ACGGGGCTCTACCTCTTT -GT
and reverse 5-GGCAATAGAAACACCAACAGC; New-
HvAACTI1-2-forward CTGTGTCACTC TGGCATCGT,
and reverse 5-AAGCTGCAGAACACGAGAGGT). The
constitutively expressed barley glyceraldehyde-3-phosphate
dehydrogenase (HVGAPDH) gene and barley homolo-
gous to eukaryotic translation elongation factor 1A
(HveEF-1A) gene was used as reference genes. The se-
quences of primers are as follows: HvGAPDH-forward:
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5-GTGAGG CTGGTGCTGATTACG and reverse
5-TGGTGCAGCTAGCATTTGAGAC, HveEF-1A-for-
ward 5-TTTCACTCTTGGTGTGAAGCAGAT and
reverse 5-GACTTCCTTCACGAT-TTCATCGTAA. Cyc-
ling conditions were 3 min at 95 °C, followed by 40 cycles
at 95 °C for 10's, 60 °C for 20 s, 68 °C for 10 s. At the end,
a melting curve of the amplified fragments was produced
by increasing the temperature every 0.5 °C from 60 °C to
95 °C.

Data analysis and QTL mapping

All phenotypic data was analysed by SPSS software
package (Version 20.0, IBM), including all basic statis-
tics calculation and Chi-Square Goodness of Fit Test.
For genetic linkage map analysis, the genetic distances
between molecular markers were calculated using
software JoinMap 4.0 [28]. The mean values of root
lengths of DHLs were used to detect QTL affecting
root length under Al toxicity with software MapQTL6
[29]. Interval mapping (IM) method was first used to
identity the major QTL. By selecting significantly
linked markers as cofactors, multiple QTL mapping
(MQM) mapping method based on the multiple-QTL
model was used. A set of 1000 permutations was
performed to identify the LOD threshold correspond-
ing to a genome-wide false discovery rate of 5 %
(P<0.05) [29].

Results

A PCR-based marker is available to score for the pres-
ence or absence of the ~1 kb insert in the 5UTR of the
HvAACT]1 associated with higher expression in the root
apices of Al-tolerant barley [23]. The marker generates a
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larger product in Al-tolerant genotypes than in sensitive
genotypes. A Chinese variety named CXHKSL was iden-
tified which was tolerant to acid soil but did not show
the typical marker result associated with tolerance. In
fact the standard PCR reaction failed to produce any
PCR band in CXHKSL while the results obtained from
control varieties including the highly tolerant variety,
Dayton, and sensitive variety, Gairdner, were as expected
(Fig. 1a). The failure to generate a band was not related
to the quality or quantity of DNA extracted from
CXHKSL since other PCR reactions were successful in-
cluding the HVMATE-21 marker which targets the 3’
UTR of HVAACT1I (data not shown). Polymorphisms in
CXHKSL may have reduced annealing temperature of
one or both primers and so two additional primer pairs
were designed to target this polymorphic region in the 5’
UTR of HYAACT1 (Fig. 1b, c). One set had primers far-
ther upstream and downstream from the first set and
therefore would amplify a slightly larger product (Fig. 1c).
The second set of primers (Fig. 1b) was previously de-
scribed by Bian et al. [18]. Using these additional
primers, PCR products of the expected size were reliably
generated from Dayton and Gairdner. By contrast
CXHKSL generated no products at all (Fig. 1b, c). By
contrast the HYMATE-21 marker for CXHKSL, Dayton
and Gairdner were as described by Bian et al. [18]: the
tolerant genotype possessed a 21-bp deletion but sensi-
tive genotypes did not (data not shown). The coding re-
gion of HvAACTI in both CXHKSL and Dayton
consisted of 1668 bp which is the same as previously
published CDS [15]. CXHKSL was similar to Dayton
with only one nucleotide being different for HVAACT1
coding region (Additional file 3: Figure S1) and the

b c
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Fig. 1 Testing presence of the 1-kb transposon-like insertion in the 5'UTR of HVAACTT associated with Al tolerance. Primers sets used in the PCR
reactions are listed: (a) from Fujii et al. [23] (b) from Bian et al. [18] and (c) a new set of primers farther upstream and downstream from those
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difference didn’t cause any changes in amino acids. Two
and three SNPs were detected between the published
CDS and CXHKSL and between the CDS and Dayton,
respectively.

The Al tolerance of CXHKSL was further investigated
in hydroponic experiments and compared with Dayton
and Gairdner. Relative root length (RRL) of CXHKSL
was ~75 % after four days in 4 pM AICl; which was sig-
nificantly greater than Gairdner (~30 % RRL) but less
than Dayton (~110 % RRL) (Fig. 2). This ranking was
similar to the Al-related tissue damage on roots in the
three varieties (Fig. 3). Root apices of Gairdner became
significantly thicker than the others after four days in
4 uM AICl; which is a typical symptom of Al toxicity.
Haematoxylin staining was also more intense in the root
apices of Gairdner than in Dayton or CXHKSL, indicat-
ing greater Al accumulation in the roots of Gairdner.
The Al-dependent efflux of citrate was then measured
from these barley lines. Citrate efflux from CXHKSL was
less than Dayton (~40 pmol-apex™-h™') but greater
than Gairdner which correlated well with their relative
tolerance to Al (Fig. 4a). Pre-treatment with Al prior to
these measurements did not increase citrate efflux fur-
ther compared with roots without pre-treatment (Fig. 4a).
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These results indicate that the mechanism of Al toler-
ance in CXHKSL is associated with Al-activated citrate
efflux from roots which is consistent with previous re-
ports for barley [14, 16]. We also investigated whether
Al-activated malate release from the roots of CXHKSL
was apparent but we found no indication of efflux from
this in any barley lines tested (Fig. 4b). An Al-tolerant
wheat line included as a positive control in this experi-
ment showed malate efflux of 0.9 nmol apex*h™* which
is similar to published values [26].

The chromosomal location of the tolerance locus in
CXHKSL was investigated using a doubled haploid
population generated by crossing CXHKSL and Gaird-
ner. A total of 210 DHLs were grown in the acid soil
and the roots were scored based on both root length
and root tip damage (thickness). Root length of the
CXHKSL parent was 75 + 8 mm and showed no damage
of root tips (Fig. 5; Fig. 6a). Root length of the Gairdner
was 40+5 mm and the root apices showed swelling,
thickening and clear signs of damage (Fig. 5; Fig. 6b). A
total of 65 DHLs showed no thickened roots or visible
tissue damage (Fig. 6¢) while 145 DHLs showed those
strong phenotypes (Fig. 6d). When both criteria of
growth and damage were used to score the population,

80| a W control
E O1pumM Al
= 607 04 uM Al
[=)
C
Q2 40t
S
@)
o 20| L‘
0
b
S 1501 1
(@)}
c
2 T
(@] -
8 100
S
)
=
T 50
()
o
0
X
N 6(\0 \P/
& & P
O
Fig. 2 Comparison of Al tolerance in hydroponic culture. a Net root growth of seedlings after four days in nutrient solution containing 0, 1 or
4 uM AlCl; (pH =4.3). b Relative root length at each Al concentration in contrast with controls. Data showed means and standard error
(SE) (n=4-7)
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greater Al accumulation at the root apices
A

Fig. 3 Comparison of haematoxylin staining of barley roots in hydroponic experiments following different treatments. Shown are root apices
after 4 d in (a) control solution and (b) 4 uM AICl;. Genotypes shown are Dayton (D), Gairdner (G) and CXHKSL (Q). Darker staining indicated

we found that 128 DHLs had root lengths <50 mm and
showed thickened root apices and 52 DHLs had root
lengths >70 mm without visible thickening of the root
apices (Fig. 5; Fig. 6). The remaining 30 DHLs had root
lengths from 55 to 65 mm of which 17 DHLs showed
thickening of the root apices (Fig. 6d).

Preliminary genetic analysis localised the Al tolerance
phenotype in CXHKSL to a single major locus on
chromosome 4H (data not shown). Therefore a more de-
tailed genetic linkage map on chromosome 4H was gen-
erated using three SSR markers linked to Al tolerance
(HVMO03, Bmag353, Bmac310) as well as the HYMATE-
21 marker which targets an 21-bp deletion in tolerant
genotypes in the 3'UTR of HVAACTI1. The map spanned
a total length of 17.8 cM and the order of markers
(Fig. 7) was similar to Bian et al. [18]. Analysis of root

length under Al toxicity using this linkage map identified
a significant QTL with a LOD score of 56.44 (Fig. 8).
The closest marker, HYMATE-21, accounted for 71.0 %
of the phenotypic variation, while Bmag353 and
Bmac310 explained 61.0 % and 50.5 % of the variation
respectively (Fig. 8). We conclude that Al tolerance in
CXHKSL maps to the HVAACTI gene as reported for
other tolerant barley lines. This was further tested with
the HVYAACTI 5 UTR marker on a selection of tolerant
and sensitive DHLs. All sensitive DHLs tested amplified
a band similar to the Gairdner parent which is consist-
ent with expectations. Similarly, all tolerant DHLs tested
failed to produce a band which is the same as the
CXHKSL parent (data not shown).

Citrate efflux was also measured from the selection of
tolerant and sensitive DHLs. Six tolerant DHLs were
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Fig. 4 Citrate and malate efflux from the root apices of the barley varieties. a Citrate efflux was measured in presence of 30 uM AlCl3 with and
without an overnight pre-treatment in 10 uM AlCl;. b Malate efflux measured in the presence of 30 uM AICl; without pre-treatment. ET8 is an Al-
tolerant wheat line used as a positive control for malate efflux. Data show means and SE (n =4)
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Fig. 5 Distribution frequency of root length of 210 DHLs including parents after growth in an acid soil (pH =4.3). Solid bars indicated genotypes
with thickened root tips and white bars indicate genotypes without thickened root tips

-

Fig. 6 Comparison of Al tolerance of two parental varieties grown in acid soil (pH =4.3) by root length and damages to root tips. Root length
was compared between (a) CXHKSL and (b) Gairdner. Typical root apices from an Al-tolerant genotype is shown in (c) and typical root apices
from a sensitive genotype with obvious thickening and damage is show in (d)
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HVMO03 0.0

Bmag353 5.7

HVMATE-21 8.9

Bmac310 17.8

Fig. 7 The linkage map on chromosome 4H with four molecular
markers used to score 210 DHLs. Numbers on the right side
represented genetic distances in unit of centiMorgan (cM)

examined and efflux was measured from all of them.
Five of these had efflux of 18 to 28 pmol-apex™-h™
which was similar to the CXHKSL parent (Fig. 9). Efflux
from the remaining tolerant line was lower than the
other five but greater than the sensitive lines measured
which were <5 pmol-apex'-h™ (Fig. 9). The level of
HvAACTI expression was also determined in selected

Position on 4H
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HVMATE-21 T
Bmac310 T

Fig. 8 QTL detected for Al tolerance on chromosome 4H using root
length variation in acid soil. The continuous line represented for the
LOD score and the dashed line for phenotype variation (%)
explained by each marker

DHLs to determine whether this was linked with the
other phenotypes of tolerance and citrate efflux. These
measurements used two different reference genes
HvGAPDH and HveEF-1A. Expression of HVAACTI was
detected in CXHKSL, Dayton and the tolerant DHLs
tested but no expression was detected in Gairdner or the
three sensitive DHLs tested (Fig. 10). These results sug-
gest that Al-tolerance in CXHKSL is controlled by a
novel allele of the HYAACT1 gene.
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Fig. 9 Citrate efflux from the root apices of the barley lines. Citrate
efflux from CXHKSL and Gairdner as well as Al tolerant and sensitive
DHLs in the presence of 30 uM AICl; without Al pre-treatment. Data
showed means and SE (n=4)
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Fig. 10 Relative expression of HVAACTT in Al-sensitive and Al-tolerant DH lines generated from Gairdner and CXHSKL measured with quantitative
RT-PCR. The Al-tolerant variety Dayton was included. Expression of Gairdner was designated as 1.0. Data showed means of relative expression
level using HYGAPDH (black bars) and HveEF-1A (shaded bars) as reference genes, and SE from three biological replicates with two

Discussion

The only mechanism of Al tolerance in barley described
to date relies on the release of citrate from the root api-
ces via the HVAACT]1 transporter [14—16]. In our study,
we characterised a Chinese barley variety CXHKSL
which is moderately tolerant to Al stress in hydroponics
and acid soil but did not generate the expected result for
a standard marker that targets the 1 kb insert in the
5UTR of HVAACTI correlated with Al tolerance. Day-
ton and Gairdner amplified fragments of expected sizes
from the 5UTR of HvAACTI while no PCR products
were detected in CXHKSL. The determinant role of pro-
moter variation in Al tolerance was further confirmed
by the fact that only one SNP was detected for CDS of
HvAACTI gene between CXHKSL and Dayton without
causing changes in protein sequence. We showed that
the Al tolerance mechanism in CXHKSL likely relies on
the Al-activated efflux of citrate reported for other toler-
ant barley. Using a DH population generated by crossing
CXHKSL and the Al-sensitive variety Gairdner and a set
of markers linked with Al tolerance, we found that the
tolerance locus in CXHKSL mapped to HVAACT]I. Col-
lectively these results suggest that CXHKSL possesses a
novel allele of Al-tolerance gene HVAACT1I.

Fuji et al. [23] reported that ~1 kb insertion in the up-
stream 5’'UTR of HVAACTI alters the distribution and
level of gene expression in Al-tolerant cultivars. We
tried to detect the presence of this insert using the pub-
lished pair of primers but no fragments were amplified
in CXHKSL or the tolerant DH lines tested. However,
the expression level of HVAACTI in CXHKSL, Dayton
and Gairdner was positively correlated with the relative
Al tolerance of these varieties with Dayton > CXHKSL >

Gairdner. We also found that HYAACT1 expression was
higher in the tolerant DHLs than sensitive DHLs and
that the marker targeting the 5° UTR of HVAACTI seg-
regated with tolerance (absence of a band in CXHKSL).
This is consistent with the central role of HYAACT1I in
Al tolerance in these barley lines [23]. The absence of a
PCR product with the 5UTR HvAACTI marker in
CXHKSL could be due to polymorphisms which pre-
vented primer binding to the DNA. We tested this possi-
bility by designing the additional primers from the same
region but these also failed to generate a product in
CXHKSL (Fig. 1c). The absence of a PCR product for
this marker could also be due to a deletion in CXHKSL
or the presence of a much larger insert. It is clear that
polymorphisms exist in the 5UTR of HVAACTI in
CXHKSL compared to the published sequences for other
tolerant barley [23].

The gene-specific marker HVMATE-21 was more
efficient in predicting the phenotypic variation (71.0 %
in this study, Fig. 8) under Al toxicity than other
commonly-used SSR markers, Bmac310 and Bamag353
[16, 19, 20]. Meanwhile, segregation distortion occurred
in the DH population which skewed the distribution of
root lengths toward the sensitive parent Gairdner and
away from Mendelian expectations. No significant
monogenic segregation ratio 1:1(y*=36.82>x> 005 =
3.84) was observed. This distortion can occur when the
generation of fertile hybrids are prevented as a result of
the methods used to produce the lines [18, 30].

Al tolerance of wheat primarily relies on the Al-
dependent malate efflux from root apices which is con-
trolled by the Al-activated anion transporter encoded by
the TaALMT1I gene [31]. The closest homologue of this
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gene in barley is HYALMT1 which is located on chromo-
some 2H and does not contribute to the Al resistance
[32]. However, over-expression of HVALMTI gene in
barley with a constitutive promoter can increase the ef-
flux of malate and Al tolerance in barley and wheat [33].
The contribution of malate efflux to Al tolerance was in-
vestigated in CXHKSL and other tolerant and sensitive
genotypes but no significant malate release was detected.

Conclusions

In the present study, we demonstrated that CXHKSL
possesses a novel allele for the major Al tolerance gene
HvAACT]I but the mechanism of tolerance is similar to
other tolerant barley lines.
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