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Abstract

Background: The basidiomycete Rigidoporus microporus is a fungus that causes the white rot disease of the
tropical rubber tree, Hevea brasiliensis, the major source of commercial natural rubber. Besides its lifestyle as a
pathogen, the fungus is known to switch to saprotrophic growth on wood with the ability to degrade both
lignin and cellulose. There is almost no genomic or transcriptomic information on the saprotrophic abilities of
this fungus. In this study, we present the fungal transcriptomic profiles during saprotrophic growth on rubber wood.

Results: A total of 266.6 million RNA-Seq reads were generated from six libraries of the fungus growing either
on rubber wood or without wood. De novo assembly produced 34, 518 unigenes with an average length of
2179 bp. Annotation of unigenes using public databases; GenBank, Swiss-Prot, Kyoto Encyclopedia of Genes
and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO) produced 25, 880 annotated
unigenes. Transcriptomic profiling analysis revealed that the fungus expressed over 300 genes encoding
lignocellulolytic enzymes. Among these, 175 genes were up-regulated in rubber wood. These include three
members of the glycoside hydrolase family 43, as well as various glycosyl transferases, carbohydrate esterases
and polysaccharide lyases. A large number of oxidoreductases which includes nine manganese peroxidases
were also significantly up-regulated in rubber wood. Several genes involved in fatty acid metabolism and degradation
as well as natural rubber degradation were expressed in the transcriptome. Four genes (acyl-CoA synthetase,
enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA acetyltransferase) potentially involved in
rubber latex degradation pathway were also induced. A number of ATP binding cassette (ABC) transporters
and hydrophobin genes were significantly expressed in the transcriptome during saprotrophic growth. Some
genes related to energy metabolism were also induced.

Conclusions: The analysed data gives an insight into the activation of lignocellulose breakdown machinery of
R. microporus. This study also revealed genes with relevance in antibiotic metabolism (e.g. cephalosporin esterase) as
well as those with potential applications in fatty acid degradation. This is the first study on the transcriptomic analysis
of R. microporus on rubber wood and should serve as a pioneering resource for future studies of the fungus
at the genomic or transcriptomic level.
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Background

The white rot fungus Rigidoporus microporus (Polypor-
ales, Basidiomycota) syn. Rigidoporus lignosus is the
most destructive root pathogen of the tropical rubber
tree, Hevea brasiliensis Muell. Arg, which is the major
source of natural rubber [1]. It is an economically im-
portant pathogen of H. brasiliensis with yearly economic
losses of millions of dollars in the tropics. The control
and management of the white rot disease of rubber in
most tropical countries have been hampered due to lim-
ited knowledge of the population genetics of the differ-
ent isolates [2], as well as molecular basis of virulence
mechanisms. Additionally, members of the white rot ba-
sidiomycota fungi are known to play major roles in nu-
trient and carbon cycling in temperate and tropical
forests [3]. It is therefore expected that the Rigidoporus
group will harbor a repertoire of a wide range of useful
enzymes important for lignocellulose degradation with
potential applications in bioenergy processing and
utilization. However, there is presently no genomic or
transcriptome resources available for any species within
the genus, Rigidoporus.

In nature, the fungus infects over forty other trop-
ical tree species including Tectonia grandis, Artocarpus
nobilis, Theobroma cacao and Cocos nucifera [4—6], but
the pathogen is a problem mainly in rubber plantations in
Asia and Africa. The pathogen was a major problem on
43 % of H. brasiliensis plantations in a survey conducted
in Malaysia in 1993 [7]. In Nigeria, R microporus is re-
sponsible for 96 % of incidences of root diseases in rubber
plantations [8].

The fungus produces rhizomorphs which can grow
several meters in the soil and attach to wood debris.
Above ground symptoms are only visible once the roots
are completely damaged. The rhizomorphs remain in
the soil after the death of trees and may serve as source
of inoculum for infecting other trees or continue its sur-
vival by obtaining nutrients from dead wood [2, 9].

There is a high density of rhizomorphs and mycelia of
the fungus in the soil of H. brasiliensis infected natural
forests and plantations [10] indicating its capacity for a
saprotrophic lifestyle. Besides being a serious pathogen,
R. microporus is a typical white rot basidiomycete with
the potential to degrade lignin and cellulose components
of wood.

To obtain an overall view of all the processes that
occur during fungal growth as well as during wood deg-
radation, it is necessary to identify as many as possible
genes that are expressed during the saprotrophic
colonization. The use of high-throughput DNA sequen-
cing has facilitated the characterization and identifica-
tion of phytopathogenic fungi genes expressed during
developmental stages or fungal pathogenicity [11]. RNA-
Seq technology applied in this study detects novel genes
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as well as provides information about previously unchar-
acterized genes. Next-generation sequencing technolo-
gies have led to the generation of huge genomic and
transcriptomic data that have improved our understand-
ing of wood decay by white rot basidiomycetes. This
revolution has evolved from single genome sequencing
to large scale basidiomycete dual [12-14] and multiple
[15-17] genome and transcriptome comparative ana-
lysis. The model white rot fungus, Phanerochaete chry-
sosporium genome and transcriptome has been studied
in detail, revealing a rich repertoire of lignocellulose de-
grading genes [18, 19]. Other white rot species with
transcriptomic profile information on growth on various
carbohydrate sources include Fomitiporia mediterranea
[20] and Pycnoporus cinnabarinus [21]. Genome and
transcriptome of the white rot fungi, Phlebiopsis gigan-
tea with resin and fatty acid degradation potential has
also been studied [22]. On the other hand, there are very
few studies on transcriptomic information regarding
wood-decay basidiomycota with established parasitic and
saprotrophic lifestyles. Genome and microarray tran-
scriptome studies of the conifer root and butt pathogen,
Heterobasidion annosum sensu lato (s.l) on pine wood
revealed a plethora of glycoside hydrolases, multi copper
oxidases and manganese peroxidase enzymes implicated
in lignocellulose degradation [23, 24].

A search for R microporus in the National Center for
Biotechnology Information (NCBI) resource revealed no
information relative to EST (Expressed sequence tag),
Unigene and Gene, while there are only 36 protein se-
quences deposited (as of September, 2015). Genomic in-
formation related to the major pathogen host, H.
brasiliensis has recently received more attention with
the release of the draft genome sequence of the tree
[25]. However, there is almost no information on the
role of R. microporus during its saprotrophic lifestyle at
the genomic and transcriptomic level. Additionally, most
Rigidoporus species belong to the Meripilus clade of the
Polyporales, one of the orders of Agaricomycetes. The
transcriptome sequence would also contribute to further
enrich the power of comparative genomics information
in this basidiomycete group. Furthermore, the primary
importance of the Rigidoporus transcriptome resource is
partly due to the negative impact of this pathogen to
productivity of tropical rubber tree in several parts of
the world. The economic loss is enormous not only in
terms of wood production but also on indirect impacts
on global latex production on an important raw material
for automobile and airplane tyre production.

The objectives of this study were; (1) to study the tran-
script profiles of genes expressed during saprotrophic
growth of R. microporus on H. brasiliensis (2) to get an
insight on the potential ability of the fungus to degrade
natural rubber latex produced by the host and (3) to
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provide genetic resources that would facilitate further re-
search at the molecular and genetic levels of the lifestyle
of this fungus. As there is presently no genomic data
available for this fungus, we performed RNA-Seq de
novo assembly and compared the transcriptomes of the
fungus grown on nutrient media with and without rub-
ber wood. The results generated in this study would pro-
vide insights on the genes utilized by this fungus for
lignocellulose degradation of rubber wood and also serve
as an important resource for future studies on this eco-
nomically important pathogen.

Results

Sequencing of the transcriptome

The transcriptome of R. microporus was sequenced and
de novo assembled since there are no genomic data
available for the fungus. In order to capture a large num-
ber of transcripts, three replicates of the two conditions
[W and C (W1, W2, W3, C1, C2, C3)] were sequenced
separately. Each of the six samples produced over 40
million raw reads of single read length of 90 bp, result-
ing in a total of 266.6 million reads (Table 1). Clean
reads [251.1 million (94.2 % of raw reads)] and clean nu-
cleotides (22.6 billion) were obtained for assembly after
quality control (Table 1). Assembly was carried out using
the sequence clustering program, Trinity. Reads were as-
sembled into 34,518 unigenes with a mean length of
2179 bp. Unigenes with length > 3000 bp represent the
highest number of assemblies (Fig. 1). Distinct clusters
(26,447) represents cluster unigenes; the same cluster
contains similar unigenes (>70 % similarity). Distinct sin-
gletons (8701) represent unigenes from a single gene
(Table 2). Further sequencing quality control was done
by mapping the clean reads to the assembled unigenes.
Mapping results show a high mapping coverage (>95 %)
for all samples (Additional file 1: Table S1).

Annotation and characteristics of the transcriptome

Functional annotation of the unigenes was done by first
aligning by Blastx (cut-off E-value < 107™°) to protein da-
tabases in the following order of priority: NR (GenBank),
Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes

Table 1 R. microporus transcriptome sequencing summary

Samples  Total raw reads — Total clean reads  Total clean nucleotides
W1 42,119,460 39,670,980 3,570,388,200

W2 43,022,126 40,551,694 3,649,652,460

W3 44,834,988 42,350,576 3,811,551,840

@ 40,064,424 37,800,314 3,402,028,260

(@) 48,089,954 45,157,482 4,064,173,380

C3 48,451,512 45,603,760 4,104,338400

All 266,582,464 251,134,806 22,602,132,540
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(KEGG), Cluster of Orthologous Groups (COG) and
Gene Ontology (GO). The coding regions of unigenes
were predicted based on the proteins with the highest
rank in blast results. Protein coding prediction using
Blastx produced 26,663 unigenes with predicted open
reading frame (ORF). Unigenes that cannot align to any
database were scanned by ESTScan to provide sequence
direction of the predicted coding region. A total of
25,880 (74.98 %) of 34, 518 unigenes were functionally
annotated (Additional file 2: Table S2). The complete list
of number of annotated unigenes from public databases
is shown in Additional file 3: Table S3. The sequence
homology of R. microporus transcriptome against NR
NCBI database is shown in Additional file 4: Figure S1.
The R. microporus transcriptome showed a very strong
match (51.6 % of hits) with F. mediterranea genome.
Blastx results were used to classify unigenes and deter-
mine functional annotation for the unigenes in COG
and GO. In the COG classification, the unigenes were
divided into 25 functional groups with the ‘General func-
tion’ cluster representing the largest group (Fig. 2). The
GO classification separated the unigenes into 42 func-
tional groups representing biological process, cellular
component and molecular function ontologies (Fig. 3).

Differentially expressed genes between the two li-
braries (W and C) analysed using edgeR at a cut-off
of FDR < 0.05 and log2FC >2 showed that 2996 tran-
scripts were significantly up-regulated while 2128
transcripts were significantly down-regulated in rubber
wood (Fig. 4, Additional file 5: Table S4 and Additional file
6: Table S5). Increasing the stringency of differentially
expressed genes progressively up to FDR<0.001 and
log2FC >4 also reveal a high number of significantly
expressed transcripts, 392 up-regulated and 228 down-
regulated (Fig. 4). A subset of the most highly up-
regulated and down-regulated transcripts with functional
annotation are shown in Tables 3 and 4.

Analysis of genes encoding polysaccharide degrading

enzymes during saprotrophic growth on rubber wood

The transcriptome of R. microporus produced 173 dif-
ferentially expressed genes encoding glycoside hydro-
lases (GH) distributed in 35 families. GH7, GH3,
GH15 and GH18 had the highest number of tran-
scripts; 30, 15, 12 and 11 respectively. Altogether, 86
GH genes were up-regulated during growth on rubber
wood. All GH12, GH28, GH30, GH35, GH39, GH43,
GH51, GH53, GH78, GH79 and GHS88 genes were
up-regulated in rubber wood (Additional file 7: Table
S6, Fig. 5). All GH3, GH17, GH23, GH27, GH37,
GH38 and GH72 genes were down-regulated in rub-
ber wood (Additional file 7: Table S6). Seven GH
genes; [GH7 (CL2079.Contig4), GH10 (Unigene4693),
GH61 (CL374.Contig4), GH71 (CL94.Contigl), GH43
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(CL114.Contigb), GH43 (CL114.Contig2), GH61
(CL374.Contig3)] were up-regulated more than 16
fold in rubber wood, with GH7 (CL2079.Contig4) and
GH10 (Unigene4693), being up-regulated 71 and 69
fold respectively (Fig. 5, Additional file 7: Table S6).
The transcriptome also contained 28 differentially
expressed glycosylTransferase (GT) genes distributed in
11 families (Additional file 7: Table S6). The GT1 family
gene (Unigene2737) was up-regulated 96 fold in rubber
wood (Additional file 7: Table S6, Additional file 8: Figure
S2A). Other carbohydrate active enzymes differentially
expressed in the transcriptome include 28 carbohydrate
esterases (CE) in five families and 7 polysaccharide lyases
(PL) in 2 families. Eleven CE genes were up-regulated
more than 8 fold in rubber wood, while 4 PL genes
were up-regulated more than 4 fold (Additional file 7:
Table S6, Additional file 8: Figures S2B and S2C). CE7
(CL2913.Contigl) was up-regulated 575 fold in rubber
wood (Additional file 8: Figure S2B) and this gene is
among the top 3 most up-regulated genes with func-
tional annotation in the transcriptome (Table 3). Some
unigenes involved in glycan biosynthesis and metabolism

Table 2 R. microporus transcriptome assembly results for Unigenes

were also assembled in the transcriptome (Additional
file 9: Figure S3).

Insights on genes encoding glycolignin attacking enzymes
during saprotrophic growth on rubber wood

Additionally, 102 genes with capacity for lignin degrad-
ation were differentially expressed in the transcriptome.
These genes encoding lignolytic enzymes were distrib-
uted in 22 families which include multicopper oxidases,
class II peroxidases, aldo/keto reductases, alcohol oxi-
dase, copper radical oxidase, superoxide dismutase and
NADP oxidoreductase (Additional file 10: Table S7).
Nine multicopper oxidases (laccases, ferroxidases) were
differentially expressed in the transcriptome, out of
which 3 laccases and 2 ferroxidases were up-regulated
more than 4 fold in rubber wood (Fig. 6a). Twelve man-
ganese peroxidases (MnP1, MnP2 and MnP3) were dif-
ferentially expressed with 11 of these up-regulated in
rubber wood. All 9 MnP3 genes and the single MnP2
gene in the transcriptome were up-regulated in rubber
wood (Fig. 6b, Additional file 10: Table S7). Eight MnP3
genes were up-regulated more than 4-fold while the

Sample Total number Total length (nt) Mean length (nt) Distinct clusters Distinct singletons
W1 28,191 44,113,047 1565 15,574 12,617

W2 29,990 52,269,204 1743 17,865 12,125

W3 36,725 59,724,821 1626 21,815 14910

@ 20472 29,140,707 1423 7781 12,691

C2 21,976 32,638,908 1485 9257 12,719

a3 24,026 38,235,592 1591 11,787 12,239

All 34,518 75,231,694 2179 26,447 8071
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single MnP2 gene (CL4964.Contig4) was up-regulated 195
fold in rubber wood (Fig. 6b, Additional file 10: Table S7)
and is among the top 12 most up-regulated genes with
functional annotation in the transcriptome (Table 3). Six
aldo/keto reductase genes were up-regulated more than 4
fold in rubber wood (Additional file 10: Table S7, Fig. 6¢).
An alcohol oxidase (CL4203.Contig3) and NADP oxidore-
ductase (CL4346.Contig2) genes were up-regulated more
than 30 fold in rubber wood (Fig. 6d). A group of 10 yteT-

domain oxidoreductase genes were specifically induced
only in rubber wood. Five of these genes were up-
regulated more than 30 fold (Additional file 10: Table S7,
Additional file 11: Figure S4).

Genes involved in fatty acid and rubber tree latex
degradation

KEGG pathway enrichment analysis revealed a number
of expressed unigenes in the transcriptome involved in

Table 3 Twenty most up-regulated genes with functional annotation during saprotrophic growth of R. microporus on H. brasiliensis

Gene ID? log2FC® Hit accession number® Hit description Pvalue FDR
CL2561.Contig1 9.854 ref|YP_007374933.1 NADH dehydrogenase subunit 2 7.32E-07 6.38E-06
CL993.Contig4 9.262 gb|EJD04752.1 Alpha-ketoglutarate 2A40E-110 2.08E-106
CL2913.Contig1 9.167 gb|EJD07867.1 Cephalosporin esterase T.11E-120 1.28E-116
Unigene7085 8.982 ref|YP_003204905.1 Endonuclease 4.55E-06 342E-05
CL4886.Contig1 8.858 gb|EJD00032.1 NAD-binding protein 2.68E-102 1.32E-98
Unigene4438 8453 gb|EJD07869.1 Alpha/beta-hydrolase 503E-125 8.69E-121
CL4040.Contigl 8.302 K01046 Triacylglycerol lipase 2.75E-99 1.05E-95
Unigene7106 8.120 ref|YP_007374941.1 DNA-directed DNA polymerase 291E-05 1.85E-04
CL3467.Contigl 8.049 gb|EJDO1641.1 Acid protease 1.53E-81 2.63E-78
Unigene6801 7.994 sp|Q5B8K7 Histone transcription regulator 3 3.58E-04 1.77E-03
Unigene7086 7616 ref|[YP_003495111.1 Apocytochrome b 5.32E-05 3.20E-04
CL4964.Contig4 7.609 gb|EJD02610.1 Manganese peroxidase 2 1.77E-107 1.22E-103
Unigene7189 7428 gb|EJC97283.1 Pol poly protein 9.15E-04 4.07E-03
CL2419.Contig1 7.398 ref|YP_003495099.1 Cytochrome oxidase subunit 2 4.03E-04 1.97E-03
Unigene6789 7317 sp|QOUR07 Retrotransposable element Tf2 1.14E-03 4.94E-03
Unigene6787 7.259 sp|Q08438 Phosphopantothenoylcysteine decarboxylase 1.27E-03 543E-03
Unigene7063 7.192 ref|YP_OO1504350.1 Ribosomal protein S3 6.12E-04 2.86E-03
Unigene6978 7.101 ref|YP_004376378.1 Hyp16 1.72E-03 7.08E-03
Unigene776 7.062 sp|Q7RX84 Pre-mRNA-splicing factor 1.52E-84 2.92E-81
Unigene7105 7.032 ref|YP_001504344.1 DNA polymerase 2 1.96E-03 7.92E-03

Gene ID? refers to names of the assembled unigenes; Distinct clusters represented with the prefix (CL) represents cluster unigenes; the same cluster contains
similar unigenes (>70 % similarity). Distinct singletons represented with the prefix (Unigene) represents unigenes from a single gene. PBinary logarithm of the fold
change calculated from the fragments per kilobase per million reads (FPKM). “Corresponds to best hit of NR/SwissProt/KEGG database
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Table 4 Twenty most down-regulated genes with functional annotation during saprotrophic growth of R. microporus on H. brasiliensis

Gene ID? log2FC® Hit accession number® Hit description Pvalue FDR
Unigene4869 —-10.156 sp|P41816 NADPH dehydrogenase 3 5.53E-57 2.85E-54
CL2604.Contigl -8.677 ref[XP_001835437.2 YjgH family protein 244E-19 1.01E-17
Unigene802 —7.744 gb|EIN08964.1 NAD(P)-binding protein 1.05E-132 361E-128
CL391.Contig4 —7.689 sp|P54387 NADP-specific glutamate dehydrogenase 3.89E-14 9.36E-13
CL4092.Contig1 —7.345 gb|EIN05560.1 Cytochrome P450 2.85E-43 6.38E-41
CL2382.Contig2 —7.177 gb|EJD01684.1 Fungal hydrophobin 1.38E-27 1.18E-25
Unigene5403 —7.002 ref[XP_003022235.1 PHD finger and BAH domain protein 7.88E-80 1.13E-76
CL144.Contig15 —6.896 K01210 Glucan 1,3-beta-glucosidase 2.71E-06 2.13E-05
CL160.Contig25 —6.798 gb|EJD02081.1 Pkinase-domain-containing protein 5.11E-08 5.44E-07
CL486.Contig2 —6.570 gb|EJC97746.1 Hexose transporter 837E-39 145E-36
CL354.Contig15 —6.461 gb|EIW56335.1 Cytochrome P450 1.14E-59 7.28E-57
CL1122.Contig7 —6.444 spl014351 Uncharacterized oxidoreductase 244E-06 1.93E-05
CL144.Contig16 -6416 K01210 Glucan 1,3-beta-glucosidase 2.73E-04 1.39E-03
CL476.Contig3 —6.389 gb|EJD04564.1 FAD/NAD-binding domain-containing protein 1.20E-05 8.26E-05
CL1122.Contig8 —6.292 sp|P40580 Benzil reductase 7.59E-06 545E-05
Unigene5818 —6.283 gb|EKM54599.1 Glycoside hydrolase family 16 1.34E-90 331E-87
CL144.Contig11 -6.175 sp|Q5AVZ7 Glucan 1,3-beta-glucosidase 1.10E-03 4.76E-03
CL354.Contig5 —6.145 gb|EIW56335.1 Cytochrome P450 1.94E-25 1.39E-23
CL1413.Contig3 -6.137 gblEJD01676.1 14-3-3 protein 1.43E-03 6.02E-03
CL4617.Contig2 —6.126 gb|EGR50668.1 N-terminal WSC domain-containing protein 9.82E-97 3.08E-93

Gene ID® refers to names of the assembled unigenes; Distinct clusters represented with the prefix (CL) represents cluster unigenes; the same cluster contains
similar unigenes (>70 % similarity). Distinct singletons represented with the prefix (Unigene) represents unigenes from a single gene. bBinary logarithm of the fold
change calculated from the fragments per kilobase per million reads (FPKM). “Corresponds to best hit of NR/SwissProt/KEGG database

fatty acid biosynthesis, elongation and degradation.
Genes involved in natural rubber latex (cis-1, 4-
isoprene) degradation were also induced in the R
microporus transcriptome (Table 5, Additional file 12:
Figure S5). Four genes (acyl-CoA synthetase, enoyl-
CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase
and acyl-CoA acetyltransferase) involved in rubber
latex degradation pathway were also detected in the
fatty acid metabolism pathways (Table 5). The total
number of unigenes in the transcriptome involved in
other lipid metabolism pathways is shown in Additional
file 12: Figure S5.

ATP binding cassette (ABC) transporters and
hydrophobins

ATP binding cassette (ABC) transporters belonging
to eight families (ABC-A, ABC-B, ABC-C, ABC-D,
ABC-E, ABC-F, ABC-G and ABC-I) were expressed
in the transcriptome. Two families, ABC-B and ABC-
G were more highly expressed. Three transcripts
[ABC-G (CL3640.Contig9, CL3640.Contig8); and ABC-B
(CL893.Contig27)] were up-regulated more than 5 fold
while ABC-G (CL299.Contig2, CL299.Contigl) and ABC-B
(CL893.Contig30) were down-regulated more than 9
fold in rubber wood (Additional file 13: Table S8).

Several transcripts of hydrophobin encoding genes were
differentially expressed during growth on rubber wood
(Additional file 14: Table S9). Two hydrophobin genes
(CL996.Contig2, Unigene3334) were up-regulated more
than 2.5 fold in rubber wood. A fungal hydrophobin
(CL2382.Contig2) was down-regulated 145 fold in rubber
wood and is among the top 6 most down-regulated
genes with functional annotation in the transcriptome
(Additional file 14: Table S9, Table 4).

Analysis of genes encoding enzymes involved in
pathways related to energy metabolism

Analysis of genes in the R microporus transcriptome that
encodes enzymes involved in the glycolysis/gluconeogene-
sis and citric acid (TCA) pathways is depicted in Fig. 7.
KEGG pathway enrichment was carried out with a cut-off
for significantly expressed genes set at; FDR < 0.001 and
Fold Change > 2. Some genes coding for enzymes involved
in the early stages of glycolysis, phosphoglucomutase
(EC:5.4.2.2) and glucose-6-phosphate isomerase (EC:5.3.1.9)
were down-regulated while fructose-1,6-bisphosphatase I
(EC:3.1.3.11), was up-regulated in rubber wood. A
number of genes involved in the citric acid cycle were
also up-regulated in rubber wood; isocitrate de-
hydrogenase (NAD+) (EC:1.1.1.41), was up-regulated
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more than 10.5 fold, while alcohol dehydrogenase
(NADP+) (EC:1.1.1.2), and acetyl-CoA synthetase
(EC:6.2.1.1) were up-regulated more than 3 fold. A
summary of the total number of unigenes in the tran-
scriptome involved in other pathways of carbohydrate
metabolism is shown in Additional file 15: Figure S6.
A global view of the transcriptome by KEGG Gene
Ontology (biological process, cellular component and
molecular function) enrichment analysis of differen-
tially expressed genes between the two conditions (W
and C) is shown in Additional file 16: Figure S7A-C.

Validation of transcriptome data by qRT-PCR

The transcript profiles from the RNA-Seq data was vali-
dated by real-time quantitative PCR. Twenty-three genes
of interest were selected and the results of the qRT-PCR
were compared with the RNA-Seq results (Fig. 8). The
qRT-PCR transcript profiles for all the genes tested were
consistent with the RNA-Seq data (Fig. 8).

Discussion
Lignocellulose, the most abundant source of terrestrial
carbon and consisting of cellulose, hemicellulose, pectin
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and lignin is degraded basically by wood and litter de-
composing fungi [3, 26]. Members of the white rot fungi
belonging to the Polyporales are active wood lignocellu-
lose degraders [27]. Rigidoporus microporus is a serious
pathogen for rubber plantations in Asia and Africa. The
pathogen spreads through root contact and continues to
decay wood long after the tree has fallen [1, 2]. It was
shown in an earlier study that the isolate used for this
transcriptome study caused a dry mass loss of 21 % of
H. brasiliensis wood blocks after 6 months [28]. Some
studies have also shown the ability of the fungus to

secret peroxidases and laccases. Previous studies [29, 30]
showed that lignin degradation by R. microporus involves
the synergistic action of manganese peroxidase and lac-
case, and was enhanced by glucose oxidase. Compari-
sons of laccase activity from the fungus and other white
rot fungi have also been reported [31, 32].

In this study, we performed RNA-Seq de novo as-
sembly of R. microporus during saprotrophic growth
on rubber (H. brasiliensis wood) with emphasis on
lignocellulose degrading genes employed by the white
rot fungus. We also identified potential genes which
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Table 5 Number of Unigenes expressed and encoding
enzymes involved in fatty acid and rubber latex degradation

No. of
unigenes

Pathway Gene name

Fatty acid biosynthesis  Acetyl-CoA/propionyl-CoA 1

carboxylase

Acetyl-CoA carboxylase, biotin 1
carboxylase subunit

Fatty acid synthase subunit beta, 1
fungi type

Fatty acid synthase subunit alpha, 3
fungi type

3-oxoacyl-[acyl-carrier protein] 16
reductase

Fatty acid elongation 3-hydroxyacyl-CoA dehydrogenase 2
Enoyl-CoA hydratase 1
Palmitoyl-protein thioesterase 1
Fatty acid degradation  Long-chain acyl-CoA synthetase 11
Acyl-CoA oxidase 1

Enoyl-CoA hydratase 1

3-hydroxyacyl-CoA dehydrogenase 2
Acetyl-CoA C-acetyltransferase 4
Alcohol dehydrogenase 1/7 5

Aldehyde dehydrogenase (NAD+) 6
Unspecific monooxygenase "

Rubber tree latex
degradation

Acyl-CoA synthetase 11

Acyl-CoA dehydrogenase 3
Enoyl-CoA hydratase 10
3-hydroxyacyl-CoA dehydrogenase 7
Acyl-CoA acetyltransferase 8

Unigenes for fatty acid pathways were identified using KEGG pathway
enrichment analysis while that of rubber tree latex was compiled manually
from the transcriptome data. Rubber tree latex degradation pathway as
proposed by Hiessl et al. [49]. Fatty acid biosynthesis/elongation/degradation
(FDR < 0.001 and log2FC > 1) and rubber latex degradation (FDR < 0.05

and log2FC > 0.5)

R. microporus could utilize to degrade natural rubber
(cis-1, 4-isoprene) produced by H. brasiliensis, since
the fungus is able to survive in the living tree.

In order to generate a high percentage of annotation
for the assembled unigenes, five different databases
[NR/NT (GenBank) Swiss-Prot, KEGG, COG and GO]
were used in the annotation. Analysis of the de novo as-
sembly of the transcriptome of R. microporus on rubber
wood produced 25,880 annotated unigene coding tran-
scripts. In this study, the transcriptome analysis was
based on the differentially expressed transcripts be-
tween the two conditions, control and saprotrophic
growth on rubber wood. The results showed that there
was clearly, increased gene expression differences for
the transcriptome in rubber wood compared to the
control; 2996 transcripts were up-regulated in rubber
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wood and 2128 transcripts up-regulated in the control.
There were over 300 lignocellulose associated tran-
scripts differentially expressed in the transcriptome and
the names of the enzymes were confirmed by compar-
ing to the Carbohydrate-Active enZYmes (CAZy) data-
base (http://www.cazy.org).

Glycoside hydrolase family genes encoding for en-
zymes reported to be involved in cellulose hydrolysis
and breakdown were detected in the R. microporus tran-
scriptome. GH family genes; GH1, GH7, GH31, GH12,
GH55 and GH61 were highly expressed in rubber wood.
GH12 and GH55 family genes containing bond cleaving
endoglucanases are known to attack (-1, 4-glycosidic
bonds in non- crystalline cellulose, while GH1, GH7 and
GH31 families act at the ends of cellulose chains [33].
Interestingly, all GH12 transcripts were up-regulated in
rubber wood. Crystalline cellulose is degraded mainly by
auxiliary activity family (AA9) lytic polysaccharide
monooxygenase —LPMO, former GH61 family which is
highly induced in our study [34, 35]. Transcriptomic
studies also showed up-regulation of GH61 transcripts in
wood for Phanerochaete chrysosporium, P. carnosa and
Heterobasidion annosum [14, 24, 36]. Relative high tran-
script levels of genes known to be involved in both
crystalline and non-crystalline cellulose were present in
the transcriptome. Hemi-cellulose breakdown is more
complex because of the presence of acetyl groups and
covalent cross-linkages, thus degradation requires
several backbone cleaving and de-branching enzymes
[3, 37]. GH10, GH39, GH43, GH51, CEl and CE15
genes were strongly up-regulated in rubber wood and
have been implicated in hemicellulose degradation.
GH10 and GH11 family genes comprising xylanases are
needed for xylan breakdown [38]. Xylosidases from
GH3 and GH39 families are involved in degradation of
xylooligosaccharides to monosaccharides [39]. GH43
family comprises a variety of enzymes which cleave
glycosidic linkages of hemicellulose [15]. Interestingly,
all GH39 and GH43 genes in the R. microporus tran-
scriptome were up-regulated in rubber wood. Hemicel-
lulose breakdown also involves the actions of GH51 and
GH54 (comprising a-arabinofuranosidases), CE1 (acetyl
xylan esterases) and CE15 (glucoronoyl esterases) which
collectively complete the degradation process by cleaving
backbone chains and side groups [40]. Pectin breakdown
is carried out by GH28 (rhamnogalactoronases and xylo-
galactoronase), GH78 (a-rhamnosidases) and GH88 (glu-
coronyl hydrolases) by cleaving of complex branching
[41]. All GH28, GH78 and GHS88 transcripts were up-
regulated in rubber wood indicating a potential implica-
tion in pectin degradation during saprotrophic growth.
Moreover, these genes might also be relevant for the
pathogenic ability of this fungus, as GH28 family play an
important role in pectin degradation in fungal pathogens
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Fig. 7 Analysis of pathways related to energy metabolism. The pathway map shows selected steps from KEGG pathways of the Glycolysis/
Gluconeogenesis (http://www.kegg.jp/kegg-bin/show_pathway?ko00010) and Citric acid cycle (http//www.kegg jp/kegg-bin/show_pathway?ko00020).
Red indicates up-regulation and yellow, down-regulation in the treatment (W). Boxes with both red and yellow colours indicates cases were some
unigenes coding for a particular enzyme were up-regulated while others were down-regulated in treatment (W). The enzymes are indicated with the
EC numbers: EC:1.1.1.2, alcohol dehydrogenase (NADP+); EC:1.1.1.37, malate dehydrogenase; EC:1.1.141, isocitrate dehydrogenase (NAD+); EC:1.2.1.12,
glyceraldehyde 3-phosphate dehydrogenase; EC:2.3.1.12, pyruvate dehydrogenase E2 component (dihydrolipoamide acetyltransferase); EC:2.3.1.61,
2-oxogllutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase); EC:2.3.3.1, citrate synthase; EC2.7.1.40, pyruvate kinase; EC2.7.2.3,
phosphoglycerate kinase; EC:3.1.3.11, fructose-1,6-bisphosphatase I; EC:4.2.1.11, enolase; EC:4.1.2.13, fructose-bisphosphate aldolase, class 1); EC:5.3.1.9,
glucose-6-phosphate isomerase; EC5.4.2.11, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase; EC:5.4.2.2, phosphoglucomutase; EC:6.2.1.1,
acetyl-CoA synthetase

[42]. CE family genes; chitin deacetylase (CE4) and
pectine esterases (CE8) previously identified in ge-
nomes of some white rot polypores [27] were found
to be highly expressed in the transcriptome. Several
putative cephalosporin esterase (CE7) family genes
not previously characterized in basidiomycetes were
highly expressed in rubber wood. The enzyme ceph-
alosporin esterase can deacetylate various cephalospo-
rins. Cephalosporin belongs to the group of B-lactam
antibiotics produced by some fungi and horizontal

gene transfer from bacteria to fungi has been pro-
posed as part of its evolutionary origin [43]. The CE7
gene highly expressed in rubber wood share closest
similarity (54 %) with the predicted cephalosporin es-
terase of the white rot fungus, Fomitiporia mediterra-
nea (GenBank: EJD07867.1). Further study and
characterization of this gene could shed more light
on its function in basidiomycetes.

A number of laccases and a large number of manga-
nese peroxidases were highly induced in rubber wood.


http://www.kegg.jp/kegg-bin/show_pathway?ko00010
http://www.kegg.jp/kegg-bin/show_pathway?ko00020

Oghenekaro et al. BMC Genomics (2016) 17:234 Page 12 of 17

7 1 7 A
5% 4] s3]
& 51 GRT-PCR &5 51 RNA-Seq
28 44 - o 44
o o o =
23 37 28 37
NZ 2 DE 2 -
o8 =R
=9 1 EEE
0 T T T 0 T
GH7 GH43 GH55 GH61 GH43 GH55 GH61
- aRT-PCR s3 101 RNA-Seq
Ss5 g R
35 £ 8-
o i [
5o © 52 61
Zg o4 2g 4
¥E 2 EX
] SS9 24
S [
0 A : : : 0.
CE7 a/keto o/B Cyanase ot/keto /B Cyanase
glutarate hydrolase lutarate hydrol
10 - 10 - glutarate hydrolase
58 g qRT-PCR s?3 RNA-Seq
35 S& 87
w O 6 a5
o o w o 6
Q% o
~ 2 41 Qo 4 4
[ = w>
e _Ii' = r'l_ L} :I
0 4 T T T 0 4

Laccase Fet3 MnP2 MnP3

_ 8 8 Laccase Fet3 MnP2 MnP3
5 g QRT-PCR s —2 RNA-Seq
85 ° X e 6
o
« © [
S2 4 5o 4
S
Ly 23
= >
88 ? ¥E
£ oS3
0 + T T T = 0+ T
Ox.red A/K Metallo-HY Alcohol Ox.red A/K Metallo-HY Alcohol
reductase deH reductase deH
s 10 RT-PCR _ 10 RNA-Seq
85 g SS s
35 £
g 6 =S 6
o * S o
£ 83 ¢
= >
g5 o TE 2
< SS9
0 = 0
CytP450 NAD-B Cerato CytP450 NAD-B Cerato Tp
platanin synthase platanin  synthase
- 12 aRT-PCR _ 12 RNA-Seq
o
g& 10 g2 10
S8 o8 &g os
°2 06 52 06
2o Qo
~ 2 04 =z 04
[T
g5 02 L 02
0.0 4 = 00 4 T
Cu Uptake Fe reductase Fungal Cu Uptake Fe reductase Fungal
transporter hydrophobin transporter hydrophobin

Fig. 8 gRT-PCR validation of RNA-Seq expression data. Open bars represent control (C) and closed bars, treatment (W). RNA-Seq relative
expression corresponds to log2 fold change (FC) of the fragments per kilobase per million reads (FPKM). gRT-PCR relative expression
corresponds to log2 FC of the ddCt values normalized with the reference gene 18S. Bars represent standard error. (Abbreviations: GH, Glycoside
hydrolase; CE, Carbohydrate esterase; Fet3, Ferroxidase; MnP, Manganese peroxidase; Ox.red, Oxidoreductase; A/K, Aldo/Keto; HY, Hydrolase; deH,
Dehydrogenase; Cyt, Cytochrome; NAD-B, NAD-Binding protein; Tp, Terpenoid). Gene ID of unigenes:[GH7 (CL2079.Contig4), GH43 (CL114.

Contig6), GH55 (CL2076.Contig2), GH61 (CL374.Contig4), CE7 (CL2913.Contig1), a/keto glutarate (CL993.Contig4), o/ hydrolase (Unigene4438),
Cyanase (CL4402.Contig4), Laccase (CL2007.Contig2), Fet3 (CL3130.Contig1), MnP2 (CL4964.Contig4), MnP3 (CL29.Contig8), Ox.red (CL583.Contig21),
A/K reductase (CL714.Contig6), Metallo-HY (CL2357.Contig2), Alcohol deH (CL331.Contig2), CytP450 (CL3949.Contig1), NAD-B (CL4886.
Contig1), Cerato platanin (Unigene4679), Tp synthase (CL900.Contig2), Cu Uptake transporter (CL4549.Contig2), Fe reductase (CL1619.
Contig4), Fungal hydrophobin (Unigene6195)]

_

Laccases together with the class II heme-containing per-  basidiomycetes in lignin deconstruction [44]. Manganese
oxidases (lignin, versatile and manganese peroxidases) peroxidase (MnP) and lignin peroxidase (LiP) are the
are the major enzyme machinery used by white rot most effective lignin degrading enzymes with MnPs
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more widely distributed in basidiomycetes and are cur-
rently receiving more attention as potential sources of
ligninolytic enzymes [45, 46]. In our study, 5 laccases
and 9 MnPs transcripts were significantly up-regulated
in rubber wood, which might suggest potential rele-
vance of these enzymes for lignin degradation. The
MnP2 gene highly expressed in rubber wood share
closest similarity (75 %) with the MnP2 of the white rot
fungus, F. mediterranea (GenBank: EJD02610.1). The
number of significantly expressed MnPs is high when
compared to the number expressed in other white rot
transcriptomic studies on wood degradation. Micro-
array transcriptomic studies of H. annosum growing on
a gradient of bark, heartwood and sapwood showed
that a total of 5 MnPs and 3 multicopper oxidases were
significantly up-regulated [24]. RNA-Seq transcriptomic
studies by using the model Pycnoporus cinnabarinus
white rot basidiomycete expressed 3 laccases and 1
MnP in birch wood [21]. These differences could be
due to certain technical advantages of deep sequencing
RNA-Seq technology (higher increased sensitivity, bet-
ter discrimination of transcripts and ability to detect
new gene models) compared to microarray [47, 48].
Other probable reasons could be due to the fact that,
the number and variety of enzymes employed in ligno-
cellulose degradation is quite diverse and depends on
substrate, lifestyle and fungal species [15].

R. microporus produces extensive rhizomorphs in the
soil surrounding rubber trees and its characteristic red-
dish brown basidiocarps are often on the roots and
stems of a decaying tree. Natural rubber latex (cis-1, 4-
isoprene) which flows from the laticifer tubes of the
phloem in H. brasiliensis is a defence response to stem
wounding. This process is exploited for tapping and
collection of rubber latex when a cut is made on the
bark of the tree. Survival of the pathogen might require
the ability to degrade or survive in latex rich environ-
ment of the rubber tree. A degradation pathway for the
rubber tree latex has been proposed based on studies
on the rubber latex degrading bacteria Gordonia polyi-
soprenivorans [49]. A large number of unigenes that are
directly implicated in rubber latex degradation pathway
were expressed in the R. microporus transcriptome. In
particular, multiple transcripts coding for the enzymes;
acyl-CoA synthetase, enoyl-CoA hydratase and acyl-
CoA acetyltransferase were induced in both growth
conditions (W and C) used in this study suggesting
constitutive expression of some of the genes. The path-
way shows that acyl-CoA synthetase converts the or-
ganic acids derived from p-oxidation of the rubber
latex into acyl-CoA thioester. Enoyl-CoA hydratase is
involved in isomerization while acyl-CoA acetyltrans-
ferase releases acetyl-CoA into the citric acid cycle [49].
The potential ability for rubber latex degradation by R.
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microporus is further underscored by the induction of
several genes in the transcriptome that are involved in
fatty acid degradation. This ability might be crucial for
the survival of the pathogen on the living H. brasiliensis
tree during necrotrophic growth. Given the molecular
evidence for a possible host jump from other trees to
H. brasiliensis and the evolution of the pathogen in ab-
sence of H. brasiliensis [2], R. microporus might have
acquired genes that can effectively metabolize fatty acid
secondary metabolites produced by the tree. The ability
to metabolize and degrade fatty acid related secondary
metabolites might be responsible for its ability to sur-
vive in the tree in the presence of latex.

Our transcriptome analysis also included genes en-
coding important fungal proteins like ABC transporters
and hydrophobins. ATP binding cassette (ABC) trans-
porters have received much research attention in recent
years because of their various predicted functions
which includes transport of materials across biological
membranes [50]. Two ABC transporter sub-families
(ABC-B and ABC-G) which are present in genomes of
other white rot polypores were induced in rubber wood,
although the precise biological functions for most of
the ABC transporters still remain unknown. However,
there are evidences for potential involvement of fungal
ABC transporters in tolerance and resistance to the
chemical defense components of conifer trees. A role
for a specific ABC-G transporter in the monoterpene
resistance has been demonstrated in the pine pathogen
Grosmannia clavigera [51] and a similar role has been
suggested for an ABC-G transporter in the wood-decay
fungus Phlebiopsis gigantea [22]. Several hydrophobin
genes were differentially expressed in the R. microporus
transcriptome on wood and non-wood media. Hydro-
phobins are surface active proteins that have been re-
ported to be implicated in different stages of the fungal
lifestyles like fruiting body formation, hyphae growth
and emergence, pathogenicity factors and biological
control mechanism [52, 53]. The number of expressed
hydrophobin transcripts (22) is comparable to 16 tran-
scripts expressed in microarray studies of Heterobasi-
dion sp. on pine wood [54].

In order to further elucidate the mechanisms involved
in wood degradation and utilization of the degradation
products by R. microporus, we analyzed genes largely
affected during carbohydrate metabolism. Phosphoglu-
comutases and glucose-6-phosphate isomerase, both in-
volved in the final stages of glucose metabolism were
down-regulated in rubber wood. The higher induction
of these genes in the control might be due to more re-
source allocation due to the absence of lignocellulosic
substrates in the control. In contrast, fructose-1,6-
bisphosphatase I involved in the interconversion of glu-
cose phosphate to fructose phosphate, isocitrate



Oghenekaro et al. BMC Genomics (2016) 17:234

dehydrogenase (NAD+) which converts isocitrate to
2-oxoglutarate and acetyl-CoA synthetase which syn-
thesizes acetyl-CoA for the citric acid cycle were
highly up-regulated in rubber wood. Finally, genes
which encode alcohol dehydrogenase was also docu-
mented. Alcohol dehydrogenase facilitate the inter-
conversion between alcohols and aldehydes or ketones
with the reduction of nicotinamide adenine dinucleo-
tide (NAD+ to NADH).

Conclusions

In this study, we present for the first time, the tran-
scriptomic profile of genes expressed by the white rot
fungus, R. microporus during saprotrophic growth on
rubber (H. brasiliensis) wood. The de novo RNA-Seq
assembly and annotation revealed a very good cover-
age of the transcriptome. The assembled unigenes
contained vast amount of genes encoding major
lignocellulose degrading enzymes, especially manga-
nese peroxidases. Our results suggest that the fungus
has the capacity to degrade both crystalline and non-
crystalline cellulose, hemi-cellulose and pectin. Tran-
scriptome analysis also revealed a large number of
peroxidases, laccases, aldo-keto reductases, alcohol
oxidases, NADP oxidoreductases and copper radical
oxidases utilized in lignin degradation of rubber
wood. R. microporus also expressed numerous genes
involved in fatty acid metabolism and breakdown; a
feature supported by its ability to express genes in-
volved in natural rubber latex degradation. Pathway
enrichment analysis also revealed some enzymes with
potential application in biotechnology. High correl-
ation between the differentially expressed gene
assessed by qRT-PCR results and the RNA-Seq results
also confirm the reliability of RNA-Seq technology. To
conclude, the number of annotated unigenes (25,880) and
expressed lignocellulose degrading transcripts (338) indi-
cated that R. microporus is a necrotrophic/saprotrophic
basidiomycete model with vast capacity to breakdown
lignocelluloses.

Methods

Fungal strain and growth conditions

R. microporus (Isolate ED310) used in this study was ob-
tained from the Forest Pathology Laboratory, University
of Helsinki, Finland. It was isolated from a diseased
H. brasiliensis tree from rubber plantations at the
Rubber Research Institute, Nigeria in 2012 [2]. Wood
blocks (3 x 1 x 0.5 c¢cm) of H. brasiliensis NIG801
clone were oven dried at 65 °C to constant weight.
Erlenmeyer flasks (100 ml) containing vermiculite (frac-
tion size — 1 mm) and nutrient solution (gl’lz NH,NO; —
0.6, KHPO, — 04, KH,PO, — 0.5, MgSO,7H,O - 04
and glucose — 1.0) in the ratio 1:6 (1 g vermiculite to 6 ml

Page 14 of 17

nutrient solution) was prepared. Three wood blocks
were placed in one set of flasks, while the other set
had no wood. Flasks were stoppered with cotton wool
and aluminum foil and autoclaved for 20 mins. Three
freshly growing agar plugs (5 mm?) of R. microporus
were inoculated into each flask. Inoculated flasks were
placed in an improvised environmental chamber with
wet paper towels. Water was added to the paper
towels every 2 weeks to maintain chamber humidity
at 60-80 %. Samples from three randomly selected
flasks for the two sets of treatment; wood (W) and
without wood (C) were harvested after 4 months’ in-
cubation and frozen at —-80 °C for RNA extraction.

RNA extraction, cDNA library construction and
sequencing

Total RNA was extracted from three biological repli-
cates of R. microporus on wood/nutrient media and
on nutrient media alone as previously described by
[55]. RNA quality and integrity were confirmed using
ND-2000 spectrophotometer (Nanodrop technologies)
and Agilent 2100 Bioanalyser (Agilent Technologies,
Santa Clara, CA). Library construction and sequen-
cing were performed at the Beijing Genome Institute,
Hong Kong (www.bgitechsolutions.com). Messenger
RNA was extracted from total RNA using oligo (dT)
beads and fragmented in fragmentation buffer to get
short fragments of 200 bp. Random hexamers was
used to synthesize first stand cDNA, followed by
addition of dNTPs, RNase and DNA polymerase I to
synthesize second strand cDNA. Sequencing adaptors
were ligated to fragments which were amplified by
PCR. Six cDNA libraries (3 biological replicates for
W and 3 for C) were created. The six cDNA libraries
were sequenced separately using the Illumina HiSeqTM
2000 sequencing platform.

Data filtering, de novo assembly and annotation

Raw pair-end reads produced from the sequencing plat-
form were filtered to generate clean reads by removing
adaptors, reads with unknown nucleotides larger than
5 % and low quality reads. Clean reads from the six
samples were used to perform RNA-Seq transcriptome
de novo assembly using trinity (http://trinityrnaseq.-
sourceforge.net/) [56] to generate 90 bp paired end
reads. Assembled sequences were defined as unigenes.
Unigenes were further clustered into gene family by se-
quence splicing and redundancy removal to acquire
non-reductant unigenes. Unigenes are thus divided into
two classes; one with prefix CL (Clusters) having uni-
genes with similarity between them>70 % and the
second class are singletons with prefix, Unigene. Pre-
diction and annotation of all unigenes were done by
Blastx alignment (e value < 0.00001) between unigenes
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and protein databases like NR/NT (GenBank), Swiss-Prot,
Kyoto Encyclopedia of Genes and Genomes (KEGG),
Cluster of Orthologous Groups (COG) and Gene
Ontology (GO). If results of different databases conflict
with each other, a priority order of NR, Swiss-Prot,
KEGG and COG was followed. Information from blast
results were used to extract coding sequence (CDS)
from unigene sequences and translate them into pep-
tide sequences. The CDS of transcripts encoding ligno-
cellulose degrading enzymes were used to characterize
isoforms in cluster unigenes. Groups of isoform contigs
were counted as a single gene. The systematic analysis
of metabolic pathways and functions of gene products
was performed using the KEGG http://www.genome.jp/
kegg/) [57]. Blast2GO (http://www.blast2go.com/b2ghome)
[58] was used to provide annotations of unigenes into
biological process, cellular component and molecular
function ontologies.

Analysis of differentially expressed genes

Read counts of genes were calculated by the Fragments
Per kilobase per Million reads (FPKM) method [59].
This method eliminates the influence of different gene
length and sequencing on calculation of gene expression.
Calculated gene expression can be directly used to com-
pare gene expression levels between samples. Differential
gene expression between the two libraries (W and C)
was analyzed using edgeR (Empirical analysis of Digital
Gene Expression in R, http://www.bioconductor.org/packages/
release/bioc/html/edgeR html) package [60]. Heatmaps show-
ing hierarchical clustering were produced using the heat-
map.2 package in R software [61]. The false discovery rate
(FDR) was used to determine the p-value. We set our
threshold for significantly expressed genes at FDR < 0.05
and log2Fold Change (FC) > 2. GO and KEGG functional
pathway enrichment analysis was done to show the main
biochemical and signal transduction pathways of differen-
tially expressed genes (DGEs) by using a FDR <0.001 as
cut-off value for significantly enriched DGEs.

gRT-PCR validation of RNA-Seq results

Twenty-three genes of interest (both up-regulated and
down-regulated in both experimental conditions) were
selected for qRT-PCR validation of RNA-Seq results.
Primers for each gene were designed by using the
Universal Probe Library Assay Design Center (Roche -
http://www.roche.com). Information on primers is shown
in Additional file 17: Table S10. One pg of total RNA from
the two samples (W and C) were reverse transcribed by
reverse transcriptase and random hexamers (Thermo Sci-
entific) to synthesize first strand ¢cDNA. The qRT-PCR
was run in a LightCycler 480 SYBR Green I Master
(Roche). Reaction was carried out in 384-well plates
(Roche) in a total volume of 15 pl containing 5.5 pl cDNA,
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1 ul (10 uM) of each primers and 7.5 pl of SYBR green
master mix. Cycling conditions are as follows: pre-
incubation at 95 °C for 5 min, denaturation at 94 °C for
10 s (4.8 °C s — 1), annealing at 60°C for 10 s (2.5 °C s - 1),
extension at 72 °C for 10 s (4.8 °C s — 1), 45 cycles of amp-
lification and final extension at 72 °C for 3 min. Three
independent biological replicates and two technical rep-
licates were prepared for each sample. Relative gene ex-
pression was calculated using the 274" method. The
18S ribosomal transcript level was used as the internal
reference for normalization as its expression in the
RNA-Seq data was also found to be relatively stable in
all samples (Additional file 18: Table S11).

Availability of supporting data
The data set supporting the results of this article is in-
cluded within the article and its additional files.

The raw data from the six samples have been submit-
ted separately to the National Center for Biotechnology
Information (NCBI) under the accession number
SRP062841. The Transcriptome Shotgun Assembly pro-
ject has been deposited at DDBJ/EMBL/GenBank under
the accession GDMNO00000000. The version described in
this paper is the first version, GDMN01000000.
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