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Abstract

Background: Somatic mutations in cancer cells affect various genomic elements disrupting important cell functions.
In particular, mutations in DNA binding sites recognized by transcription factors can alter regulator binding affinities
and, consequently, expression of target genes. A number of promoter mutations have been linked with an increased
risk of cancer. Cancer somatic mutations in binding sites of selected transcription factors have been found under
positive selection. However, action and significance of negative selection in non-coding regions remain controversial.

Results: Here we present analysis of transcription factor binding motifs co-localized with non-coding variants. To avoid
statistical bias we account for mutation signatures of different cancer types. For many transcription factors, including
multiple members of FOX, HOX, and NR families, we show that human cancers accumulate fewer mutations than
expected by chance that increase or decrease affinity of predicted binding sites. Such stability of binding motifs is even
more exhibited in DNase accessible regions.

Conclusions: Our data demonstrate negative selection against binding sites alterations and suggest that such
selection pressure protects cancer cells from rewiring of regulatory circuits. Further analysis of transcription factors with
conserved binding motifs can reveal cell regulatory pathways crucial for the survivability of various human cancers.
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Background
Somatic mutations in DNA binding sites recognized by
transcription factors [1, 2] can alter regulator binding af-
finities and expression of target genes [3], often leading
to malignant cell transformation. Affinity changes can be
directly associated with cancer progression with a strik-
ing example of a GABP (ETS-family factor) binding site
emerging in TERT promoter [4] associated with progres-
sion of different tumors [5, 6]. A number of other pro-
moter mutations have been linked with an increased risk
of cancer [7, 8], and the number is expected to grow
rapidly along extensive sequencing of complete cancer
genomes. For instance, in the recent study of regions

associated with a risk of epithelial ovarian cancer [9] out
of nearly three hundreds significant single-nucleotide
polymorphisms only two were found in protein coding
regions, whereas 25 were localized in transcription factor
binding sites. Likewise, cancer drivers identified in
knockdown experiments [10] not necessarily carry muta-
tions in coding regions, thus underlining the importance
of regulatory mutations modifying gene expression.
Frequencies of synonymous and non-synonymous sub-

stitutions allow studying selection of cancer somatic mu-
tations in protein-coding regions [11]. For non-coding
regions estimates of selection pressure can be based on
functional annotation of sequence variants. In particular,
DNA sequence motifs recognized by the transcription
factors [12] usually have strict and degenerate positions
[13]. Assessment of potential binding affinity changes in-
duced by substitutions allows studying selection of
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sequence variants in binding sites in a way resembling
usage of non-synonymous and synonymous substitutions
in codons.
Somatic mutations often tend to destroy binding sites

[3, 14] of specific transcription factors reflecting positive
selection of variants. Conversely, binding sites of other
transcription factors were reported to avoid mutational
changes [14], but the significance of negative selection
pressure acting at somatic mutations remains controver-
sial [3, 14, 15].
Mutations in cancer cell lineages are strongly context-

dependent [16]; thus, mutation signatures of different
cancer types should be properly taken into account to
avoid statistical bias. Here, we used genome wide data
[16] on several cancer types with different mutation sig-
natures to study the frequencies of somatic mutations
that alter binding sites for specific transcription factors.

Results
Assessing selection pressure on transcription factor
binding sites
To study selection pressure on gene regulatory regions
we used mutation sets from different cancer samples
grouped by the tissue [16]. First, we selected mutations
in putative regulatory regions (intronic and promoter
genomic segments), which made up to 50 % of total mu-
tation calls (Additional file 1: Table S1). Then, we
mapped transcription factor binding sites [17] in small
windows centered at the mutation sites (see Methods,
predicted binding sites were allowed to be located in the
vicinity of but not necessarily overlap the mutated base).
For a particular tested motif, on average 5 ± 3 % of tested
windows included binding sites predictions (see Add-
itional file 2: Table S2 for complete data), but there were
exceptional cases with deviating prediction rates.
In this study we considered local windows centered at

the mutated bases. In each window we considered only
predicted transcription factor binding sites that were lo-
cated not farther than 10 bp from the mutation. This
allowed distinguishing mutations that substantially chan-
ged motif affinity (substitution in a core motif position)
from those only weakly affecting binding (substitution in a
weak motif position or in a flanking position). At the same
time, such local analysis allowed to set aside vast fluctua-
tions in mutation rate between different genome domains.
Putative affinity changes were estimated for the mu-

tated allele versus the germline allele [18]. We separately
considered both directions of affinity changes that can
be caused by a nucleotide substitution in a binding site:
the affinity loss (disruption of a binding site predicted
for the germline allele) and gain (improvement or emer-
gence of a binding site with stronger prediction for the
mutated allele).

To evaluate the selection pressure we compared the
observed frequency of mutations substantially changing
the binding site affinity with the expected frequency esti-
mated from simulated control data.
We used two different control data sets: (1) the shuffle

control consisting of sequences with randomly shuffled
nucleotides around the actual mutated bases, similar to
that in previous studies [3] but controlling the mutation
context (the germline and mutated nucleotides and the
proximal 5' and 3' nucleotides); and (2) the genomic con-
trol consisting of randomly sampled segments of pro-
moter and intronic regions not overlapping the cancer
mutation-centered windows (see Methods for details).
To account for specific mutation signatures of different

cancer types (see Additional file 3: Figure S1), binding sites
predictions in both shuffle and genomic controls were
sampled to equalize the resulting distribution of mutation
contexts of given control data to match the cancer muta-
tions data, separately for each cancer type.
Finally, we identified binding motifs that significantly

and consistently exhibited an exceptional rate of
mutation-induced affinity changes versus both control
data sets with equalized contexts distribution (FDR-cor-
rected two-tail Fisher’s P < 0.05, see Additional file 2: Table
S2 and Additional file 4: Table S3 for complete data, see
Methods for details and Fig. 1 for the overall workflow).

Limited magnitude of selection pressure requires high
statistical power
For each transcription factor binding motif we estimated
magnitude of selection pressure on somatic mutations
overlapping the predicted binding sites. The selection
pressure magnitude was defined as the ratio of the ob-
served and expected frequencies of mutation-induced af-
finity changes assessed for the somatic mutations
(observed) and the simulated control data (expected), re-
spectively (see Methods). The typical values of the selec-
tion pressure magnitude were around 0.9–0.95 (negative
selection) and 1.05–1.1 (positive selection, see Fig. 2)
and were in a similar range for mutations causing the af-
finity gain or the affinity loss.
With ratios expressing selection pressure magnitude

so close to 1, a large data volume was necessary to attain
acceptable statistical significance. In particular, the simu-
lated control sets were several times larger than the ini-
tial cancer data set, especially for cancer types with less
called mutations. The most robust observations were
made on cancer types with the highest mutation counts
and thousands to dozens of thousands predictions per
binding motif (see Additional file 2: Table S2).

Selection of mutations altering binding motif affinity
Among transcription factors with binding sites experien-
cing frequent affinity loss we observed those belonging to
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AP-2 and C/EBP families, whose binding motifs were pre-
viously reported as mutation-enriched [3, 14]. Binding
motifs of zinc finger SP and KLF families were also
enriched with affinity loss-causing mutations in several
cancer types. Mutations in binding sites of other transcrip-
tion factors, in particular, belonging to the ETS family,
persistently induced affinity gain (see Table 1 and
Additional file 2: Table S2 and Additional file 4: Table S3).
Binding motifs enriched with mutations causing the

affinity loss or the affinity gain are likely to be under posi-
tive selection.
Conversely, for a much wider set of transcription fac-

tor binding motifs, mutations leading to either affinity gain
or affinity loss were depleted (Table 1, Additional file 2:
Table S2 and Additional file 4: Table S3). Furthermore,
binding motifs of certain factors were simultaneously pro-
tected from both the affinity loss and gain in several cancer
types. In particular, there were several families of nuclear

Fig. 1 Procedure used to evaluate affinity change events and estimate significance of difference between observed and expected frequencies.
Top panel: prediction of binding sites in cancer and control data and evaluation of affinity change events. Bottom panel: binding sites predictions
and affinity change events of AP-2 motifs; an example of 2 × 2 contingency table used to compute Fisher’s exact test P-value
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receptors (Fig. 3, TFClass families [19] are shown). Such
conserved binding motifs indicate action of negative selec-
tion against somatic mutations. Importantly, negative selec-
tion of HOX and FOX motif-changing variants, reported
earlier for normal tissues [20], was also exhibited in differ-
ent cancers.
Only a few binding motifs were found significant for

cancer types with limited number of available mutation
calls due to lower statistical power. However, these or-
phan motifs often belonged to the families found under
systematic protection from the affinity loss or gain in
larger data sets (Additional file 4: Table S3).

Location of somatic mutations relative to binding motifs
is associated with motif information content
Frequencies of cancer somatic mutations highly depend on
the sequence context (see Additional file 3: Figure S1). For
a given DNA motif, a mutation within a given context is
more likely to occur at some positions and to avoid others,
i.e. some motif positions are expected to accumulate more
substitutions as local nucleotide context at these motif posi-
tions is similar to the frequent mutation context.
At the same time, the selection pressure would be the

most exhibited at motif positions with high information
content. A single-nucleotide substitution in such

a

b

Fig. 2 Selection magnitude for affinity loss and gain of ETS, FOX and C/EBP motifs in different cancer types. X-axis displays the selection magnitude for motif
affinity loss (a) or gain (b) caused by somatic mutations. Box-plots are provided for ETS-related (14 motifs), FOX (13 motifs), C/EBP-related (9 motifs) and NR3
(Steroid hormone receptors, 11 motifs) transcription factor families in three cancer types with the largest numbers of mutation calls. In particular, C/EBP motifs
display frequent affinity loss in breast cancer, FOX and NR3 motifs are protected from both the affinity loss and gain in lung adenocarcinoma and breast
cancer, and ETS motifs tend to emerge in all three cancer types (breast, lung and liver). Data for two control datasets (shuffle, genomic) are shown
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positions would cause greater changes in motif affinity
[21]. To compare substitution rates at different motif
positions we have aligned the motif predictions in the
mutation-centered windows for germline alleles and esti-
mated the positional density of mutations by normaliz-
ing the mutation counts in each position to the total
number of tested windows (see Fig. 4 for a visual
description).
Figure 5 shows distribution of substitutions for AP2A

(frequent affinity loss) and ESR1 (conserved) motifs based
on breast cancer data. Normalized substitution frequencies
are plotted along the motif logo and clearly demonstrate
that somatic mutations often occupy the G(+4) base in
AP2A. It is known, that 5’-TGA-3’ context (5’-TCA-3’ on
the reverse strand) is frequently mutated in breast cancer
(see Additional file 3: Figure S1). Accordingly, in both
controls the mutations of G(+4) are more frequent
than in other positions. Still, the actual G(+4) muta-
tion rate in the AP2A motif is 1.5х higher in breast
cancer genome as compared to the control (simu-
lated) data.
At the same time, the major C(+4) in TCA context of

the ESR1 motif strongly avoids substitutions in cancer
data if compared to any of the controls. Comparison
with two other TGA boxes in ESR1 is even more il-
lustrative. The first one is centered at G(+10) and has
substitution rate approximately at the expected level.
The second one (with the weak information content
reflected as logo column height) is centered at
G(+15) and, probably, is less important for the ESR1
binding affinity. Consequently, it aggregates signifi-
cantly more somatic mutations than expected from
the control data.

Stronger negative selection acts in DNase accessible
regions
Accuracy of binding sites prediction in silico is limited
and it is hard to distinguish true binding sites from false
positive predictions without direct experimental data. To
increase the confidence of binding site prediction, we
considered subsets of mutations occurring in DNase ac-
cessible segments [22] of promoters and introns for
breast cancer and lung adenocarcinoma.
Mutation rates may unpredictably depend on chroma-

tin accessibility. Hence, a separate control set con-
structed from DNase accessible regions was necessary to
evaluate selection of mutations in DNase accessible re-
gions. The resulting estimates of the selection pressure
magnitude became comparable with those for the whole
set of mutations in promoter and intronic segments.
A smaller absolute number of mutations in DNase ac-

cessible regions resulted in a lower number of binding
sites predictions and a lower statistical power (Additional
file 5: Table S4), thus the absolute number of featured
binding motifs was also smaller. However, the major ob-
servations persisted. In particular, motifs of FOX and sev-
eral NR families were found protected from somatic
mutations whereas selected members of AP-2 and C/EBP
families displayed persistent affinity loss.
Taking the motifs found under significant negative se-

lection for the full set of intronic + promoter mutations
(P-value < 0.05 versus a particular control data), we com-
pared the estimates of the selection pressure magnitude
with those for mutations in the DNase accessible re-
gions. There was no systematic difference for the
shuffle control. The genomic control revealed consist-
ently lower relative frequency of the affinity changing

Table 1 Examples of selection magnitude for conserved binding motifs and motifs frequently affected by somatic mutations

Selection magnitude values estimated against two control data sets are given. Significant cases are colored by light green (protection from affinity change) and
light red (frequent affinity change). Selected members of several transcription factor families are shown

Vorontsov et al. BMC Genomics 2016, 17(Suppl 2):395 Page 267 of 276



events (i.e. stronger selection magnitude) for the most
of significant motifs in DNase accessible regions
(Fig. 6). We consider this as an indication of stronger
negative selection pressure on DNase accessible re-
gions. The magnitude of positive selection in DNase
accessible regions was lower (closer to 1), and the
number of motifs detected under positive selection
was lower (Additional file 5: Table S4).

Discussion
Similar binding motifs are under similar selection pressure
Transcription factors of a given structural family [19] usu-
ally share similar binding preferences and it is not always

possible to distinguish binding sites bound by different
members of the same family. Attribution of binding predic-
tions to a particular transcription factor is not entirely reli-
able, that is why we focused on observations that were
consistent for different members of a given motif family
(Figs. 2 and 3). Furthermore, transcription factors of the
same structural family often had binding motifs obtained
from different experimental data sets [17] and thus had dif-
ferent prediction biases. Thus, consistent detection of selec-
tion pressure for several motifs belonging to transcription
factors of the same family increased our confidence that
the detected effects were not arising from biased predic-
tions of a particular low-quality binding model.

Fig. 3 Transcription factor binding motifs protected from somatic mutations in different cancer types. The size of a pie shows the total number of
motifs in a given transcription factor family (given in curly braces according to TFClass). The slices of a pie show the number of conserved binding
motifs protected from any affinity change (yellow), motifs protected from affinity loss (magenta), and motifs protected from affinity gain (deep purple)
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Genomic control data highlight negative selection
We emphasize the usage of genomic control in addition
to shuffle control, since genomic sequences prefer or
avoid occurrences of sequence motifs in a non-random
fashion. For instance, composition of CpG islands corre-
lates with the presence of many Kruppel-like transcrip-
tion factor motifs, whereas nucleosome binding motifs
facilitate binding of TBP factor [23]. All these regular-
ities are destroyed in the shuffle control.
In general, the genomic control gave more conservative

estimates of selection magnitude (Fig. 2) but there was a
notable overlap between the resulting sets of motifs (Add-
itional file 6: Figure S2) identified with any of the two con-
trols, especially for the motifs conserved by negative
selection. However, for positive selection the overlap was
quite limited. For example, binding sites of HIF-1 tran-
scription factor were found under strong positive selection
both for affinity gain and affinity loss when the shuffle

control was used, but the effect completely disappeared
with the genomic control (Additional file 2: Table S2).
Such observations were not easy to interpret; they might
be caused by some local bias in nucleotide composition,
which was controlled only for the shuffle control set.
Thus, in our analysis we focused on cases, which were
consistent (with the same selection direction) and signifi-
cant (P < 0.05) for both control data sets.

Biological interpretation
Many transcription factors with binding sites under selec-
tion have been reported to be involved in cell malignant
transformation. For instance, we detected significant en-
richment of affinity gain events for C/EBP that was re-
ported to be important for malignant conversion of
human breast epithelial cells [24]. Binding sites of GABP,
a member of ETS family, are created by mutations in
TERT promoter and associated with development of

Fig. 4 Procedure used to evaluate mutation frequencies relative to motif occurrences
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many cancer types [4]. In our study the affinity gain of
ETS binding sites appeared under positive selection,
whereas affinity loss was under negative selection. FOX
proteins, whose binding sites were found under negative
selection both for the affinity gain and loss, were also sug-
gested to be involved in cancer progression [25].
Our definition of the selection pressure pertains to en-

sembles of sites, which are destroyed by mutations sta-
tistically less often (or more often) than expected. Why
mutations occur in particular binding sites is a separate
question. For instance, suppose there is a trend for bind-
ing sites of a particular motif to be conserved, whereas
specific small subset of these sites undergoes recurrent
mutations , thus opposing the general trend. Such obser-
vation might help to locate important components of
cancer regulatory network.

General notes and conclusions
In our analysis we used classic PWM approach to pre-
dict transcription factor binding sites. The application of
position weight matrices was often expected to result in
high false positive rates, especially when utilizing con-
ventional motif databases such as TRANSFAC [26].
However, the prediction quality of modern motif collec-
tions, including motifs derived from ChIP-Seq data [27],
is noticeably better, which is supported by recent bench-
marking studies [28, 29]. Furthermore, eukaryotic ge-
nomes contain many low-affinity, poorly conserved
binding sites that are nevertheless likely to play an im-
portant role in cis-regulatory control and evolution [30].

This substantiates taking into account at least medium-
scoring PWM hits, especially, to study affinity change
events from single-nucleotide somatic substitutions,
which have limited effective potential for “motif editing”.
To summarize our findings, we observed transcrip-

tion factor binding sites of many motif families in
several cancer types altered by somatic mutations sig-
nificantly less frequently than expected, both for mu-
tations causing affinity loss or gain. The avoidance of
mutations in binding motifs indicates the action of
negative selection maintaining specific paths in cellu-
lar regulatory circuits. This negative selection of mu-
tations that might lead to substantial affinity gain
rejects possible alternative explanation that the ob-
served differences are caused by transcription factors
providing protection against mutations at binding
sites by occupying the respective DNA segments. An-
other alternative explanation, that the observed statistical
phenomena arise from biased mutation patterns of a par-
ticular cancer type, can be ruled out because conserved
binding motifs are shared in cancers with substantially dif-
ferent mutation signatures (see Additional file 1: Table S1
and Additional file 3: Figure S1).
Finally, conservation of binding motifs against muta-

tions was exhibited even in a simple test considering
how often mutations occupied positions within the mo-
tifs versus nearby positions in the vicinity (see Methods
and Additional file 7: Table S5). The resulting list of mo-
tifs was less selective and harder to interpret since the
substitution itself and affinity change direction were not

Fig. 5 Relative location of mutated bases in reference to the AP2A (top panel) and ESR1 (bottom panel) binding motifs predicted for breast cancer data. Y
axis shows the relative fraction of mutation-centered windows with the legitimate motif predictions, X axis shows the location of a mutated base relative
to the motif. Motif logos are scaled according to the discrete information content. Somatic variants tend to localize at strict position of the AP2A motif (red
line) leading to affinity change. Variants in ESR1 motif (purple line) avoid strict and prefer degenerate positions, the motif is protected from affinity change
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considered. However, major families of motifs that
tended to overlap/avoid mutations (i.e. with more/less
mutations within motifs than expected) were consistent

with the detailed affinity change test, in particular, mem-
bers of ETS, AP-2 and FOX, HOX families were overlap-
ping and avoiding mutations, respectively.

a

b

Fig. 6 Fold change (log2) of negative selection magnitude for mutations in DNase accessible subregions compared to that in the promoter and
intronic segments. Y axis displays selection magnitude fold change (log2), the ratio between selection magnitudes estimated for DNase
accessible regions to those for all promoter and intronic segments, the respective genomic control data is used in the both cases. Lower values
of selection magnitude correspond to the stronger negative selection, thus negative fold change values correspond to stronger negative
selection in DNase accessible regions. X axis displays different significantly conserved motifs (P < 0.05) for the set of promoter and intronic
mutations. Data for affinity loss (a, top panel) and affinity gain (b, bottom panel) is presented for breast cancer (top subpanels) and lung
adenocarcinoma (bottom subpanels). Members of FOX and NR transcription factor families are colored in blue and green
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Further analysis of factors with binding motifs pro-
tected by negative selection against mutations can reveal
cell regulatory pathways crucial for the survivability of
various human cancers.

Methods
Overview of cancer mutations data
We used published whole genome somatic mutations
data for ten cancer types [16] (507 samples with varying
sequencing depth) with mutations from different sam-
ples of the same cancer type aggregated. The total num-
ber of mutation calls varied between cancer types with
breast cancer, liver cancer and lung adenocarcinoma
having the largest numbers (Additional file 1: Table S1).
Only single-nucleotide substitutions were considered.
Ensembl gene annotation was used to select mutations

in intronic regions and [−5000;+500] bp intervals around
transcription start sites (promoters). The total length of
intronic and promoter DNA was 1,6⋅109 bps with an
average mutations density of 1–2 substitutions per 5 kb
for the cancer types with the highest number of muta-
tion calls.
Mutations in coding regions were excluded. An overview

of the initial mutation data is given in Additional file 1:
Table S1. The relative frequencies of mutation contexts
(the 5' and 3' nucleotides surrounding the mutated/germ-
line alleles) are shown in Additional file 3: Figure S1.
The mutation coordinates were used to extract

mutation-centered [−50; +50] bp genomic windows
based on Ensembl GRCh37.p13 (release 75) human gen-
ome assembly. Overlapping windows for closely located
mutations were considered independently (thus a single
binding site in theory could be assessed for more than
one mutation). Within a single cancer sample some win-
dows with different mutation coordinates had identical
sequences (e.g. due to genomic repeats), and, for each
particular sample, only one of these windows was kept
for further analysis. For each cancer type, recurrent mu-
tations in different cancer samples were considered as
independent observations. The statistical analysis (see
below) was performed separately for each cancer type.

Assessing binding motif affinity changes
DNA motifs recognized by transcription factors are
highly divergent. A basic binding site model, position
weight matrix (PWM), accounts for such divergence by
assigning a score for each oligonucleotide of some fixed
length, with high scoring sequences selected as binding
sites. A fixed score threshold defines the positive predic-
tion rate (motif P-value) for the given PWM. With a uni-
form distribution of background frequencies the motif
P-value is equal to the fraction of oligonucleotides
(“words”) scoring above the given threshold among all
words of the fixed length. For a given sequence variant

the score of the best binding site prediction defines the
respective motif P-value. In annotation of regulatory
SNPs the ratio of motif P-values for two sequence vari-
ants was used to quantify the effects of nucleotide sub-
stitutions in predicted binding sites [31, 32].
The correspondence between the motif P-value and the

energy of specific binding (the so-called discriminative en-
ergy) is clarified in the classic work [21]. It is shown that
for a point substitution in a binding motif the log-ratio of
P-values defined by two alternative sequence variants is
approximately equal to the difference of corresponding
discriminative energies. We defined substantial difference
as the drop in the discriminative energy that increases the
motif P-value four fold, which corresponds to the substi-
tution of a perfectly nondegenerate position to a com-
pletely degenerate position in an imaginary model that did
not contain any degenerate positions.
To predict the binding sites and to quantify affinity

change events we used PERFECTOS-APE software [18].
Binding sites were predicted in [−50;+50] bp mutation-
centered windows as best hits of 278 A/B/C-quality
(highest quality) PWMs from the HOCOMOCO v9 [17]
collection. The closest position of a binding site was re-
quired to be located not farther than 10 bp (one helix
pitch) away from the mutated base, windows with pre-
dictions farther than 10 bp from the mutated base were
discarded (separately for each motif ). This setup allowed
us to bypass global variability in mutational rates, which
may induce an unknown bias in co-localization of muta-
tions with binding motifs. To avoid such conditioning by
genome location preferences we predicted binding sites
only in small windows centered at mutations, thus con-
sidering only short genomic segments containing both a
binding site and a somatic mutation.
For predictions we used the motif P-value threshold of

0.0005 (which roughly defines the false positive rate cor-
responding to a single expected prediction per 1000 bp
of a random double stranded sequence). The approach
to take PWM score thresholds according to a common
false positive rate was recently demonstrated to be the
least biased in a comparative study [29].
It is not trivial to assess the quality of binding site pre-

diction since very little is known on the negative con-
trol, the DNA sequences that do not bind a particular
transcription factor. For example, FoxA2 has well-
exhibited binding preferences and has been tested for
false-positive predictions in [33] with the help of EMSA
experiments. For the HOCOMOCO v9 model at 0.0005
P-value the resulting experimentally-justified FDR was
about 17 % providing an intuition on binding site pre-
diction error rate. Yet, since only 64 hand-picked bind-
ing sites (41 positive and 23 negative) were tested with
EMSA, this FDR value cannot be used in any quantita-
tive estimation.
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We used the P-value ratio thresholds of 4 (affinity gain,
motif emergence) and 0.25 (affinity loss, motif disruption)
to distinguish between substantial and non-substantial
binding site alterations. This setup was identical for each
particular cancer type (to estimate the observed affinity
change frequencies) and control data (to estimate the ex-
pected frequencies).
To sum up, for a given transcription factor binding

motif and for a given mutation-centered window an af-
finity loss event was counted if (1) the best prediction
for the germline sequence passed motif P-value of
0.0005 considering PWM hits not farther than 10 bp
away from the mutated base and (2) the best prediction
for the mutated allele, again, considering PWM hits not
farther than 10 bp away from the mutated base, had P-
value at least 4 times weaker. Symmetrically, an affinity
gain event was counted under the same restrictions for
the best PWM hit but for the sequence with the mutated
allele, and with the respective P-value for the germline
sequence predictions being 4 times weaker.
We did not require the best hits in the germline and

the mutant sequence to appear at the same position.
Thus, with our approach we did not count affinity
change events in windows with two good motif hits,
only one of which was affected by the mutation.

Simulated control data
Two simulated control sequence sets, the shuffle control
and genomic control, were used to estimate the expected
frequency of affinity changing substitutions. The relative
size of the simulated control sets depended on the total
number of mutation calls in a particular cancer type.
Lower relative size of the control data sets was used for
the larger mutation sets (see Additional file 1: Table S1).
Higher relative sizes of the control data sets was used
for the cancers with lower numbers of mutation calls to
provide stable estimates of expected frequencies.
The shuffle control set was obtained by shuffling the

flanking sequences within [−50;+50] bp around the mu-
tated base keeping the mutation context, the immediate
5' and 3' nucleotides, and the substitution itself, intact.
Multiple shuffles were gathered for each mutation
(Additional file 1: Table S1). This was the only step
where the window length was explicitly used.
The windows for the genomic control were sampled

from intronic and promoter regions in a way that they
did not overlap the cancer mutation-centered windows.
Each segment of [−50;+50] bp had the central base and
its neighboring 5' and 3' nucleotides identical to the mu-
tation context of a given somatic mutation locus, the re-
spective nucleotide alternative was added. For each
somatic mutation several genomic control windows were
extracted, the number depended on the total number of

mutations for a particular cancer type (Additional file 1:
Table S1).
Both the shuffle and genomic controls were used to

predict transcription factor binding sites in the same
way as for the cancer data. For each binding motif the
windows with binding sites predictions for the germline
alleles were used to evaluate statistical significance of
the affinity loss. Likewise, the windows with binding sites
predicted for the simulated mutated alleles were used to
evaluate statistical significance of the affinity gain. The
windows with predictions for both alleles participated in
both types of analysis (Fig. 1), and the windows without
predictions were discarded.
Since binding sites predictions depended on the nu-

cleotide composition and, consequently, on the mutation
contexts (the 5’ and 3’ nucleotides proximal to the mu-
tated base), we equalized the mutation contexts distribu-
tions of the test and control data for each particular
cancer type before the statistical evaluation. To achieve
this, we sampled the windows with binding sites predic-
tions in control data (both shuffle and genomic) to
match a given mutation context distribution of a par-
ticular cancer for each binding motif separately.
In a limited number of cases there were not enough

control data to completely equalize the contexts distribu-
tion (see Additional file 2: Table S2). Yet, even for cancer
types with low numbers of mutation calls, where the rela-
tive required size of the control data sets was extremely
large, no less than 95 % of predictions with matching con-
texts were successfully sampled from the control data. Im-
portantly, for cancer types with abundant mutation calls
context equalization was almost perfect (99.9-100 %
match of the contexts distributions with the non-perfect
match only for exceptional motifs, see Additional file 2:
Table S2), since a lower relative size of the control data set
was generally required (see Additional file 1: Table S1).
During significance evaluation (see below) the “missing”
control predictions were considered as if they made the
contingency tables more uniform (i.e. reducing the differ-
ence and its possible statistical significance).
Thus, for each binding motif we obtained the final sets

of mutation-centered windows with binding sites over-
lapping with or located in the close vicinity of mutations
for test and control data with the equalized mutation
contexts distribution. This eliminated possible bias from
the non-randomness of mutational signatures and made
possible a comparison of the binding sites alteration fre-
quencies in cancer versus control data.
The events of mutation-induced motif changes were

counted for each cancer type and the control data sets
(shuffle and genomic) using the same procedure. For each
binding motif the Fisher's exact test was computed using
2×2 contingency tables (substantial affinity loss or gain
versus non-substantial affinity change/no change, cancer
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mutations versus the control data, separately for shuffle
and genomic control, refer to Fig. 1 for a scheme).
Only cases that passed 0.05 FDR-corrected (for 278 tested

binding motifs) Fisher’s exact test P-value in both compari-
sons (versus the shuffle and versus genomic controls) were
considered significant for a particular cancer type.
For selected motifs we also assessed localization of

mutations relative to the binding motif predictions (see
the specific section in Results, the workflow is shown in
Fig. 4).

Estimating the selection magnitude
The affinity loss frequency was calculated as the fraction
of affinity loss events out of all tested windows with le-
gitimate motif predictions for the germline allele (see
the previous section). Symmetrically, the affinity gain
frequency was calculated as the fraction of windows with
affinity gain events among all windows with legitimate
predictions for the mutated allele.
The absolute values of the affinity loss and gain event fre-

quencies are biased by the specific mutation signature of
each particular cancer type. To account for this effect, we
computed the relative values normalizing cancer frequen-
cies for those of the control data. The ratio of the affinity
loss (gain) frequency for cancer somatic mutations to the
affinity loss (gain) frequency in the control set (genomic or
shuffle) defined the selection magnitude for affinity loss
(gain). The magnitude greater than 1 corresponded to the
positive selection, the magnitude less than 1 corresponded
to the negative selection.

Assessing mutations in DNase accessible segments
As an additional test, we considered DNase accessible
segments of all introns and promoters. The DNase ac-
cessibility data (breast cancer and lung adenocarcinoma
only) were collected for related cell lines and normal tis-
sues [34] (Additional file 5: Table S4). The resulting re-
duced set consisted of 104905 (596253) mutations for
breast cancer (lung adenocarcinoma) thus including
nearly 30 % (90 %) from the respective total sets of in-
tronic and promoter mutations.
Open chromatin regions are enriched with binding sites

of the most of transcription factors but depleted of others
[22]. To account for this non-randomness, the shuffle and
the genomic controls were produced with the same pipe-
line as for the total set of promoter + intronic mutations
but restricted to DNase accessible regions only.

A simplified test to reveal selection pressure
We also tested a basic overlap of mutations and motifs
not taking into account the affinity change. To this end
we used 2×2 contingency tables for the test/control data
and mutations overlapping/not overlapping with the mo-
tifs (Additional file 7: Table S5) with the binding sites

predictions performed using the same setup as in the
main workflow. On the one hand, this simplified test did
not capture neutral substitutions within the motifs and
did not allow separating affinity loss and gain events. On
the other hand, the results of this test did not depend on
arbitrary selected motif P-value ratio thresholds.
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cluded within the article and its additional files.
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axis shows the number of motifs, stacked bars show the number of
significant motifs passing P < 0.05 for shuffle only (green), genomic only
(light blue) and both (deep blue) controls. Data for three cancer types are
shown. Panels: (A) Affinity loss. (B) Affinity gain. (PDF 72 kb)

Additional file 7: Table S5. Binding motifs found under positive and
negative selection in a basic test considering mutations overlapping and
avoiding binding sites predictions. Raw data on binding sites predictions
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