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Abstract

Background: Most existing tools for detecting next-generation sequencing-based splicing events focus on generic
splicing events. Consequently, special types of non-canonical splicing events of short mRNA regions (IRE1α targeted)
have not yet been thoroughly addressed at a genome-wide level using bioinformatics approaches in conjunction with
next-generation technologies. During endoplasmic reticulum (ER) stress, the gene encoding the RNase Ire1α is known
to splice out a short 26 nt region from the mRNA of the transcription factor Xbp1 non-canonically within the cytosol.
This causes an open reading frame-shift that induces expression of many downstream genes in reaction to ER stress as
part of the unfolded protein response (UPR). We previously published an algorithm termed “Read-Split-Walk” (RSW) to
identify non-canonical splicing regions using RNA-Seq data and applied it to ER stress-induced Ire1α heterozygote
and knockout mouse embryonic fibroblast cell lines. In this study, we have developed an improved algorithm
“Read-Split-Run” (RSR) for detecting genome-wide Ire1α-targeted genes with non-canonical spliced regions at a
faster speed. We applied the RSR algorithm using different combinations of several parameters to the previously
RSW tested mouse embryonic fibroblast cells (MEF) and the human Encyclopedia of DNA Elements (ENCODE)
RNA-Seq data. We also compared the performance of RSR with two other alternative splicing events identification tools
(TopHat (Trapnell et al., Bioinformatics 25:1105–1111, 2009) and Alt Event Finder (Zhou et al., BMC Genomics 13:S10,
2012)) utilizing the context of the spliced Xbp1 mRNA as a positive control in the data sets we identified it to be the
top cleavage target present in Ire1α+/− but absent in Ire1α −/− MEF samples and this comparison was also extended to
human ENCODE RNA-Seq data.
(Continued on next page)
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(Continued from previous page)

Results: Proof of principle came in our results by the fact that the 26 nt non-conventional splice site in Xbp1 was
detected as the top hit by our new RSR algorithm in heterozygote (Het) samples from both Thapsigargin (Tg) and
Dithiothreitol (Dtt) treated experiments but absent in the negative control Ire1α knock-out (KO) samples. Applying
different combinations of parameters to the mouse MEF RNA-Seq data, we suggest a General Linear Model (GLM) for
both Tg and Dtt treated experiments. We also ran RSR for a human ENCODE RNA-Seq dataset and identified 32,597
spliced regions for regular chromosomes. TopHat (Trapnell et al., Bioinformatics 25:1105–1111, 2009) and Alt Event
Finder (Zhou et al., BMC Genomics 13:S10, 2012) identified 237,155 spliced junctions and 9,129 exon skipping events
(excluding chr14), respectively. Our Read-Split-Run algorithm also outperformed others in the context of ranking Xbp1
gene as the top cleavage target present in Ire1α+/− but absent in Ire1α−/− MEF samples. The RSR package including
source codes is available at http://bioinf1.indstate.edu/RSR and its pipeline source codes are also freely available at
https://github.com/xuric/read-split-run for academic use.

Conclusions: Our new RSR algorithm has the capability of processing massive amounts of human ENCODE RNA-Seq
data for identifying novel splice junction sites at a genome-wide level in a much more efficient manner when compared
to the previous RSW algorithm. Our proposed model can also predict the number of spliced regions under any
combinations of parameters. Our pipeline can detect novel spliced sites for other species using RNA-Seq data
generated under similar conditions.
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Background
In metazoans, during endoplasmic reticulum (ER) stress,
the endoribonuclease (RNase) Inositol Requiring Enzyme
1a (Ire1α) initiates removal of a 26 nt region from the
mRNA encoding the transcription factor Xbp1 via an non-
canonical mechanism (atypically within the cytosol). This
causes a transitional open reading frame-shift to produce
a potent transcription factor, Xbp1s, that induces expres-
sion of numerous downstream genes in response to ER
stress as part of the unfolded protein response (UPR)
[1, 2]. In addition, spliceosome-independent cytoplasmic
splicing, as a part of the unfolded protein response path-
way, has been described in yeast [3] where HAC1p was
found to be the sole splicing substrate of Ire1. The mech-
anism of Ire1α-mediated RNA-splicing is likely conserved
in all eukaryotes as well [4].
In recent years, many popular methods have been de-

veloped to identify novel splice sites in RNA-Seq data,
including TopHat [5] and Alt Event Finder [6]. A de-
tailed review on the limitations of several other tools for
identification of alternative splicing events (TrueSight
[7], Splicing-Compass [8], and PASTA [9]) was described
previously [10]. In short, indeed none of these existing
tools were suitably designed for detecting the type of
non-canonical sometimes called non-canonical splice
sites generated by Ire1α-targeted Xbp1 mRNA splicing.
Given that non-canonical splicing events of short mRNA
regions occurring within the cytosol have not yet been
investigated using next-generation technologies at a
genome-wide level, cutting-edge bioinformatics methods
of detecting such targets are needed to quickly discover
such splicing events in a patient-specific manner in
order to derive future therapeutic value.

In order to supply the medical and scientific fields with
such a tool we previously developed a novel bioinformatics
pipeline method, named Read-Split-Walk [10] for detect-
ing non-canonical, short, splicing regions using RNA-Seq
data. We applied the method to ER stress-induced Ire1α
heterozygous and knockout mouse embryonic fibroblast
(MEF) cell lines to identify Ire1α targets of which the
26 nt non-canonical splice site in Xbp1 was detected as
the most prominent splice target by our initial RSW
pipeline in heterozygous (Het) samples, not mapped in
the negative control Ire1α knockout (KO) samples for
both Thapsigargin (Tg) and Dithiothreitol (Dtt) treated
experiments. In our previous study, we also compared
the Xbp1 results from our approach with results using the
alignment program BWA [11], Bowtie2 [12], STAR [13],
Exonerate [14] and the Unix “grep” command. Although
our previous RSW method gave better results overall than
the above-mentioned approaches, we realized that RSW’s
running speed needed to be further improved in order to
handle the massive amount of data in other experiments
(human ENCODE project: https://www.encodeproject.org).
In addition, we wanted to test, under different combina-
tions of parameters, how and where reported spliced re-
gions would differ. Therefore, we have designed a newer
algorithm which we call “Read-Split-Run” (RSR) that can
process RNA-Seq data in a more efficient manner with flex-
ible parameters. We also proposed a linear regression equa-
tion under the assumption of the Generalized Linear
Model for RSR parameters that can automatically predict
the number of spliced regions given any parameter settings
for a particular experiment.
We compared our RSR algorithm with the above-men-

tioned alternative splicing events detection tools using
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metrics of how each tool ranks Xbp1 as the top cleavage
target and its presence and absence in Ire1α+/− and
Ire1α−/− MEF samples. We have also compared our RSR
pipeline and other tools to process a human ENCODE
dataset and reported their statistics of running perform-
ance and sensitivity (the number of spliced junctions
identified).

Results
The web interface features of RSR
In addition to providing the source code for download,
the current web site of RSR (http://bioinf1.indstate.edu/
RSR) allows users to use RSR by using a web form to
upload data to the RSR server. After a job is submitted
the server runs the pipeline and sends an email with a
download link when the results are ready. The web form
allows selection of a flexible combination of parameters.
For example, users can select “Mode (Comparative or
Non-comparative)”, “Reads Type (Single or Paired-end
reads)”, “Experimental Replicates (1, 2, 3, …)”. The input
files must be in FASTQ format. Based on the user’s

initial selection, the pre-processing step will automatic-
ally reflect the number of input files needed. Users also
have the options of checking the quality encoding and
read length for short read input sequence files. The pipe-
line moves to the next step only if the read lengths for
all input files are confirmed to be equal. A screenshot
for the RSR web interface is shown in Fig. 1.

The spliced regions detected by the RSR pipeline for
mouse MEF RNA-Seq data
The identified spliced regions by the RSR pipeline for
five cases with different combinations of parameters when
processing Ire1α(+/−) and Ire1α(−/−) samples in both ex-
periments (Tg and Dtt treated) are shown in Table 1. The
detailed information of spliced regions identified by RSR
for Tg and Dtt treated samples under different parameter
settings are reported in Additional files 1 and 2. The at-
tached Additional files 3 and 4 give statistics from running
the new pipeline on mouse Tg and Dtt data with various
parameter settings for MS, MD, and BB on a system with

Fig. 1 A screenshot for the Read-Split-Run web interface
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two Intel Xeon E5-2650 2.6GHz processors (a total of 16
cores and 32 hyperthreads).

The spliced regions detected by the RSR pipeline for
human ENCODE data
The total number of spliced regions and running time of
RSR on each chromosome of human ENCODE RNA-
Seq data are shown in Fig. 2. The analysis for Chr14 was
not performed due to memory constraints on the ma-
chine running the RSR pipeline. Additional file 5 shows
the number of spliced regions identified by our RSR

algorithm for each chromosome of the human ENCODE
RNA-Seq dataset.

Comparison of detected spliced regions between RSR and
other tools
We also compared our RSR algorithm with other NGS
based alternative splicing events detection tools (TopHat
and Alt Event Finder). Our Read-Split-Run algorithm
outperformed the other two software in the context of
ranking Xbp1 gene as the top cleavage target present in
Ire1α+/− but absent in Ire1α−/− MEF samples. In particu-
lar, we have ran TopHat and Alt Event Finder on both

Table 1 Comparison of total number of junctions identified by RSR for five cases from Tg and Dtt treated samples

Parameter Case 1 Case 2 Case 3 Case 4 Case 5

Variable Name Minimum split size 8 11 11 15 18

Maximum candidate distance 40,000 40,000 50,000 50,000 50,000

Read mapping region boundary buffer size 5 5 5 8 8

Minimum candidate distance 2 2 2 2 2

Minimum number of supporting reads 2 2 2 2 2

Maximum good alignment allowed per read 8 11 11 15 18

Tg Het Total number of junctions identified 122 140 143 135 141

Tg KO Total number of junctions identified 153 177 177 170 177

Dtt Het Total number of junctions identified 6496 6614 6661 6673 5683

Dtt KO Total number of junctions identified (Novel/Known) 6135 6247 6285 6308 5687

The bolded numbers show parameters with different test settings

Fig. 2 Number of junctions and clock time reported by RSR for the human ENCODE RNA-Seq sample (Separated by chromosomes).
Blue bar: junctions; red bar: clock time; purple bar: reads processed (million)
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Tg and Dtt samples of MEF cell line RNA-Seq data.
TopHat identified 23 reads supporting Xbp1 in Tg Het
and 86 reads for Tg KO samples. For Dtt samples,
TopHat reported a total of 59 (Het) and 289 (KO). Al-
though the number of reads supporting Xbp1 reported
by TopHat in Tg Het sample is slightly higher than our
RSR method (23 vs 21), our RSR accomplished a better
turnaround (173) when compared to TopHat (59) in the
Dtt dataset. Surprisingly, TopHat also reported reads
supporting Xbp1 in KO samples (86 in Tg and 289 in
Dtt), which are false positive reads. Alt Event Finder did
not identify any reads in supporting 26 nt Xbp1 spliced
regions. The comparison results between RSR and other
tools in running RNA-Seq data from MEF cell line is
listed in Table 2.
When applying these tools on human ENCODE RNA-

Seq data, we found that the running speed and splicing
regions detected by these tools are different. Due to the
memory constraint of our server, we ran RSR by splitting
the genome alignment files into individual chromo-
somes. It took RSR less than half an hour to run most
chromosomes except for chromosome 9 and 12. In con-
trast, it took TopHat roughly 20 h to run the ENCODE
RNA-Seq dataset. Alt Event Finder only required 3 h time
to process the dataset, but the result was not informative
for identifying short non-canonical spliced regions. In-
deed, we have designed the web-based interface to and re-
sults reporting of our RSR pipeline to be as user-friendly
as possible. Figure 3 shows comparison results between
RSR and other tools in identifying number of spliced
regions for the human ENCODE RNA-Seq dataset that
we have tested.

The general linear model for RSR algorithm
We generated a General Linear Model for both Tg and
Dtt samples in the context of the total number of unique
spliced regions (i.e. present in Het and not in KO sam-
ples) identified by the RSR algorithm (Fig. 4). The model
is derived from the results based on many pairs of Het
and KO test cases (100 for Tg and 64 for Dtt samples)
with different combinations of three RSR algorithm pa-
rameters (minimum split size (MS), maximum candidate

distance (MD), and read mapping region boundary buffer
size (BB)). We therefore obtained two linear regression
equations (one for Tg and the other for Dtt) as shown
in Fig. 4. It is clear that the numbers of spliced regions
identified by RSR decreases as MS values increase. This
is true because the numbers of split pairs fed into the
second step of bowtie decrease when MS values in-
crease. The parameter of MD plays less critical roles as
we expected. The BB parameter seems to follow the
correlation (the numbers of spliced regions increase as
BB values increase) for the Tg dataset, but not for the
Dtt dataset. We would like to increase test cases for the
Dtt sample to see whether the trend will change.

Discussion
Parameters consideration in RSR pipeline
Our proposed model of taking different parameter com-
binations to run the bowtie aligner and RSR algorithm
could be applied to other species. However, different
parameter combinations would predict different outcomes
(i.e. number of spliced regions) for different species, even
for different experiments. In our pipeline, we chose three
parameters (MS, MD, and BB) to test how different
combinations affect the prediction outcome. Specifically,
we have run a number of test cases (100 for Tg and 64 for
Dtt) with different combinations and used the results to
generate linear regression equations. To increase the
robustness of our RSR algorithm, it is ideal to perform
a large-scale simulation study in order to look for the
optimal combination. Typical questions remain to be
answered: What would be the trade-off between lower/
upper bound split size vs alignment sensitivity? What is
the optimal consolidation slip/buffer size? More or fewer
supporting reads will be reported if different cut-off cri-
teria are applied, and these can be adjusted to achieve the
desired balance between sensitivity and specificity in spe-
cific applications.
We chose three parameters (minimum split size (MS),

maximum candidate distance (MD), and read mapping
region boundary buffer size (BB)) for the RSR algorithm
because the number of reads supporting spliced regions
could be different given different combination values of

Table 2 Number of reads for supporting Xbp1 26 nt spliced regions reported by RSR and other tools

500 nM Thapsigargin (Tg) 1 mM Dithiothreitol (Dtt)

Software Het (Ire1α +/−) KO (Ire1α −/−) Het (Ire1α +/−) KO (Ire1α −/−)

Read-Split-Run (RSR) 21 0 173 0

TopHat 23 86 59 289

BWA 0 0 67 0

Bowtie2 0 0 171 0

STAR 0 0 0 0

Alt Event Finder 0 0 0 0
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Fig. 3 Comparison results in identifying number of spliced regions between RSR, Alt Event Finder, TopHat tools. Blue bar: TopHat; red bar: RSR;
green bar: AltEventFinder

Fig. 4 Linear regression equations for mouse MEF Tg and Dtt experiments
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these parameters. Our GLM was generated by running a
number of test cases. A smaller MS and bigger MD and
BB could increase the number of junctions reported.
Empirically MS could be set to approximately 1/3 of the
read length, and should also be larger than 8 bp to ensure
the split half is not too short to be mapped accurately. An
estimated MD value could be determined according to the
average gene length of species tested. Therefore, users
could choose their customized MD value according to the
species on which their experiments were performed. This
criterion is determined according to the assumption that
the split pairs supporting the junction are often mapped
onto the same gene. Finally, BB could be set to a number
that should not reflect a large boundary variation (5 or less
would be reasonable).

The file deletion of our RSR algorithm
We noticed, by splitting reads into multiple read half
pairs, the size of the result files substantially increased
when the human ENCODE dataset was processed. To
reduce the hard drive storage of large data files, we auto-
matically delete files throughout the pipeline as they are
no longer needed. For example, if the split step only
needs to utilize the unmapped read datasets, the align-
ment files generated from the first step of bowtie are de-
leted. After the second step of bowtie is finished, all
unmapped files will be deleted and only the alignment
file will be kept for the next RSR step. The RSR pipeline
can also compare spliced regions between samples and
output reported regions side-by-side.

RSR running speed, sensitivity, and specificity
In this study, we have developed a newer pipeline (RSR)
of RSW with an improved running speed and proposed
a General Linear Model for the algorithm. We used RSR
to process different combinations of running parameters
for the MEF and human ENCODE RNA-Seq data. We
have compared our RSR algorithm with two popular
NGS based alternative splicing events detection tools
(TopHat and Alt Event Finder) and reported the spliced
regions detection results. Neither of these two tools
achieved better sensitivity (Number of junctions

identified) than our RSR algorithm in identifying reads
supporting the Xbp1 26 bp spliced region. This can be
explained in part due to the fact that Alt Event Finder
processes the mapped reads to report splice regions yet
does not consider unmapped reads in the analysis input.
Moreover, the current version of Alt Event Finder focuses
on identifying exon skipping events only. TopHat reported
canonical exon-exon splice sites as well. The spliced junc-
tions identified by TopHat and our RSR are reported in
Table 3. TopHat reported more junctions than our RSR.
But many of them were known junctions or false positive
ones. It is clear that the common junctions detected by
both tools or overlapping rate is low. Indeed, the over-
lapping rate is even smaller for results from the human
ENCODE dataset.
In our original RSW paper, we also compared the

Xbp1 results from our approach with results using the
alignment program BWA [11], Bowtie2 [12], STAR [13],
Exonerate [14] and the Unix “grep” command. Although
our RSW method gave better results overall than the
above-mentioned approaches, comparison results also
suggested that reads supporting removal of the 26 nt in-
tron from Xbp1 mRNA were not fully acknowledged. A
study using in vitro cleavage assay combined with micro-
array analysis reported 13 additional mRNAs as Ire1α
cleavage targets [15]. The discovery shed light on the ex-
istence of other possible targets. A future version of the
algorithm will focus on rescuing these false negative
reads in order to achieve a better sensitivity.

Applying RSR on human ENCODE RNA-Seq data
The discovery of a new set of non-canonical splicing
events in humans is important not only because of the
obvious potential for novel alteration of targeted tran-
script function, but also the potential for the resulting
excised sequences to function as silencing RNAs asso-
ciated with particular disease states. In addition, the
frequency of these novel splicing events could be sub-
ject to altered regulation in some individuals, resulting
in identifiable splicing profiles associated with the risk
of certain diseases. We used ENCODE RNA-Seq data-
sets to train our RSR algorithm and hope to identify

Table 3 The overlapping spliced junctions identified by TopHat and our RSR

mouse-Het mouse-KO mouse-Het mouse-KO human

Software 500 nM Thapsigargin (Tg) 1 mM Dithiothreitol (Dtt) ENCODE

TopHat 956 923 8897 7847 237,155

RSR 144 183 6727 6343 32,597

Common 38 41 2398 2128 314

Common/TopHat 3.97 % 4.44 % 26.95 % 27.12 % 0.13 %

Common/RSR 26.39 % 22.40 % 35.65 % 33.55 % 0.96 %
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additional targets and elucidate their splicing patterns.
Results should eventually provide unique insight of
elucidating how short non-canonical spliced sequences
act their biological functions in the context of relevant
biological processes and diseases.

Conclusions
The positive control for our application, the Xbp1 26 nt
non-canonical splice site, was clearly detected in Het
samples but not in the KO control samples from Tg and
Dtt treated MEF experiments, and was reported again as
the top cleavage target for an Ire1α target splice site. Al-
though we have tested the RSR using human ENCODE
datasets, our algorithm could also be easily extended for

prediction of spliced regions for other species under any
given parameter settings.

Methods
The RNA-Seq read sequence data
The mouse test data were downloaded from NCBI Gene
Expression Omnibus (GEO) under the accession number
GSE54631. Mouse embryonic fibroblast cells (MEF) that
were heterozygous for Ire1α (Ire1α(+/−)) and cells which
had Ire1α knocked out (Ire1α(−/−)) treated for 4 h with
either 500nM Thapsigargin (Tg) or 1 mM Dithiothreitol
(Dtt). Both RNA-Seq experiments are single end reads
and had no experimental replicates performed.
The human test data are ENCSR000CUR which

were downloaded from the ENCODE project (https://

Fig. 5 Pseudocode for Read-Split-Run algorithm. The junctions output by step 6 of the algorithm can optionally be restricted to those which are
supported by some minimum number of sequences
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www.encodeproject.org/experiments/ENCSR000CUR/).
The data were paired-end RNA-Seq experiments per-
formed on human skin melanocytes primary whole cells
(NHEM-M2) and sequenced using Illumina HiSeq 2000.
There were two biological replicates (adult 52 years old
and adult 55 years old) and no technical replicates used in
this experiment.

The reference genome for Read-Split-Run
We downloaded the mouse (mm9) and human (hg19)
genome reference sequences from the University of Cali-
fornia Santa Cruz (UCSC) genome browser (http://geno-
me.ucsc.edu). We also downloaded respective UCSC gene
files (knownGene.txt) from the UCSC genome browser.
The splice junction file was created by setting the se-
quence entry on each side of the junction site to 4 bp
shorter than the read length using a RNA-Seq software py-
thon script (getsplicefa.py) from ERANGE version 3.1
(http://woldlab.caltech.edu/~alim/RNAseq/). The original
reference genome and splice junction site file were merged
together to form an expanded genome.

The algorithm of Read-Split-Run
We first recall the basic pipeline of the earlier work [10]
before highlighting areas of improvement. Pseudocode is
given for the pipeline in Fig. 5. The pipeline takes as in-
put an RNA-seq file containing many short reads. The
bowtie sequence aligner, version 1.0.1, [16] is first in-
voked, and unmapped reads are passed to the next stage
of the pipeline as possible candidates resulting from the
splicing. If a given non-aligned read sequence S did re-
sult from the splicing, the splice point could be at any
position within S. The next stage of the algorithm splits

each non-aligned sequence S into pairs (S1, S2) in all
ways so that both parts are at least some minimum size
(a parameter we denote MS, with a typical value between
8 and 1/3 of length of the original read sequences). Bowtie
is invoked again, this time on each sub-sequence that re-
sulted from splitting a non-aligned sequence from the first
invocation of bowtie. Alignments of the sub-sequences are
scanned for sub-sequences that were (i) derived as split
pairs from the same original non-aligned read sequence,
and (ii) aligned at positions on the same chromosome that
are not too far apart (a parameter we denote MD, with a
typical value of around 40,000). These conditions are con-
sistent with a splicing event, and we save all pairs of align-
ments that satisfy the conditions, which we call “matched
pairs”. The final stage of the pipeline scans all matched
pairs to determine for each matched pair how many other
matched pairs are likely a result of the same splice loca-
tion; one matched pair “supports” another if the spliced
region between the two ends is the same length and at
a position on the same chromosome that is very close
(a parameter we denote BB, with a typical value of be-
tween 2 and 5). The most interesting splice junctions
are those with the highest number of matched pairs
that support them.
The present work began by porting the previous pipeline

from being written in Perl to C++ (compiled with g++
4.8.3 using optimization parameter –O4 on Linux). Port-
ing to C++ resulted in a speedup by a factor of roughly
two to three. Other than the sequence alignment using
bowtie, most of the running time in the pipeline is in com-
paring aligned sub-sequences to determine the set of
matched pairs, and comparing matched pairs to determine
which support each other. The previous pipeline

Table 4 The running parameter values employed for both Tg and Dtt samples

Sample Minimum split size (MS) Maximum candidate distance (MD) Read mapping region boundary buffer size (BB)

Tg 8, 11, 12, 16 10000, 20000, 30000, 40000, 50000 1, 3, 5, 7, 9

DTT 11, 16, 20, 24 10000, 20000, 40000, 50000 3, 5, 7, 9

Fig. 6 A modified General Liner Model for the Read-Split-Run algorithm
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compared all pairs in each step, resulting in a running
time that is quadratic in the number of sub-sequences
coming out of the second bowtie step. We improve this
step drastically so that the running time is quadratic only
in the number of sub-sequences that were derived from
the same initial non-aligned read sequence (typically less
than a few hundred, whereas there may be millions of
sub-sequences coming out of the second bowtie step). We
obtain a similar improvement in the step that scans
matched pairs to determine which support each other.

Methods of running Read-Split-Run on mouse MEF RNA-
Seq data
The running parameter values employed for both Tg and
Dtt samples are shown in Table 4. The steps of finding
matched pairs and scanning matched pairs for supporting
reads for Dtt samples were performed on a separate
system running two Intel Xeon E5-2680 2.8Gz proces-
sors (a total of 20 cores and 40 hyperthreads). The
highest running times are for tests with lower values of
MS – this increases the number of sub-sequences that
must be considered. A larger value for the length of ini-
tial read sequences also increases running time; the Dtt
tests had higher running times because they consist of
77 bp (as opposed to 33 bp for Tg tests) and because
the Dtt tests had roughly three times as many read se-
quences to begin with.

Methods of running Read-Split-Run on human ENCODE
RNA-Seq dataset
The phases: bowtie, splitting, and second step of bowtie
were performed on same hardware mentioned above as
the Dtt and Tg sets, whereas the RSR program was run
on the “compute node,” described above. The parameters
for this run were: MS - 33, MD - 50,000, and BB - 5. Be-
fore we could run the split-pairs portion of the pipeline,
the output from bowtie (phase 2) had to be split into indi-
vidual chromosomes so that they could fit into memory.
Even in doing so, chromosome 14 had so much data
(611Gb) that it could not be run. No junctions were iden-
tified on chromosome M.

Comparison with other tools
We compared our RSR algorithm with a couple of other
NGS based alternative splicing events detection tools
(TopHat [5] and Alt Event Finder [6]). We applied these
tools on RNA-Seq data from a mouse embryonic fibro-
blast (MEF) cell line to check which of these tools can
identify and rank Xbp1 as the top cleavage target and its
presence and absence in Ire1+/− and Ire1−/− MEF samples
and extended the analysis to the ENCODE RNA-Seq data-
sets. We ran TopHat v2.0.13 using options: −I 3000000, −g
10, –coverage-search, −microexon-search, to generate the

“accepted_hits.bam” file for RNA-Seq data for each experi-
ment condition from MEF cell line. Alt Event Finder v0.1
was ran by taking the “transcript.gtf” file generated from
Cufflinks [17–20] and the “accepted_hits.bam” file gen-
erated by TopHat. Other metrics (i.e. running speed
and usability) of these tools were also examined.

A general linear model for RSR
We proposed a modified General Linear Model (Fig. 6)
for RSR. The variables (parameters) considered in the
model are: minimum split size, maximum candidate dis-
tance, and read mapping region boundary buffer size. 80
test cases for Het and KO samples of both Tg and Dtt
experiments were run on mouse MEF datasets to produce
the General Linear Model equation.

Additional files

Additional file 1: Spliced regions identified by RSR for the Tg sample.
This file contains all supplementary results for five test cases for the Tg
sample. (XLSX 105 kb)

Additional file 2: Spliced regions identified by RSR for the Dtt sample.
This file contains all supplementary results for five test cases for the Dtt
sample. (XLSX 2828 kb)

Additional file 3: Statistics reported by RSR for 100 test cases for the Tg
sample. This file contains all supplementary results for 100 test cases for
the Tg sample. (XLSX 92 kb)

Additional file 4: Statistics reported by RSR for 64 test cases for the Dtt
sample. This file contains all supplementary results for 64 test cases for
the Dtt sample. (XLSX 79 kb)

Additional file 5: Total number of spliced regions identified by RSR in
the human ENCODE RNA-Seq dataset. This file includes all supplementary
results for number of supporting reads, splice length, range of supporting
reads (spliced regions) identified by RSR in the human ENCODE RNA-Seq
dataset. (XLSX 1411 kb)
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