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Abstract

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and
destruction of synovial joints. RA affects up to 1 % of the population worldwide. Currently, there are no drugs that can
cure RA or achieve sustained remission. The unknown cause of the disease represents a significant challenge in the
drug development. In this study, we address this challenge by proposing an alternative drug discovery approach that
integrates and reasons over genetic interrelationships between RA and other genetic diseases as well as a large
amount of higher-level drug treatment data.

We first constructed a genetic disease network using disease genetics data from Genome-Wide Association Studies
(GWAS). We developed a network-based ranking algorithm to prioritize diseases genetically-related to RA (RA-related
diseases). We then developed a drug prioritization algorithm to reposition drugs from RA-related diseases to treat RA.

Results: Our algorithm found 74 of the 80 FDA-approved RA drugs and ranked them highly (recall: 0.925, median
ranking: 8.93 %), demonstrating the validity of our strategy. When compared to a study that used GWAS data to
directly connect RA-associated genes to drug targets (“direct genetics-based” approach), our algorithm (“indirect
genetics-based”) achieved a comparable overall performance, but complementary precision and recall in
retrospective validation (precision: 0.22, recall: 0.36; F1: 0.27 vs. precision: 0.74, recall: 0.16; F1: 0.28). Our approach
performed significantly better in novel predictions when evaluated using 165 not-yet-FDA-approved RA drugs
(precision: 0.46, recall: 0.50; F1: 0.47 vs. precision: 0.40, recall: 0.006; F1: 0.01).

Conclusions: In summary, although the fundamental pathophysiological mechanisms remain uncharacterized, our
proposed computation-based drug discovery approach to analyzing genetic and treatment interrelationships among
thousands of diseases and drugs can facilitate the discovery of innovative drugs for treating RA.
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Background

RA is a chronic inheritable autoimmune disease char-
acterized by inflammation and destruction of synovial
joints. RA affects up to 1 % of the population worldwide
[1]. The cause of RA remains unknown, with multiple
genetic and environmental factors involved [2]. Currently,
there is no drug that can cure RA or achieve sustained
remission.

Disease genetics can lead to the identification of
novel drug treatments. Over the past decade, genome-
wide association studies (GWAS) have robustly identified
genetic risk loci linked to many complex diseases, includ-
ing 100 risk loci for RA [3], and have provided valuable
biological insights into many common diseases [4]. Sev-
eral recent studies have indicated that disease genetics
identified by GWAS may lead to translational opportuni-
ties for drug discovery [5—-11]. For example, a recent study
showed that RA risk loci identified through meta-analysis
of GWAS data provided therapeutic opportunities
for the repositioning of existing drugs for the treatment
of RA [7]. To capitalize on complex human disease genet-
ics identified through GWAS, the National Center for
Advancing Translational Science (NCATS) was estab-
lished to use genomic information to determine whether
drugs approved to treat one disease could be effective in
treating others [8]. However, significant challenges exist
in directly translating disease-associated genetic variants
identified by GWAS into novel therapeutics [4].

Here, we propose an alternative drug discovery
approach by combining lower-level disease genetics
identified by GWAS with higher-level drug treatment
databases that we recently constructed [12-14]. We
hypothesize that the genetic overlap among diseases often
reflects pathophysiological overlap. Though the majority
of such shared pathophysiological features may remain
unknown (i.e. RA biology), treatment insights from one
disease may be used to inform our knowledge of oth-
ers and potentiate their treatments. Instead of directly
inferring drug targets from disease genetics as previous
approaches [5-7, 15], we use diseases that share high
degrees of genetic commonalities with RA (RA-related
diseases) as the starting point for discovering new drug
treatments for RA (Fig. 1). For example, if a drug treats
many RA-related diseases, then this drug is more likely
to be a promising candidate to treat RA than a drug that
treats few RA-related diseases. Compared to the tradi-
tional disease genetics-based or target-based drug dis-
covery, we can put such inference into practice without
precise knowledge of disease biology or drug mechanisms.

Computational drug repositioning approaches can
be classified as either drug-based or disease-based
[16, 17]. Drug-based approaches leverage upon known
drug molecular structures or functions such as chem-
ical structure and properties, molecular docking, gene
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expression, drug treatments, and drug side effects
[18-22]. It was recognized that drug screening based on
existing drugs (“drug-based”) might fail to identify new
therapeutic mechanisms [23]. On the other hand, disease-
based approaches put less emphasis on existing drugs
and focus more on disease mechanisms or interrelation-
ships among diseases, therefore have potential in discov-
ering truly innovative drugs. Disease-based approaches
have used disease-related data ranging from genome
[19, 20] to phenome [24-27]. While existing drug
repositioning systems often used well-established com-
putational or statistical methods, including regres-
sion/classification, machine learning, network analysis,
and text mining [17], they differ in the datasets included in
the systems and how heterogeneous data are integrated.

The keys to our drug repositioning system include
both the unique datasets included in the system as well
as innovative approaches to integrating various disease-
and drug-related data. One of the key components of
our system is four large-scale drug-disease treatment
relationship knowledge bases (TreatKBs) that we recently
constructed from multiple heterogeneous and comple-
mentary data resources using advanced computational
techniques including natural language processing, text
mining and data mining [12-14]. The four TreatKB
include 9,216 drug-disease treatment pairs extracted from
FDA drug labels, 111,862 pairs extracted from the FDA
Adverse Event Reporting System (FAERS), a database
supporting the FDA’s post-marketing drug safety surveil-
lance, 34,306 pairs extracted from 22 million published
biomedical literature abstracts, and 69,724 pairs extracted
from 171,805 clinical trials. All together, TreatKB con-
tains 208,330 drug-disease treatment pairs for 2484 drugs
and 24,511 diseases. In addition, we applied a novel signal
prioritization algorithm that we recently developed [25],
which first identifies diseases that are genetically related
to RA and then prioritizes drugs based on the relevance of
their associated diseases to RA.

Methods

The experiment framework is depicted in Fig. 2 and
consists of four steps: (1) we constructed a genetic dis-
ease network (GDN) using disease-gene associations from
GWAS. We developed a network-based ranking algorithm
to find diseases that shared high degrees of genetic com-
monality with RA; (2) we analyzed disease classes that
were highly associated with RA in order to evaluate the
disease-ranking algorithm and to gain insight into RA-
related diseases; (3) we developed a drug prioritization
algorithm to systematically reposition drugs from RA-
related diseases to treat RA. We retrospectively validated
the algorithm using 80 FDA-approved RA drugs. We
evaluated our algorithm in novel predictions using 165
not-yet-approved RA drugs. We compared our approach
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Fig. 1 Indirect disease genetics-based drug repositioning approach

(“indirect disease genetics-based”) to Okada’s study [7]
(“direct disease genetics-based”) in both retrospective val-
idation and novel predictions; and (4) we examined drug
classes that were highly enriched among top-ranked drug
candidates.

Find and analyze RA-related diseases

Construct genetic disease network (GDN)

We constructed a GDN using disease-gene associations
from the Catalog of Published Genome-Wide Association
Studies from the US National Human Genome Research
Institute (NHGRI), which is an exhaustive source contain-
ing the descriptions of disease- and trait-associated single
nucleotide polymorphisms (SNPs) from published GWAS

data [28]. We obtained a total of 22,470 disease/trait-gene
pairs, representing 881 diseases/traits and 8,689 genes.
On GDN, two diseases were connected if their
associated genes overlapped. The edge weights were
determined by the cosine similarity coefficients of disease-
associated genes [29]. We also experimented other simi-
larity measures such as Jaccard similarity coefficient and
overlap. Since some diseases do not share genes directly
but their associated genes may interact or participate
in the same pathways, we also investigated alternative
approaches to connect diseases on the networks. We con-
nected two diseases if their associated genes (proteins)
interact or participate in the same pathways using data
from the STRING database [30]. Experimental results

Fig. 2 The overall experiment flow chart
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showed that connecting diseases based on cosine sim-
ilarity of their associated genes performed best. GDN
comprised of 882 disease nodes and 200,758 edges.

Apply network-based ranking algorithm to find RA-related
diseases from GDN

We have recently developed network-based ranking algo-
rithms to prioritize genes for a given disease [26, 31]
or to prioritize diseases for a given microbial metabo-
lite [32]. The iterative network-based ranking algorithm
is defined as: p'*! = (1 — y)Mp' + yp°, wherein M is
the column-normalized adjacency matrix of GDN, y is a
preset probability of restarting from the initial seed node
(y=0.1 in this study), and p’ is a vector in which the iy,
element holds the normalized ranking score of disease i
at t;, iteration. The initial probability vector p° contains
only RA, with a probability of 1.0. The iterative ranking
algorithm was run until it converges, meaning that the
change between p’*! and p’ is less than 107°. Diseases are
ranked according to values in the steady-state probability
vector p'.

Analyze RA-related diseases

To better understand top-ranked diseases as well as to
test the network construction and ranking algorithms,
we examined the distributions of disease classes among
RA-related diseases at different ranking cutoffs. We clas-
sified diseases based on the 10th revision of the Inter-
national Statistical Classification of Diseases and Related
Health Problems (ICD10) [33]. The ICD10 includes 22
highest-level disease classes (or chapters) such as “Neo-
plasms” and “Diseases of the nervous system.” During our
experiments, we found that only six disease classes were
well represented in the GWAS catalog: immune diseases,
autoimmune diseases, cardiovascular diseases,metabolic
disorders, mental or psychiatric disorders, and neoplasms.
The two disease classes: immune diseases and autoim-
mune diseases, served as positive controls because RA
is an autoimmune disease (and immune disease) and is
expected to be related to other immune diseases. We
retrieved a ranked list of diseases from GDN using RA.
We calculated the percentage of these six disease classes
among ranked diseases at 10 different ranking cutoffs (top
10 %, 20 %, ... 100 %).

Reposition drugs based on RA-related diseases

Drug repositioning algorithm

We have recently developed a drug prioritization
approach to systematically reposition drugs that treat RA-
related diseases to treat RA [25]. The algorithm is based
on the assumption that if a drug treats many top-ranked
RA-related diseases, it will rank higher than another drug
that treats one or two lower-ranked diseases. We first
ranked drugs based on the number of RA-related diseases
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that they could treat as well as the ranking scores of these
diseases. The drug prioritization algorithm is defined as:
n

Rgrug = ) R_disease_i, wherein n is the number of RA-
i=1

related diseases that a drug can treat and R_disease_i is

the disease ranking score (output from the network-based

disease ranking algorithm).

De novo validation using known RA drugs and comparison
We evaluated our algorithm using a total of 80 FDA-
approved RA drugs. This list of drugs were manually
compiled from FDA drug label and several authorita-
tive medical-related websites such as webMD.com and
drugs.com. Our evaluation was a de-novo validation
scheme, since RA and its associated drug treatment pairs
were removed from the inputs to the repositioning algo-
rithm. The standard precision, recall, and F1 measures
were used.

We compared our study to Okada’s study [7] in pre-
dicting both FDA-approved RA drugs as well as novel
drugs (discussed in the next section). In Okada’s study,
the authors first prioritized 98 RA risk genes, from which
a total of 27 drug target genes of approved RA drugs
were identified. These 27 drug target genes were then
connected to 19 drugs. Among these 19 drugs, 14 were
FDA-approved RA drugs and 5 were novel predictions.
We could not compare our approach to one of the state-
of-art drug repositioning systems, PREDICT [24], since
it does not include RA. PREDICT used disease-disease
and drug-drug similarities from multiple data resources to
construct a classifier to determine treatment associations
between 593 drugs and 313 diseases, the majority of which
are Mendelian diseases. One of PREDICT’s limitations is
that it can only infer new connections between the 593
drugs and 313 diseases included in the system.

Evaluate Novel predications

The fact that a drug repositioning algorithm has worked
well in ranking known RA drugs (retrospective valida-
tion) does not imply that it will work equally well in novel
drug prediction; therefore, evaluation of novel prediction
capability is critical for any drug repositioning algorithm.
Instead of manually searching literature or clinical trials
for evidence supporting novel predictions, we automated
this process using the drug-disease treatment knowledge
bases that we constructed from over 22 million biomedi-
cal literature records and from 172,888 clinical trials. We
extracted a total of 162 RA drugs from published biomed-
ical literature, including 49 FDA-approved RA drugs and
113 novel drugs. We extracted a total of 103 RA drugs
from clinical trials, including 37 FDA-approved RA drugs
and 66 novel drugs. Combining RA drugs from these two
resources, we obtained a total of 165 novel RA drugs after
FDA-approved drugs were removed. We evaluated the
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performance of our algorithm in novel prediction using
these 165 drugs. We calculated precisions, recalls, and F1
measures at different ranking cutoffs. We compared our
study to Okada’s study in novel predictions using the same
evaluation dataset.

Analyze repositioned drug candidates

To better understand top-ranked repositioned drug can-
didates, we examined which classes of drugs (as defined
by the Anatomical Therapeutic Chemical (ATC) classifi-
cation system [34]) were enriched. Drug classes enriched
among top-ranked drug candidates could provide insights
into the underlying mechanisms of action of drug can-
didates within those classes. The ATC system consists
of 13 first-level codes, 94 second-level codes, 267 third-
level codes, 882 fourth-level codes, and 4580 fifth-level
codes, which are individual drugs. We experimented the
drug classification using different levels of ATC codes and
found that third level ATC codes gave sufficient granular-
ity. We calculated percentages of drug classes associated
with the top 10 % of ranked drugs and compared them to
those for all drugs. We identified drug classes that showed
at least a 2-fold enrichment.

Results

Evaluate network construction and disease ranking
algorithms and analyze RA-related diseases

We retrieved a ranked list of 842 diseases from the GDN
using RA as the input. Two classes were highly enriched
among top-ranked diseases: autoimmune diseases and
immune diseases (Fig. 3). Among top 10 % of retrieved
diseases, 18.6 % were autoimmune diseases, representing
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a significant 5.59-fold enrichment as compared to the
3.33 % among all retrieved diseases. We also observed a
significant enrichment for immune diseases. Among the
top 10 % of diseases, 37.21 % were immune diseases, rep-
resenting a significant 2.45-fold enrichment as compared
to 15.20 % among all retrieved diseases. These results were
expected because RA itself is an immune disease as well
as an autoimmune disease. These results demonstrate the
validity of both network construction and disease rank-
ing algorithms. The other four disease classes were not
significantly enriched.

Retrospective validation with 80 FDA-approved RA drugs
Drug repositioning using the combined TreatKB has better
performance than individual TreatKBs

We validated our drug repositioning algorithm using 80
FDA approved RA drugs. Since the drug treatment knowl-
edge bases (TreatKBs) were constructed from different
data resources using different computational methods,
we evaluated which TreatKBs performs better in drug
repositioning for RA. We calculated recalls, mean, and
median rankings of these FDA-approved RA drugs when
the four different TreatKBs were used separately or com-
bined (Table 1). When the TreatKB derived from FDA
drug labeling (‘FDA-approved’) was used, we achieved
a recall of 0.825, an average ranking of 36.58 %, and a
median ranking of 34.46 %. We achieved significantly bet-
ter rankings when the two TreatKBs that were constructed
from post-marketing FAERS (recall: 0.775, mean rank-
ing: 19.02 %, and median ranking: 8.53 %) and from the
biomedical literature (recall: 0.663, mean ranking: 29.69 %,
and median ranking: 19.17 %) were used, respectively.

Disease class enrichment analysis
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Fig. 3 Disease class distribution among RA-related diseases at 10 ranking cutoffs
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Significantly, when the combined TreatKB was used, we
achieved a recall of 0.925 (74 out of 80 RA drugs), a mean
ranking of 20.0 %, and a median ranking of 8.93 %. The sig-
nificantly improved recall and rankings demonstrate the
critical importance of a comprehensive drug treatment
knowledge base in drug repositioning tasks. In compari-
son, such high rankings were not evident in our analysis
for randomly selected FDA-approved drugs (49.76 % for
mean ranking and 44.65 % for median ranking).

As shown in Table 1, there is a significant difference
between the median ranking of 8.93 % and the mean
ranking of 20.05 %, demonstrating a skewed ranking dis-
tribution of these RA drugs. Fig. 4 shows that the rankings
of RA drugs varied greatly from 0.04 % (prednisone) to
97.83 % (salicylamide). These results indicate that not all
RA drugs can be discovered based on disease genetics.

Our approach has comparable overall performance but
complementary precision and recall as compared to a
“direct genetics-based” approach

As shown in Fig. 5, our drug repositioning algorithm
proved effective in ranking FDA-approved RA drugs at
the top: the precision was 0.46 for top 25 drugs (top 1 %),
which represents a significant 14.3-fold enrichment as
compared to the 0.03 for all 2484 drugs (top 100 %). The
best overall performance was achieved at a cutoff of 5 %
(top 124 drugs): a precision of 0.22, a recall of 0.35, and an
F1 of 0.27 were achieved.

We compared our study to Okada’s study in priori-
tizing known RA drugs. When evaluated using the 80
FDA-approved RA drugs, Okada’s study achieved a recall
of 0.175, a precision of 0.736 and an F1 of 0.28. Our
algorithm, at a 5 % cutoff (top 124 drugs), achieved a pre-
cision of 0.22, a recall of 0.35, and an F1 of 0.27 (Fig. 5).
While Okada’s study achieved a higher precision, our
study achieved a higher recall, indicating that these two
approaches are largely complementary.

Evaluation of novel predictions using 165 novel RA drugs

We evaluated our algorithm in novel prediction. As shown
in Fig. 6, our drug repositioning algorithm proved effec-
tive in prioritizing novel RA drugs, achieving a precision

Table 1 Recalls, mean, and median rankings of 80 FDA-approved
RA drugs when four TreatKBs were used separately and in tandem

TreatkB Recall Mean ranking Median ranking
FDA-approved 0.825 36.58 % 34.46 %
Post-market 0.775 19.02 % 8.53 %
Clinical trials 0.750 31.73% 29.24 %
Literature 0.663 29.69 % 19.17 %
Combined 0.925 20.06 % 8.93 %

The best performance was achieved when four TreatkBs were combined
(bold data)
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of 0.89 for the top 25 drugs (top 1 %), which represents
a significant 8.9-fold enrichment as compared to the 0.1
for all 2484 drugs. The best overall performance in novel
prediction was achieved at a cutoff of 10 % (top 248
drugs): a precision of 0.46, a recall of 0.50, and an F1
of 0.47.

Okada’s study made a total of five novel predictions
(auraofin, certolizumab pegol, lguratimod, tacrolimus,
and temsirolimus). Among these five drugs, two drugs
(certolizumab pegol, and tacrolimus) appeared in the eval-
uation dataset: both certolizumab pegol and tacrolimus
currently are in active clinical trials. Therefore, Okada’s
study has a precision of 0.40, a recall of 0.006 (2 out of
165 novel RA drugs), and an overall F1 of 0.01 when
evaluated using the set of 165 drugs (Fig. 6). The best
performance for our system was achieved at a cutoff of
10 % (top 248 drugs): a precision of 0.46, a recall of 0.50,
and an F1 of 0.47, representing a 47-fold increase in F1
as compared to the F1 of 0.01 in Okada’s study. The drug
tacrolimus from Okada’s study was ranked at top 0.76 %
position (top 19 among all 2484 drugs) by our algorithm.
In summary, we show that our repositioning strategy
has comparable overall performance (yet complementary
precision and recall) to Okada’s study in retrospective
validation using the FDA-approved RA drugs. However,
our algorithm has performed significantly better in find-
ing novel RA drugs, and therefore has greater potential
in the task of discovering innovative drug treatments
for RA.

Drug categories for top-ranked drug candidates offer
insight into the underlying mechanisms of drug actions
Figure 7 shows 15 third-level ATC codes that showed at
least 100 % enrichment for the top 10 % ranked drug can-
didates as compared all drugs. As shown in the Fig. 7, 7
out of these 15 ATC codes are related to immune reaction
modulation and inflammation, including Immunosup-
pressants, corticosteroids, and anti-inflammatory agents.
In the disease class enrichment analysis, we also showed
that both immune and autoimmune diseases were highly
enriched among top-ranked RA-related diseases. Both
analyses are consistent with the fact that immune dereg-
ulation is implicated in the development of RA. This
result also demonstrates that common pathophysio-
logical mechanisms are shared among RA-related dis-
eases. Intriguingly, anticancer drugs are the most highly
enriched drug class (Fig. 7). This is consistent with find-
ings from Okada’s study indicating that SNPs in RA risk
genes overlapped with somatic mutation genes in cancers.
In particular, some genes involved in the development of
hematological cancer were implicated. This is also con-
sistent with the fact that several approved RA drugs (for
example, rituximab) were initially developed for cancer
treatment and subsequently repurposed for the treatment
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Fig. 4 Rankings of (74 out of 80) FDA-approved RA drugs among 2484 drugs. The combined TreatkB was used

of RA. It will be interesting to further investigate
top-ranked anticancer drugs in the treatment of RA
experimentally.

Discussion and conclusions

In this study, we prioritized a total of 2484 drugs in
terms of their relevance in the potential treatment of RA.
While previous studies demonstrated that directly linking

disease-associated genes from GWAS data to drug tar-
gets can lead to novel drug discovery, our study provides
an alternative strategy to capitalize on complex human
5 genetics and comprehensive drug treatment data for
other diseases for the discovery of innovative drug treat-
ments for RA. Our algorithm retrieved 74 out of 80
FDA-approved RA drugs and ranked those drugs highly,
demonstrating the validity of our approach. In addition,

N Okada’s study
[/ Our study
0.74
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0.46
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0.51

0.63 F1

Fig. 5 The performance (precisions, recalls, and F1s) of our algorithm at six different cutoffs (top 1 %, 5 %, 10 %, 20 %, 50 % and 100 % [all 2484
drugs]) when evaluated using 80 FDA-approved RA drugs. For comparison, Okada’s study is shown in blue
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Fig. 6 The performance (precisions, recalls and F1s) of our algorithm at six different cutoffs (top 1 %, 5 %, 10 %, 20 %, 50 % and 100 % [all 2484
drugs]) when evaluated using 165 novel RA drugs. For comparison, Okada’s study is shown in blue

our algorithm proved effective in predicting innovative = human genetic analysis. Additionally, disease genetics
drugs for RA. Nonetheless, our study can be significantly ~ from rare Mendelian disorders represents another valu-
improved upon in the future. able source of novel drug targets and may lead to sur-

Our current study was restricted by the limited num-  prising and novel drug discovery opportunities [15, 35].
ber of diseases (881 diseases) in the GWAS catalog, even  Another rich resource for knowledge of human disease
though TreatKB includes 24,511 diseases. With new stud-  genetics is computation-based candidate disease gene
ies being continually added to the GWAS catalog, as  prediction. Computational disease gene prediction aims
well as new disease-gene associations increasingly being  to find new disease-gene associations through integra-
revealed by next-generation sequencing studies, addi- tive computational analysis of known data of diseases,
tional drug repositioning opportunities will arise through  genes, functional protein interactions, gene expression,
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and the biomedical literature, among many others [36].
We recently showed that computationally-predicted dis-
ease genetics can lead to novel drug discovery [26, 31]. In
the future, we will combine comprehensive disease genet-
ics data from all three of the above-described sources
with a novel computational strategy to find new drug
treatments for RA.

This study focuses on disease genetics-based drug repo-
sitioning. Additional invaluable resources such as other
disease-related data (i.e. disease phenotypic data or gene
expression data) and drug-related data (i.e. drug side
effects, drug chemical structure, and gene expression) can
be incorporated into the currently proposed algorithm
to further improve performance. Integrating and reason-
ing over such complex biological data poses a significant
challenge that bears future investigation.

Acknowledgements

RX'is funded by Case Western Reserve University/Cleveland Clinic CTSA Grant
(UL1 RR024989), the Eunice Kennedy Shriver National Institute Of Child Health
& Human Development of the National Institutes of Health under Award
Number DP2HD084068, the Training grant in Computational Genomic
Epidemiology of Cancer (CoGE) (R25 CA094186-06), and Grant #IRG-91-022-18
to the Case Comprehensive Cancer Center from the American Cancer Society.
QW was partially supported by ThinTek LLC.

Declarations

Publication charges for this article have been funded by the Eunice Kennedy
Shriver National Institute Of Child Health & Human Development of the
National Institutes of Health under Award Number DP2HD084068. This article
has been published as part of BMC Genomics Volume 17 Supplement 7, 2016:
Selected articles from the International Conference on Intelligent Biology and
Medicine (ICIBM) 2015: genomics. The full contents of the supplement are
available online at http://bmcgenomics.biomedcentral.com/articles/
supplements/volume-17-supplement-7.

Availability of data and materials
Data is available by contacting Rong Xu at rxx@case.edu.

Authors’ contributions
RX and QW jointly designed, implemented, and performed the experiments,
and wrote the paper. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Published: 22 August 2016

References

1. CDC:Rheumatoid Arthritis. http://www.cdc.gov/arthritis/basics/
rheumatoid.htm. Accessed May 2015.

2. Mclnnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J
Med. 2011;365(23):2205-219.

3. Diogo D, Okada Y, Plenge RM. Genome-wide association studies to
advance our understanding of critical cell types and pathways in
rheumatoid arthritis: recent findings and challenges. Curr Opin
Rheumatol. 2014;26:85-92.

4. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA. Potential etiologic and functional implications of

20.

22.

23.

24.

25.

27.

28.

Page 279 of 325

genome-wide association loci for human diseases and traits. Proc Natl
Acad Sci. 2009;106(23):9362-367.

Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, ShenY, Sanseau P.
The support of human genetic evidence for approved drug indications.
Nature genetics. 2015;47(8):856-6.

Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR,
Mooser V. Use of genome-wide association studies for drug
repositioning. Nature biotechnol. 2012;30(4):317-20.

Okada Y, Wu D, Trynka G, Raj T, Terao C, lkari K, Toes RE. Genetics of
rheumatoid arthritis contributes to biology and drug discovery. Nature.
2014;506(7488):376-81.

Collins FS. Reengineering translational science: the time is right. Science
translational medicine. 2011;3(90).

Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets
through human genetics. Nat Rev Drug Discov. 2013;12(8):581-94.
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad
T, Van Gossum A. Genome-wide meta-analysis increases to 71 the
number of confirmed crohn’s disease susceptibility loci. Nature genetics.
2010;42(12):1118-1125.

Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from
genome-wide association studies: advances and challenges. Nat Rev
Genet. 2012;13(8):576-88.

Xu R, Wang Q. Large-scale extraction of drug-disease treatment pairs
from biomedical literature for drug repurposing. BMC Bioinformatics.
2013;14(1):181-90.

XuR, LiL, Wang Q. Towards building a disease-phenotype relationship
knowledge base: large scale extraction of disease-manifestation
relationship from literature. Bioinformatics. 2013;29(17):2186-194.

Xu R, Wang Q. Automatic signal prioritizing and filtering approaches in
detecting post-marketing cardiovascular events associated with targeted
cancer drugs from the fda adverse event reporting system (faers). J
Biomed Informa. 2014:47:171-7.

Wang ZY, Zhang HY. Rational drug repositioning by medical genetics.
Nature biotechnol. 2013;31(12):1080-1082.

Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P.
Computational drug repositioning: From data to therapeutics. Clin
Pharmacol Ther. 2013;93(4):335-41.

LiJ, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current
trends in computational drug repositioning. Brief Bioinform. 2016;17(1):
2-12.

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Golub TR.
The connectivity map: using gene-expression signatures to connect small
molecules, genes, and disease. Science. 2006;313(5795):1929-1935.
Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A,
Butte AJ. Discovery and preclinical validation of drug indications using
compendia of public gene expression data. Sci Transl Med. 2011;3(96):
96-779677.

Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, Butte AJ.
Computational repositioning of the anticonvulsant topiramate for
inflammatory bowel disease. Sci Transl Med. 2011;3(96):96-769676.

. Chiang AP, Butte AJ. Systematic evaluation of drug—disease relationships

to identify leads for novel drug uses. Clin Pharmacol Ther. 2009;86(5):
507-10.

Duran-Frigola M, Aloy P. Recycling side-effects into clinical markers for
drug repositioning. Genome Med. 2012;4(3).

Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders.
Nature Neurosci. 2010;13(10):1161-1169.

Gottlieb A, Stein GY, ER, Sharan R. Predict: a method for inferring novel
drug indications with application to personalized medicine. Mole syst
biol. 2011;7(1).

Xu R, Wang Q. Phenopredict: a disease phenome-wide drug
repositioning approach towards schizophrenia drug discovery. Journal of
biomedical informatics. 2015;56:348-355.

Chen'Y, Xu R. Phenome-driven disease genetics prediction towards drug
discovery. Bioinformatics. 2015;31(12):i276-i283.

Chen'Y, Cai X, Xu R. Combing Human Disease Genetics and Mouse
Model Phenotypes Towards Drug Repositioning for Parkinson’s Disease.
AMIA Annu Symp Proc. 2015;2015:1851-1860.

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Parkinson
H. The nhgri gwas catalog, a curated resource of snp-trait associations.
Nucleic acids Res. 2014;42(D1):1001-1006.


http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-7
http://bmcgenomics.biomedcentral.com/articles/supplements/volume-17-supplement-7
http://www.cdc.gov/arthritis/basics/rheumatoid.htm
http://www.cdc.gov/arthritis/basics/rheumatoid.htm

The Author(s) BMC Genomics 2016, 17(Suppl 7):518

29.

30.

31

32.

33.

34.
35.

36.

Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques:
Concepts and Techniques: Elsevier; 2011.

Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M. String v9.
1: protein-protein interaction networks, with increased coverage and
integration. Nucleic Acids Res. 2013;41(D1):808-15.

Chen'Y, Xu R. Network-based gene prediction for plasmodium
falciparum malaria towards genetics-based drug discovery. BMC
Genomics. 2015;16(Suppl 7):9.

Xu R, Wang Q, LiL. A genome-wide systems analysis reveals strong link
between colorectal cancer and trimethylamine n-oxide (tmao), a gut
microbial metabolite of dietary meat and fat. BMC Genomics.
2015;16(Suppl 5):6.

World Health Organization: International Statistical Classification of
Diseases and Related Health Problems (Vol. 1): World Health Organization;
2004. Geneva.

http://www.who.int/classifications/atcddd/en/.

Brinkman RR, Dubé MP, Rouleau GA, Orr AC, Samuels ME. Human
monogenic disorders—a source of novel drug targets. Nat Rev Genet.
2006;7(4):249-60.

Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate
genes: boosting disease gene discovery. Nat Rev Genet. 2012;13(8):
523-36.

Page 280 of 325

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
¢ We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://www.who.int/classifications/atcddd/en/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Find and analyze RA-related diseases
	Construct genetic disease network (GDN)
	Apply network-based ranking algorithm to find RA-related diseases from GDN
	Analyze RA-related diseases

	Reposition drugs based on RA-related diseases
	Drug repositioning algorithm 
	De novo validation using known RA drugs and comparison
	Evaluate Novel predications

	Analyze repositioned drug candidates

	Results
	Evaluate network construction and disease ranking algorithms and analyze RA-related diseases
	Retrospective validation with 80 FDA-approved RA drugs
	Drug repositioning using the combined TreatKB has better performance than individual TreatKBs

	Our approach has comparable overall performance but complementary precision and recall as compared to a ``direct genetics-based'' approach
	Evaluation of novel predictions using 165 novel RA drugs
	Drug categories for top-ranked drug candidates offer insight into the underlying mechanisms of drug actions

	Discussion and conclusions
	Acknowledgements
	Declarations
	Availability of data and materials
	Authors' contributions
	Competing interests
	Ethics approval and consent to participate
	Consent for publication
	References

