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Abstract

Background: The recent advent of the state-of-art high throughput sequencing technology, known as Methylated
RNA Immunoprecipitation combined with RNA sequencing (MeRIP-seq) revolutionizes the area of mRNA epigenetics
and enables the biologists and biomedical researchers to have a global view of N6-Methyladenosine (m6A) on
transcriptome. Yet there is a significant need for new computation tools for processing and analysing MeRIP-Seq
data to gain a further insight into the function and m6A mRNA methylation.

Results: We developed a novel algorithm and an open source R package (http://compgenomics.utsa.edu/metcluster)
for uncovering the potential types of m6A methylation by clustering the degree of m6A methylation peaks in
MeRIP-Seq data. This algorithm utilizes a hierarchical graphical model to model the reads account variance and
the underlying clusters of the methylation peaks. Rigorous statistical inference is performed to estimate the model
parameter and detect the number of clusters. MeTCluster is evaluated on both simulated and real MeRIP-seq
datasets and the results demonstrate its high accuracy in characterizing the clusters of methylation peaks. Our
algorithm was applied to two different sets of real MeRIP-seq datasets and reveals a novel pattern that methylation
peaks with less peak enrichment tend to clustered in the 5′ end of both in both mRNAs and lncRNAs, whereas
those with higher peak enrichment are more likely to be distributed in CDS and towards the 3′end of mRNAs
and lncRNAs. This result might suggest that m6A’s functions could be location specific.

Conclusions: In this paper, a novel hierarchical graphical model based algorithm was developed for clustering
the enrichment of methylation peaks in MeRIP-seq data. MeTCluster is written in R and is publicly available.

Background
N6-methyl-adenosine (m6A) is the most abundant modifi-
cation among 100 types of identified RNA modifications
in eukaryotic mRNA/lncRNA [1, 2]. Even though m6A
was found existing in mammalian mRNAs in as early as
1970s [3], its biological relevance remains unclear due to
the difficulties in identifying global m6A sites in mRNA
[4]. In 2013, the m6A demethylase Fat mass and obesity
associated protein (FTO) was first discovered [5], to be
able to reverse the m6A modification in mRNA and it

revived our interests of studying m6A in mRNA. To date,
ALKBH5 is identified as another demethylase [6] and the
methyltransferase like 3/14 (METTL3/METTL14) and
Wilms’ tumor 1-assoicating protein (WTAP) are discov-
ered to be subunits of the m6A methyltransferase complex
[7, 8]. All these findings provide strong evidences to show
that m6A is a dynamic modification and suggest that it
may play a critical role in exerting post-transcriptional
functions in mRNA metabolism [9–11].
These new wave of breakthroughs cannot be achieved

without the recent development of MeRIP-seq [12, 13],
which was successfully developed to reveal the tran-
scriptome-wide distribution of m6A in human and
mouse cells. In this essay, mRNA is first chemically
fragmented into approximately 100-nucleotide (nt) long
before immunoprecipitation with anti-m6A antibody.
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Then, the immunoprecipitated (IPed) methylated mRNA
fragments and the un-immunoprecipited input control
mRNA fragments are subjected to high-throughput
sequencing [14]. The sequenced IP and input reads are
aligned to the transcriptome and reads enrichment of IP
out of the combined reads in IP and input samples are
examined to predict to loci of methylation sites and infer
the degree of methylation. We have previously deve-
loped exomePeak [15, 16] and HEPeak [17], two algo-
rithms for detecting m6A peaks in MeRIP-seq. Although
MeRIP-seq and subsequent computational peak-calling
analysis provide an accurate landscape of m6A methyla-
tion in transcriptome, the complete mechanisms of this
methylation still remains unclear. Just like gene expres-
sion where co-expression might suggest co-regulation or
similar gene functions, sites with similar methylation de-
gree could be related to similar methylation mechanisms.
Therefore, there is a need to develop algorithms to un-
cover co-methylation pattern in MeRIP-seq data. In this
paper, we model the methylation degrees of m6A peaks as
a mixture of the Beta-binomial distributions and propose
an expectation-maximization based clustering algorithm
to uncover the co-methylation patterns.

Methods
In this section, we first describe the proposed generative
model to define m6A peak clusters and then derive the
Expectation-Maximization algorithm for the inference. In
the end, we discuss a Bayesian Information Criterion (BIC)
[18] for selecting the optimal number of m6A peak clusters.

The proposed graphical model for clustering RNA
methylation peaks
The proposed graphical model for clustering of m6A
peaks in MeRIP-seq data is shown in Fig. 1. Suppose we
have identified a set of N m6A peaks, by using peak-
calling software such as exomePeak or HEPeak. The goal
is to cluster these peaks according to their methylation

degree, which is defined as IP reads count divided by the
total count of IP and control reads. For the nth m6A
peak, let Zn ∈ {1, 2,.., K} denote the index of the particu-
lar methylation cluster that n-th peak belongs to, with K
representing the total number of clusters, then Zn fol-
lows a discrete distribution

P Znjπð Þ ¼
YK
k¼1

πk
I Zn¼kð Þ ð1Þ

where πk is the unknown probability that an m6A peak
belongs to cluster k, where ∑Kπk = 1 and I(⋅) is the indi-
cator function. Also, let the observed reads count in the
nth peak of the mth IP replicate sample be Xm,n and that
of the mth input replicate denote as Ymn. Under the as-
sumption that reads count follows a Poisson distribu-
tion, the reads count Xmn given the total reads account
Tmn = Xmn + Ymn can be shown to follow a Binomial
distribution

P Xmnjpn;Znð Þ ¼
YK
k¼1

Tmn

Xmn

� �
pn

Xmn 1−pnð ÞYmn

� �I Zn¼kð Þ

ð2Þ
where is pn represents unknown methylation degree at
the nth Peak of the mth replicate. In order to model the
variance of the replicates for the nth peak, given cluster
assignment Zn, pn is assumed to follow the Beta
distribution

P pjZnð Þ ¼
YK
k¼1

Beta αk ; βk
� �I Zn¼kð Þ ð3Þ

Therefore, after integrating the variable pn , Xmn follows
a mixture of Beta-binomial distribution

P XmnjZn;α;βð Þ ¼
X
pn

P Xmnjpn;Znð ÞP pnjα;βð Þ

¼
YK
k¼1

C•
Γ Xmn þ αkð ÞΓ Ymn þ βk

� �
Γ Tmn þ αk þ βk
� � Γ αk þ βk

� �
Γ αkð ÞΓ βk

� �
 !I Zn¼kf g

ð4Þ
where α = [α1, α2,.., αK]

T, β = [β1, β2,.., βK]
T are the un-

known parameters of Beta distribution and C is the
normalization constant. Thus, by considering the N m6A
peaks in M replicates, the joint distribution is

P X;Zjα;β;πð Þ ¼
YN
n¼1

YM
m¼1

YK
k¼1

πkBB XmnjZnð Þð ÞI Zn¼kf g

ð5Þ
where BB(Xmn|Zn) represents formula (3). Then, the log-
likelihood of the observed data can be expressed as

Fig. 1 The proposed graphical model for peak clusters
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l ¼ lgP Xjα;β;πð Þ ¼ lg
X
Z

P X;Zjα;β;πð Þ

¼
XN
n¼1

XM
m¼1

lg
XK
k¼1

πkBB XmnjZn;α;βð Þ

ð6Þ

where Z = [Z1, Z2,…, ZN]
T, X = [X1,

T X2,…,
T XN

T]T and
Xn ¼ X1n; ;X2n;…; ;XMn½ �T . The goal of inference is to
predict the cluster index Zn for all the peaks and esti-
mate the unknown model parameters θ ¼ α; β;π½ � .
Next, we first discuss the maximum likelihood solution
for parameter inference, based which an EM algorithm
is introduced afterwards to perform model parameters
inference and cluster assignment jointly.

Parameter inference by the Newton’s method
Given that the cluster indices are known, the model
parameters can be inferred by the maximum likelihood
criterion as

θ̂ML ¼ argmax lð Þ
θ

: ð7Þ

Given (5–6), the log-likelihood l can be rewritten as

l ¼
XN
n¼1

XM
m¼1

lg
XK
k¼1

q Znkð ÞπkBB XmnjZnð Þ
q Znkð Þ

≥
XN
n¼1

XM
m¼1

XK
k¼1

q Znkð Þ lgπk þ lgBB XmnjZnð Þ− lgq Znð Þ½ �

¼
XN
n¼1

XK
k¼1

M � q Znkð Þ lgπk−
XN
n¼1

XK
k¼1

M � q Znkð Þ lgq Znkð Þ

þ
XN
n¼1

XM
m¼1

XK
k¼1

q Znkð Þ

� Φ αk þ βk
� �

−Φ Tmn þ αk þ βk
� �þΦ Xmn þ αkð Þ

þΦ Ymn þ βk
� �

−Φ αkð Þ−Φ βk
� �� �

ð8Þ

where Φ ¼ lgΓ �ð Þ and q Znð Þ ¼ P Zn ¼ kjXð Þ . Here,
given that q Znð Þ is a complex simplex, according to the
Jensen’s inequality, the lower bound of l is achieved
when q Znð Þ ¼ P ZnjXð Þ. With a little abuse of notation,
l denotes the lower bound of (7). Given the equality
constrain

P
Kπk ¼ 1 , the parameters of π can be com-

puted by maximizing l and its dual problem with Lagrange
multiplier λ is

max g π; λð Þ ¼
X
n

X
m

X
k

q Znð Þ lgπk þ λ
X
k

πk−1

 !

ð9Þ

then λ and π can be calculated as

λ ¼ −N �M
πk ¼ 1

N

XN
n¼1

P Zn ¼ kjXnð Þ

ð10Þ

Due to lack of analytical solution for the derivatives of
l with respect to α and β, a Newton’s method is applied
and the the gradient can be computed as

Jk ¼

XN
n¼1

q Znkð Þ
Φ αk þ βk
� � �M−

XM
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Φ Tmn þ αk þ βk
� �
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ð11Þ

and the Hessian is
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Then, the parameters for the kth cluster can be updated
iteratively as

αknew
βknew

� �
¼ αkold

βkold

� �
− Hk
� �−1

J k ð13Þ

m6A peak cluster assignment
Assigning m6A peak to a cluster amounts to inferring
cluster index Zn , whose posterior probability given θ can
be written as
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P Zn ¼ kjXn; θð Þ ¼ P Zn ¼ k;Xnjθð ÞXK
k¼1

P Zn ¼ k;Xnjθð Þ

¼
πk �

YM
m¼1

BB XmnjZn ¼ k; θð Þ

XK
k¼1

πk

YM
m¼1

BB XmnjZn ¼ k; θð Þ
:

ð14Þ

However, P Zn ¼ kjXn; θð Þ cannot be computed directly,
because parameter θ is also unknown. To circumvent the
difficulty, we developed an EM [19] algorithm to infer Zn

and estimate the model parameters θ in an iterative
fashion. The steps of the proposed EM algorithm are
described in the following

Repeat until convergence achieved:
E-step: use the previous computed parameters θold to

update the posterior probability of the hidden states P
Zn ¼ kjXn; θð Þ according to (13).
M-step: maximize the lower bound l in (7) and estimate

parameters θnew according to (12).

Selection of the number of states by Bayesian
information criterion (BIC)
Note that the total number of states K is also unknown.
In order to determine K, the BIC is applied search in the
range of 2 to 15. The best number of states is selected
by the lowest BIC, which is denoted as

BIC ¼ −2l̂ þ 2K lgN ð15Þ

Fig. 2 Performance evaluation on simulated m6A peaks. a. The algorithm performs well on both moderate and high variances cases. b. As the
number of replicates increases, the performance is enhanced
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where l̂ is the estimated log-likelihood when the EM
algorithm converges.

Results
Performance evaluation by simulation
The performance was evaluated by simulation where the
true states of methylation peaks are known. Each peak
was simulated independently, where the reads count was
generated according to the proposed graphical model in
Fig. 1. Notably, from (3), we can determine that the dis-
tribution of the methylation degree follows the following
mixture Beta distribution

P pð Þ ¼
XK
k¼1

πkBeta αk ; βk
� � ð16Þ

where the kth Beta distribution model the methylation de-
gree in cluster k. In our case, we assume there are K ¼ 4
clusters and π ¼ 0:3; 0:4; 0:2; 0:1½ �. Note that the degree p
may vary vastly when the variance of the Beta distribution
is large. In addition, the total reads count Tn of the nth
peak can introduce another layer of variance and the lar-
ger the Tn is, the smaller the variance is. For simplicity,
we only investigate the impact of the variances from the
Beta distributions on performance. Here, two cases were
considered; in the first case, moderate variances of the
methylation degree were simulated where α; β½ � =
16; 2; 16; 4; 20; 10; 25; 10½ � and in the second case, the
variances were assumed very high and set as α; β½ �
¼ 8; 1; 4; 1; 1:2; 1; 9; 10½ � . To best mimic the real MeRIP-
Seq data, N ¼ 10000 methylation peaks and M ¼ 2
replicates were simulated. Also, we let the total count
Tn ¼ 100 for any methylation peak.
The performance of the proposed algorithm in unco-

vering the clusters of m6A peak methylation degree can

be evaluated by examining the goodness-of-fit of the
mixture Beta distribution (15). Figure 2a demonstrates
that the fitting performance for both moderate and high
variance cases both cases and we can see the estimated
mixture density is extremely close to the true ones, indi-
cating a good fitting performance by the algorithm. In
order to quantify the influence of the number of repli-
cates on the fitting performance, simulated datasets with
replicates varying from 1 to 10 were generated. The
goodness-of-fit measured by Kullback–Leibler (KL) di-
vergence between the estimated and the true mixture
distributions was examined for different number of rep-
licates separately. We can see from Fig. 2b that even
with no replicate the fitting performance is very high
with a KL divergence less 0.7 %. When there are two or
more replicates, further improvement can be obtained,
where the KL divergence can be reduce to as low as
0.2 %. Taken together, the results provide strong evi-
dence to support a good fitting performance of the pro-
posed algorithm for different reads variations.

Evaluation on real m6A MeRIP-seq data
To further validate the accuracy of the proposed algo-
rithm, we applied it to two real public available m6A
MeRIP-seq datasets [5, 8]. One is from the mouse mid-
brain cells including 3 replicates, download from Gene Ex-
pression Omnibus (GEO) (accession number GSE47217)
and the other dataset including 4 replicates measures
transcriptome-wide m6A in human HeLa cells (accession
number GSE46705). The datasets were pre-processed
according to the HEPeak pipeline and for midbrain
dataset, a total of 18162 m6A peaks were identified,
whereas 7243 m6A peaks were reported in the HeLa
cells both for FDR < 0.05.

Fig. 3 Pie chart for the proportion of peaks in each m6A clusters discovered in mouse midbrain and human HeLa cells. a. An illustration of the
proportion of m6A peaks in each clusters in mouse midbrain cells. b. An illustration of the proportion of m6A peaks in each clusters in human HeLa cells
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Next, we applied our algorithm to uncover the peak
clusters in two datasets. 2 m6A peak clusters were deter-
mined to exist for the mouse midbrain cells (Fig. 3a),
where cluster 1 contains 60 % (10875) of the peaks and
cluster 2 includes the remaining 40 % (7287). In contrast,
4 different m6A peak clusters were discovered for HeLa
cells (Fig. 3b), with the proportion of peaks as 21 % (1521)
for cluster 1, 44 % (3155) for cluster 2, 12 % (886) for
cluster 3, and 23 % (1681) for cluster 4, where the cluster
is ranked according to a descending order of methyla-
tion degree.
To evaluate the accuracy of the proposed algorithm

in characterizing the true mixture distribution of the

methylation degree, the estimated density was next tested
against the empirical distribution of peak methylation
degrees obtained from MeRIP-Seq data. As illustrated in
Figs. 4a and 5a, the estimated mixture distributions cap-
ture the real distributions of methylation degrees very
well for both mouse and human MeRIP-seq datasets.
We further investigated each components of the mix-
ture. Figure 4b shows the empirical peak distributions
of the two uncovered clusters in the mouse midbrain,
which have distinct patterns. The fitted distributions of
each cluster well captured the corresponding empirical
distribution (chi-square test, pvalue: 9.2e-14 and 4.4e-4
for cluster 1 and 2). For human HeLa cells Fig. 5b, four

Fig. 4 The estimated mixture density closely characterizes the real distribution of m6A peak in mouse midbrain cells. a. The estimated mixture
Beta distribution versus the overall distribution of real m6A peaks in mouse midbrain cells. b. Comparison between the two estimated mixture
components and the real distributions of m6A peaks in the corresponding cluster

Fig. 5 The estimated mixture density closely characterizes the real distribution of m6A peak in HeLa cells. a. The estimated density versus the
overall distribution of methylation degree of m6A peaks in human HeLa cells. b. Comparison between the four estimated mixture components
and the real distributions of m6A peaks in the corresponding cluster
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distinct empirical distributions of peaks can be clearly
seen and high fitting performance was also achieved for
all four clusters (chi-square test, pvalue: 5.8e-21, 7.48e-
38, 1.1e-15 and 1.2e-8 for cluster 1 to 4).

A novel pattern of m6A distribution is revealed
In order to gain insights into different clusters of methy-
lation peaks, peaks in each cluster were mapped to the
corresponding mRNA or lncRNA and their distribution
was subsequently examined. In mouse midbrain cells,
noticeable differences in the distributions of two clusters

can be observed on mRNA (Fig. 6a). Peaks in cluster 1
that have higher methylation degree are highly enriched
near the stop codon, a distribution similar to the general
m6A distribution previously reported in the literature
[1, 12, 13, 20], whereas those in cluster 2 that have less
degree of methylation are clearly more enriched near
the start codon towards the 5′ UTR. Interestingly, m6A
peak clusters in lncRNA (Fig. 6b) also show the same
pattern where the higher methylated peaks are more
likely to be enriched toward its 3′UTR. This phenomenon
was further supported by the results in human HeLa cells

Fig. 6 Distribution of m6A for different clusters in mRNA and lncRNA in mouse midbrain cells. a. The distribution of m6A peaks for different
clusters in mRNA. b. The distribution of m6A peaks for different clusters in lncRNA

Fig. 7 Distribution of m6A for different clusters in mRNA and lncRNA in human HeLa cells. a. The distribution of m6A peaks for different clusters
in mRNA. b. The distribution of m6A peaks for different clusters in lncRNA
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(Fig. 7a, b). We see once again that the highly methylated
peaks tend to locate around the stop codon and the peaks
move towards the 5′ end as their methylation degree
decreases. This pattern was also verified on additional
MeRIP-seq datasets (Additional files 1: Figure S1 and
Additional file 2: Figure S2).
To gain additional insights into these m6Aclusters, se-

quence motifs searching was performed on the sequences
of the predicted m6A peaks for each particular cluster.
The sequences of peaks were obtained by bedtools2.1 and
motif search was done by using DREME [21, 22], with the
shuffled sequences as the background. The most enriched
consensus motifs are illustrated in the Fig. 8 and
Additional file 3: Figure S3 in Additional files. Inter-
estingly, the motifs for the highest methylated cluster
in both mouse midbrain cells and human HeLa cells
are found to be very similar and this similarity also
exists for the lowly methylated cluster. For the highest
methylated cluster, the common motif is GGAC, which
has been shown by PAR-CLIP experiments as the binding
motif of methyltransferase METTL14 [8]. For the lowest
methylated peaks, the motif is determined as GGAGGA.
This distinct motif has not been reported to be associated
with any protein binding and thus requires further
investigation.

Discussion and Conclusions
In this paper, a novel graphical model based methylation
peak clustering algorithm, was developed for discovering
the patterns in methylation degrees of m6A peaks in the
MeRIP-seq data. The peak cluster is modelled as the

mixture Beta-binomial distribution, where the Beta dis-
tribution can model the variance of the methylation
degree across sample replicates. The evaluation on both
simulation and real MeRIP-seq datasets demonstrates
the accuracy and robustness of our model. In addition,
our algorithm successfully uncovered a unique and novel
pattern for m6A peak cluster, providing a new lead for
understanding the mechanisms and functions of m6A
methylation.

Additional files
Additional MeRIP-seq datasets were further examined.
One experiment was conducted by knocking out an
m6A demethylase obesity associated protein (KO-FTO)
in mouse midbrain cells. The other MeRIP-seq dataset
was generated by knocking out m6A methyltransferase
METTL14 (KO-METTL14) in human HeLa cells.

Additional file 1: Figure S1. Distribution of m6A for different clusters in
mRNA and lncRNA in KO-FTO mouse midbrain cells. A. The distribution of
m6A peaks for different clusters in mRNA. B. The distribution of m6A
peaks for different clusters in lncRNA. (PNG 114 kb)

Additional file 2: Figure S2. Distribution of m6A for different clusters in
mRNA and lncRNA in KO-METTL14 human HeLa cells. (PNG 173 kb)

Additional file 3: Figure S3. Motifs for Cluster 2 and 3 detected by
DREME in human HeLa cells. (PNG 21 kb)

Abbreviations
BIC, Bayesian Information Criterion; CDS, Coding DNA sequence; EM,
Expectation of maximum likelihood method; FDR, False discovery rate;
MeRIP-seq, Methylated RNA Immunoprecipatation combined with RNA
sequencing; UTR, Untranslated region

Fig. 8 Motifs detected by DREME in human and mouse cells
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