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Abstract

Background: Alterations in gene expression are key events in disease etiology and risk. Poor reproducibility in
detecting differentially expressed genes across studies suggests individual genes may not be sufficiently informative
for complex diseases, such as myocardial infarction (MI). Rather, dysregulation of the ‘molecular network’ may be
critical for pathogenic processes. Such a dynamic network can be built from pairwise non-linear interactions.

Results: We investigate non-linear interactions represented in mRNA expression profiles that integrate genetic
background and environmental factors. Using logistic regression, we test the association of individual GWAS-based
candidate genes and non-linear interaction terms (between these mRNA expression levels) with MI. Based on
microarray data in CATHGEN (CATHeterization in GENetics) and FHS (Framingham Heart Study), we find individual
genes and pairs of mRNAs, encoded by 41 MI candidate genes, with significant interaction terms in the logistic
regression model. Two pairs replicate between CATHGEN and FHS (CNNM2|GUCY1A3 and CNNM2|ZEB2).
Analysis of RNAseq data from GTEx (Genotype-Tissue Expression) shows that 20 % of these disease-associated RNA
pairs are co-expressed, further prioritizing significant interactions. Because edges in sparse co-expression networks
formed solely by the 41 candidate genes are unlikely to represent direct physical interactions, we identify additional
RNAs as links between network pairs of candidate genes. This approach reveals additional mRNAs and interaction
terms significant in the context of MI, for example, the path CNNM2|ACSL5|SCARF1|GUCY1A3, characterized by the
common themes of magnesium and lipid processing.

Conclusions: The results of this study support a role for non-linear interactions between genes in MI and provide a
basis for further study of MI systems biology. mRNA expression profiles encoded by a limited number of candidate
genes yield sparse networks of MI-relevant interactions that can be expanded to include additional candidates by
co-expression analysis. The non-linear interactions observed here inform our understanding of the clinical relevance
of gene-gene interactions in the pathophysiology of MI, while providing a new strategy in developing clinical
biomarker panels.
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Background
Large scale Genome-Wide Association Studies (GWAS)
have revealed numerous candidate risk alleles for complex
disorders, such as myocardial infarction (MI) and coron-
ary artery disease (CAD) [1, 2]. However, genetic risk of
disease at the population level cannot be accounted for by
individual genetic variants in single genes or even by sum-
ming the individual effects of dozens of genes – a gap
often referred to as the ‘missing heritability’ [3, 4]. Thus
far, epistasis has also failed to account for heritability [5,
6]. Other factors may involve additional loci not detectable
by GWAS, non-additive interactions between candidate
genes, and external factors modulating gene expression
and interactions [7, 8]. Here, we consider the potential of
non-additive effects to contribute to disease risk. Instead
of restricting the analysis to genetic variants, we focus on
RNA expression levels that integrate multiple factors
including genetic differences influencing expression, gene-
gene interactions, feedback mechanisms, and environmen-
tal influence.
Previous studies of differential mRNA expression in MI

and related phenotypes have identified ~1,500 individual
genes, but less than 5 % replicate across more than one
study [9–16]. Poor replication is often attributed to differ-
ences in cohorts and methodology between studies, but
also reflects the fact that disease relevant signals are dis-
persed across many interacting genes (i.e. a network) and
that gene expression varies greatly across individuals with
different genetic and environmental backgrounds. Low
reproducibility of differentially expressed genes limits the
biological interpretation and utility of these findings.
Using cluster analysis, GO enrichment analysis, and a

variety of machine-learning approaches, studies of differ-
ential expression in MI have also implicated particular
pathways (e.g. caspase cascade, apoptosis signaling) and
cell types (e.g. CD71+ erythroid, NK cells) [9–16].
Efforts however have not yet been made to quantify the
non-additive effects of gene interactions that could be
revealed from RNA expression patterns varying in the
context of MI. Dynamic non-additive interactions could
represent essential elements since complex diseases
likely do not arise from single perturbations but rather a
dysregulation of the molecular network. Indeed, Wu et al.
find pairwise non-linear interactions to be important for
disease classification and biomarker development [17].
In the present paper, we demonstrate that non-

additive, dynamic effects embedded in mRNA expression
may play an essential role in defining the odds of a com-
plex phenotype. Focusing on myocardial infarction (MI),
we select a well-defined, small number of GWAS-
derived candidate genes to probe mechanisms inaccess-
ible on a genome-wide scale. Using whole blood expres-
sion arrays from the CATHeterization GENetics Study
(CATHGEN) and the Framingham Heart Study (FHS),

we test the association of RNA expression profiles with
MI. We focus first on individual genes and then expand
to consider non-linear interaction terms between pairs
of candidate genes.
Analysis of differential co-expression between RNAs

can enhance our understanding of how dynamic feed-
back mechanisms between pairs and defined networks of
mRNAs determine disease risk [18–21]. Gene networks
can be extracted from existing databases, (e.g., Ingenuity
Pathway Analysis, KEGG, etc.). However, most databases
are generated from mining previously published litera-
ture and are thus biased towards those pathways most
studied and often neglect tissue specificity and other nu-
ances of gene-gene interactions.
A comprehensive approach to tissue-specific gene-

gene interactions, termed NetWAS was recently pub-
lished [22]. NetWAS uses Bayesian classification based
on a vast database of prior knowledge and integration of
open-access expression datasets to define tissue-specific
interactions. The results confirm the role of well-
established genes in select pathways and include novel
discoveries. However, with use of linear measures of as-
sociation and an additive model thresholded by the ef-
fects of individual genes, crucial information on dynamic
interactions remains hidden. In contrast, the present
study focuses on expression patterns to test dynamic in-
teractions relevant to disease. The approach does not
quantify the biological likelihood of any interaction
based on prior knowledge, but rather evaluates how
non-additive effects change the association between
mRNA expression and odds of disease risk.
Despite progress in the field of network biology, exist-

ing methods do not fully account for variability in co-
expression across individuals with different genetic and
environmental backgrounds, even in those cases where
the underlying method is tailored to detect non-linear
dependency patterns. To overcome this limitation, we
employ a resampling procedure that generates a quanti-
tative measure of the stability of co-expression across
individuals.
Thus, to inform study non-linear pairwise interactions

associated with MI, we construct small-scale, tissue spe-
cific co-expression networks with candidate genes in
healthy individuals using data from blood and tibial artery
in GTEx. Analysis of blood profiles supports biomarker
discovery, and artery, as the site of atherosclerotic plaque
formation characteristic of CAD, captures disease-relevant
physiology. We hypothesize that the relevance of a non-
linear interaction for disease will be reflected by a differ-
ence in both the strength and variability of co-expression
between cases and controls, rather than a binary (pres-
ence-absence) switch in co-expression. Accordingly, we
expect connections between genes in the co-expression
network to be the same in both diseased and healthy
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individuals but their strength and variability to change be-
tween those with and without MI.
Non-linear interactions between candidate genes asso-

ciated with MI are unlikely to represent direct, physical
interactions between mRNAs but rather distinct bio-
logical processes that are coordinately regulated. Thus,
we expand co-expression networks beyond candidate
genes to identify additional mRNAs that may serve to
mediate the observed interactions.

Results
Differentially expressed individual candidate genes and
their interactions in myocardial infarction (MI)
We analyzed RNA profiles (measured by expression ar-
rays in blood) from CATHGEN and the Framingham
Heart Study in subjects with and without a history of
MI. Focusing on established candidate genes, we
searched for: (1) individual of mRNA transcripts and (2)
interactions between mRNA transcripts, significantly as-
sociated with MI status, noting those that replicate be-
tween the two cohorts.

GWAS based candidate genes in MI
The CAD Genome Wide Association Study performed
by the CARDIOGRAMplusC4D consortium published
in 2014, including >60,000 cases and 130,000 controls,
identified 45 loci associated with myocardial infarction
and CAD at genome-wide significance (Additional file 1)
[1, 2]. Forty-one of the candidate genes assigned to these
loci had one or more corresponding probes on expres-
sion arrays used in both CATHGEN (89 probes) and the
Framingham Heart Study (41 probes). All probes corre-
sponding to these genes were tested for an association
between expression and MI using logistic regression.

Expression of individual candidate genes in MI
The approach for detecting differentially expressed
RNAs was designed for each study separately as CATH-
GEN and FHS include different proportions of cases/
controls, levels of relatedness, and racial diversity.

CATHGEN We measured the association between ex-
pression of each individual probe, assigned to the 41
candidate genes, and MI status using logistic regression
with age, race, and gender as additional covariates in the
model (n = 1250; 359 cases and 891 controls). We identi-
fied 14 candidate genes with at least one probe display-
ing expression levels nominally (p < 0.05) associated with
MI: PEMT, RAI1, LPAL2, PDGFD, FES, ZC3HC1,
PHACTR1, CNNM2, GUCY1A3, UBE2Z, MRAS,
FURIN, IL6R, MIA3 (Fig. 1a, Additional file 1).

Framingham Heart Study As a population-based co-
hort, FHS had a significantly smaller prevalence of MI;

accordingly we used a matched case–control design. MI
cases with expression data available (n = 193) were
matched to controls (selected from a pool of 4952 sub-
jects) by age, gender, and different family assignment. To
assess the robustness of association between mRNA
levels and MI status, conditional logistic regression ana-
lysis was performed 5000 times, each time on a different
random set of matched controls. We identified eight
candidate genes displaying expression levels nominally
(p < 0.05) associated with MI in half or more of the 5000
resamples (i.e. in which the sample median of the p-
values was less than 0.05): TRIB1, VAMP8, FES,
PHACTR1, ZEB2, NT5C2, FLT1, and SMG6 (Fig. 1b,
Additional file 1), with PHACTR1 and FES replicating
from CATHGEN.
Our resampling approach results in a distribution of

main effects and p-values that reflects the biological and
environmental diversity of cases and controls. We evalu-
ated these distributions in FHS for all genes significant
in CATHGEN. With a right-skewed distribution, probes
in FURIN, IL6R, RAI1, and UBE2Z were considered to
be informative of MI (Fig. 1c). With approximately uni-
formly distributed p-values, probes in CNNM2,
GUCY1A3, MRAS, MIA3, PDGFD, PEMT, and LPAL2
did not show evidence of differential expression with MI
in FHS (Additional file 2). Uncertainty in correctly
assigning differentially expressed genes indicates that
single mRNA expression profiles in peripheral blood are
only moderately informative of MI status but still can
serve as a basis for further analysis.

Pairs of interacting candidate genes
Expression of candidate gene pairs in MI
In addition to searching for individual differentially
expressed genes, we considered pairs of mRNAs with and
without an interaction term in the model. The expression
profiles of mRNA pairs were evaluated for association with
MI, using the same approach applied to individual mRNA
expression levels in CATHGEN and in Framingham.

CATHGEN Considering an additive logistic model
(logit(MI) ~ RNA1 + RNA2 + additional covariates) revealed
56 (of 3916) pairs of probes with both RNA terms as sig-
nificant (p < 0.05) and 1064 with only one RNA term as sig-
nificant in the model (for details of the model, see Methods
section). These 1120 pairs of probes include only 20 of the
40 candidate genes. Applying the same criterion of signifi-
cance to an interactive model (logit(MI) ~ RNA1 + RNA2 +
RNA1*RNA2 + additional covariates) revealed 53 (of 3916)
pairs of probes with both RNA terms as significant (p <
0.05) and 624 with only one RNA term as significant. These
677 pairs include 38 of the 40 candidate genes. We find an
interaction model reveals fewer pairs of RNAs that are
comprised of a more diverse set of genes (Table 1).
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We define a pair of RNAs to be interacting non-linearly
if we detect a statistically significant (p < 0.05) interaction
term in the logistic model for this pair (regardless of the
significance of individual RNA terms as evaluated above).
By this definition, we found 167 (of 3916) pairs of probes
defined as interacting in CATHGEN. These probe pairs

represent 149 gene pairs that include nearly all of the
candidate genes (40 of 41) (Additional file 3).

Framingham Heart Study As before, we performed con-
ditional logistic regression 5000 times on different sets of
matched cases and controls, and recorded the number of
times each term in the model was significant (p < 0.05).
We analyzed both the additive model accounting for MI
with expression of gene A and B (MI ~ gene A + gene B)
and the model with an additional interaction term (MI ~
gene A + gene B + gene A*gene B). We identified 6 of 903
possible pairs with strong evidence of a non-linear inter-
action between the two candidate genes (sample median
of p-values for the interaction term less than 0.05):
CNNM2|GUCY1A3, CNNM2|PEMT, CNMM2|ZEB2,
IL6R|LPAL2, MIA3|SLC22A5, MIA3|ZC3HC1. For each

A

C

B D

Fig. 1 Differentially expressed candidate genes in MI. a CATHGEN. P-value of association between expression of probe ID (labeled by assigned
gene) and MI status from logistic regression with age, race, and gender as additional covariates. Genes with p-value less than 0.05 are colored in
red. b Framingham Heart Study. Number of resamples (of total 5000) in which mRNA expression of GWAS-based candidate gene was significantly
associated with MI (p < 0.05) in conditional logistic regression model. Controls were matched to cases on age, gender, and belonging to a
different family. TRIB1, VAMP8, FES, PHACTR1, ZEB2, NT5C2, and SMG6 (colored in red) had expression profiles strongly associated with MI (i.e.
median p-value among bootstrap replicates < 0.05). c Histograms of p-values for genes determined as significant in CATHGEN that did not meet
the criteria for being associated with MI in FHS. FURIN, IL6R, RAI1, and UBE2Z were informative of MI based on right-skewed histogram. d Venn
diagram displaying overlap between genes individually significant in CATHGEN and the Framingham Heart Study

Table 1 Comparison of additive models with and without non-
linear interactions between candidate gene pairs in CATHGEN

Additive Model Interactive Model

Number of pairs 1120 677

Number of candidate genes 20 38

Number of significant pairs defined as having one or both RNAs associated with
MI (p < 0.05) and number candidate genes forming those pairs. Shown for an
additive versus interactive model. Additive model: MI as explained by main effects
of candidate genes (logit(MI) ~ RNA1 + RNA2 + additional covariates). Interactive
model: MI as explained by main effects of candidate genes and an interaction
term (logit(MI) ~ RNA1 + RNA2 + RNA1*RNA2 + additional covariates)
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of these six pairs, adding the interaction term to the
model greatly decreased the median p-values for all terms
in the model, suggesting a functionally significant dynamic
interaction in the context of MI (Table 2). Two pairs:
CNNM2|GUCY1A3 and CNNM2|ZEB2 were also
observed in CATHGEN.
Of the genes forming these six pairs, only ZEB2 and IL6R

were also significant by themselves (Table 2 and Fig. 1).
The others were not differentially expressed in the Fra-
mingham Heart Study, but 7 of the remaining 8 (CNNM2,
GUCY1A3, PEMT, LPAL2, MIA3, and ZC3HC1) were dif-
ferentially expressed in CATHGEN as individual RNAs.
Detectable overlap between CATHGEN and FHS supports
the finding of non-linear interactions relevant for MI.

MI-relevance of non-linear interacting mRNA pairs
We further investigated how these non-linear RNA inter-
actions affect the odds of MI by generating sample distri-
butions of effect sizes based on the resampling procedure
used in the FHS. For the two pairs that replicated between
CATHGEN and FHS (CNNM2|GUCY1A3 and
CNNM2|ZEB2) we used the distributions of effect sizes to
calculate the odds ratio of MI given that the expression of
gene A increases by one standard deviation as a function
of expression of gene B (for details see Methods section).
In both cases we observe that the expression of one gene
(e.g. CNNM2) appears protective when expression of the
other (e.g. GUCY1A3) is low and deleterious when it is
high (Fig. 2). The relevance of these non-linear interac-
tions in accounting for MI status is reflected by both: (1)
the reproducibility of the odds ratio curve between differ-
ent replicates (i.e. all grey lines in the sample distribution
of odds ratios fall within the same region, Fig. 2a), and (2)
the saddle surface of the expression versus log-odds 3D
plot (Fig. 2b). In Fig. 2a, a histogram of gene expression
across the population is presented to further assess the

utility of this RNA as a biomarker of MI. We observe
strongly protective or deleterious mRNA-mRNA ratios in
a limited portion of the overall population; nevertheless,
the use of multiple gene-gene pairs has potential utility in
biomarker panels. The question remains of how these
pairs relate to one another.

Connectivity between non-linear interacting pairs
We investigate the relationship between pairs of non-
linearly interacting RNAs by presenting them as a graph of
interactions. Pairs with significant interaction terms form a
connected graph, which is denser for CATHGEN than Fra-
mingham, likely because of the larger number of cases in
CATHGEN (Fig. 3a). The high connectivity of the graph of
non-linearly interacting RNAs supports the hypothesis that
complex phenotypes arise as a destabilization of feedback
within a dense molecular network. The six pairs in FHS do
not form a densely connected graph, but do indicate inter-
actions between genes only indirectly connected in the
CATHGEN network (Fig. 3b).
It appears that the selected 41 candidate genes are

informative but support only sparsely populated physio-
logical networks. Therefore, we proceeded to co-
expression analysis to both assess the biological plausi-
bility that these genes are co-regulated and incorporate
additional RNAs that could serve as linkers (relays)
between the 41 candidate genes.

Co-expression of candidate genes and inclusion of
additional genes complementing sparse networks
Co-expression patterns among 41 candidate genes
We used co-expression in healthy individuals to assess
the biological plausibility of non-linear interactions asso-
ciated with disease by building small co-expression net-
works for the 41 candidate genes using GTEx
RNAsequencing data from ‘healthy’ individuals in whole
blood (n = 190) and arteries (n = 137). (Fig. 4).

Network construction procedure Our algorithm is de-
signed to evaluate the stability of co-expression between
pairs of RNAs, rather than the strength of the co-
expression per se. Similar to the ARACNE procedure
our method uses an information-theoretic divergence
measure (Renyi divergence) to detect ‘direct’ non-linear
dependencies between expression profiles [23, 24]. To
quantify the stability of ‘dynamically co-expressed’ pairs,
we generate networks on multiple (50,000) random sub-
samples of individuals and create a consensus network
where weights on the edges between mRNAs are defined
by the proportion of subsamples where the two mRNA
transcripts are observed as co-expressed (see Additional
files 4 and 5 and Methods section). 50 % of all possible
pairs are observed in at least one of the 50,000 resam-
ples. For further analysis, we focus on those observed in

Table 2 Interactions between candidate gene pairs in the
Framingham Heart Study

Percent significant resamples

Additive Model Interaction Model

Gene1 Gene2 Gene1 Gene2 Gene1*
Gene2

CNNM2|GUCY1A3 1 % 2 % 89 % 89 % 86 %

CNNM2|PEMT 1 % 1 % 54 % 54 % 54 %

CNNM2|ZEB2 0 % 75 % 56 % 51 % 56 %

IL6R|LPAL2 9 % 1 % 56 % 59 % 60 %

MIA3|SLC22A5 1 % 5 % 84 % 75 % 84 %

MIA3|ZC3HC1 1 % 2 % 58 % 45 % 57 %

Percent of significant resamples (p < 0.05) for each term in 5000 repetitions of
conditional logistic regression. Additive model: MI as explained by main effects
of candidate genes (logit(MI) ~ RNA1 + RNA2). Interactive model: MI as
explained by main effects of candidate genes and an interaction
term (logit(MI) ~ RNA1 + RNA2 + RNA1*RNA2)
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at least half of the 50,000 resamples, representing only 1 %
of all possible pairs (for rationale see Methods section).

Disease Interactions and Co-expressions Twelve
(11 %) of the 108 non-linearly interacting pairs in CATH-
GEN were co-expressed in artery and 21 (19 %) in blood,
indicating the potential for coordinated regulation of these
mRNAs (Additional files 3 and 6). Those gene pairs that
were co-expressed in blood were more likely to demon-
strate non-linear interactions associated with MI as
manifested by a greater specificity in MI prediction among
co-expressed pairs (Additional file 7). One of the non-
linear interacting pairs detected in both CATHGEN and
FHS (CNNM2|GUCY1A3) was found to be dynamically
co-expressed in both artery and blood (Fig. 4).
CNNM2|GUCY1A3 was co-expressed in 51 % of the
50,000 resamples in artery and 53 % in blood. These
results suggest co-expression patterns determined in
healthy individuals are also relevant for disease.

Co-expression patterns among candidate genes in networks
including additional gene transcripts
Underlying physiologic mechanisms linking gene expres-
sion and MI are indirectly reflected in the sparse net-
works. To overcome the limitations of these sparse
networks, we built large-scale co-expression networks
around the 41 candidate genes using 13,000 additional
transcripts. At this scale, we expect to observe more
biologically credible connections than in a small co-
expression network limited to candidate genes. None of
the candidate genes were directly co-expressed in these
larger networks, indicating that these represent bio-
logical processes that are co-regulated but not necessar-
ily in the same pathway. Our analysis revealed indirect
connections, i.e., ‘relay’ transcripts that serve to connect
candidate genes. Figure 5 displays the shortest paths in
blood between a robust pair of candidate mRNAs that
interacts in the context of disease: CNNM2|GUCY1A3.
We evaluate the disease relevance of these intermediary

co-expressions by considering a logistic model in

Fig. 2 Odds ratios and conditional odds ratios of MI for non-linearly interacting pairs. a Conditional odds ratios of MI from one standard deviation in-
crease in the mean expression of gene A, plotted against expression of the second interacting gene, gene B. Histograms of gene B expression are dis-
played above each panel. The odds ratio is defined as:odds(Ex_A + sd(Ex_A))/odds(Ex_A) where Ex_A and sd(Ex_A) denote the expression level and the
standard deviation of expression of gene A respectively. Red lines indicate an odds ratio of 1. In panel b the interaction is displayed as surface plot,
which is a three dimensional plot of expression of the two genes versus the log-odds of MI. The curvature of the saddle shape surface indicates the
magnitude of the interaction term in the model

Hartmann et al. BMC Genomics  (2016) 17:738 Page 6 of 14



CATHGEN with all individual RNAs and pairwise non-
linear interactions defined by this path in the large-scale
network. In the five shortest paths between CNNM2 and
GUCY1A3, we find four individual genes (CNNM2,
NUPR1, UBN1, GUCY1A3), and five interactions
(CNNM2|ACSL5, CNNM2|IRF2BP1, ZNF319|UBN1,
CNBP|NUPR1, NUPR1|GUCY1A3) associated with MI.
These links between candidate genes serve as additional
candidate genes and interactions.

Testing for epistasis in non-linear interacting candidate
gene pairs
Having identified pairwise interactions significant for MI
on the RNA level, we asked whether similar interactions
occur between SNPs in candidate genes (pairwise epista-
sis). Using the Framingham Heart Study, we applied the
same approach of resampled conditional logistic regres-
sion used for RNA interactions. For the 16 candidate
genes that were either differentially expressed or formed
an interacting pair in the Framingham Heart Study, we
considered all possible pairwise interactions between
candidate SNPs (GWAS hits published in the GWAS
catalog and eQTLs published by GTEx) in the 16 genes.
This approach yielded several examples with evidence of
epistasis (Additional file 8), but no evidence for an epi-
static interaction between variants in those pairs of genes

that exhibited an interaction on the RNA level. Non-linear
interactions at the genotype level may be less robust than
those observed at the level of RNA expression which inte-
grates both genetic and non-genetic factors.

MI candidate genes also associated with
hypercholesterolemia
We performed an identical analysis of single RNAs
and RNA pairs in CATHGEN using a related trait,
hypercholesterolemia (defined as previous diagnosis
and/or treatment of hypercholesterolemia by a phys-
ician). Six individual genes (MIA3, CNNM2, HDAC9,
LDLR, PLG, TRIB1) and 146 gene pairs with signifi-
cant interaction terms in the logistic model were as-
sociated with hypercholesterolemia (Additional files 9
and 10). The number of MI-based candidate genes
differentially expressed in hypercholesterolemia is
lower than in MI, and most genes identified for the
two traits are different. Three individual genes (MIA3,
CNNM2, and TRIB1) and 44 gene pairs overlap be-
tween MI and hypercholesterolemia (Additional files 3
and 10). Given hypercholesterolemia is a risk factor
for MI this expected overlap suggests that these indi-
vidual genes and gene pairs relate to MI through lipid
metabolism.

Fig. 3 Differentially expressed candidate gene pairs in MI. Nodes are genes and edges reflect significant non-linear interactions defined by logistic
models (see Methods). Pink nodes indicate genes that are individually significant (see Fig. 1), red lines indicate gene pairs that are co-expressed
(see Fig. 4), dotted lines indicate gene pairs that were not tested for co-expression due to poor expression of one or more of the genes, bolded
edges indicate non-linear interactions identified in both cohorts (CNNM2|GUCY1A3; CNNM2|ZEB2). a CATHGEN. Connected graph formed by pairs
of genes with a significant interaction term in CATHGEN using a logistic model (logit(MI) ~ RNA1 + RNA2 + RNA1*RNA2 + additional covariates).
b Framingham Heart Study. Disconnected graphs formed by pairs of genes exhibiting statistically significant interaction terms in FHS, defined by
means of the bootstrapped conditional logistic regression (logit(MI) ~ RNA1 + RNA2 + RNA1*RNA2) with 5000 repetitions and matching procedure
the same as for individual genes
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Discussion
The goal of this study was to find mRNA expression pat-
terns (individual mRNAs, non-linear interactions, and
paths in large-scale networks) associated with myocar-
dial infarction. Comparison of mRNA profiles in blood
from healthy controls and MI cases served to identify 14
differentially expressed candidate genes and 153 non-
linear interactions, while co-expression networks in
blood and artery from healthy individuals in GTEx sup-
ported 31 of these interactions and brought in additional
RNAs connecting potential candidate genes. The results
support a role for non-additive dynamic interactions
between candidate genes in MI.

mRNA expression guides interpretation of GWAS-based
candidate genes
As an intermediate phenotype, gene expression can guide
interpretation of GWAS findings [25, 26]. Focusing on
mRNA expression of GWAS based candidate genes, we
identified 14 individual RNAs differentially expressed in
MI. FES, FURIN, PHACTR1, IL6R, RAI1, and UBE2Z
were significant in both CATHGEN and FHS while
PDGFD, TRIB1, RAI1, LDLR, GGCX, and SLC22A4 had
been identified previously in the literature as differentially
expressed (Additional file 11). The same approach applied
to hypercholesterolemia identified three genes also associ-
ated with MI: MIA3, CNNM2, and TRIB1; suggesting
their role in MI could be mediated through lipid metabol-
ism. In a study of expression profiles in LCLs and B cells
treated with statins, TRIB1 along with seven other genes
(LDLR, WDR12, LIPA, EDNRA, TCF21, GUCY1A3,
PDGFD), differentially expressed only in MI in our study,
also exhibit differential expression upon statin exposure
(p < 0.05), and therefore, may play a role in response to
statin therapy [27].

Pairs of mRNAs contain information relevant to MI and
are biologically plausible
Previous analyses of differential expression have focused
on individual genes as the basis for assigning pathways
or networks. With the hypothesis that coronary artery
disease results from disrupted interactions between gene
products, we considered pairwise non-linear interactions
between candidate mRNAs. We identified multiple pairs
with interaction terms associated with MI, two of which
replicated across cohorts: CNNM2|GUCY1A3 and
CNNM2|ZEB2. Disease related changes of the dynamic

Fig. 4 Tissue-specific co-expression networks. Nodes are genes and edges reflect co-expression defined by our algorithm (see Methods). Co-
expression of candidate genes in artery (a), blood (b), and both artery and blood (c) show similar structure between the two tissues with little overlap
in particular gene pairs. Edges within a single gene indicate co-expression between isoforms of the same gene. Note: not all expressed isoforms
are co-expressed

Fig. 5 Shortest paths between candidate genes in large-scale co-
expression network. Five shortest paths between CNNM2 and
GUCY1A3 in co-expression network built using ~13,000 transcripts in
artery. Nodes (genes) labeled in pink and edges (pairs) labeled in red
are significant in a CATHGEN based logistic model explaining MI by
expression of each gene in the path and each pairwise interaction
term along the path (i.e. logit(MI) ~ RNA1 + RNA2 + RNA3 + RNA1*
RNA2 + RNA2 * RNA3 + additional covariates)
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interactions between these mRNA pairs identifies robust
odds ratios for MI. Supporting a role of non-linear inter-
actions in logistic models of disease risk, the log odds is
not a monotone function of mRNA expression. Shown
in Fig. 2, when expression of GUCY1A3 is high, increas-
ing expression of CNNM2 associates with risk, whereas
when expression of GUCY1A3 is low, increasing expres-
sion of CNNM2 is protective, potentially with high pre-
dictive power. Therefore, dynamic interaction terms
reveal otherwise hidden higher-order relationships be-
tween candidate genes. This emphasizes the potential
utility of pairwise interactions between mRNA expres-
sion profiles as a biomarker for disease.
Since in addition to the non-linear interaction, we find

CNNM2 and GUCY1A3 co-expressed in small-scale net-
works in both artery and blood, the question arises about
the underlying mechanism that regulates these genes, the
disruption of which may lead to MI. A physiologic con-
nection between CNNM2 and GUCY1A3 indeed reveals
disease relevant processes. A Mg2+ transporter, CNNM2
interacts in the context of MI with GUCY1A3, a Mg2+

dependent guanylate cyclase responsive to nitric oxide.
Mutations in CNNM2 have been implicated in familial
hypomagnesemia with symptoms including cardiac ar-
rhythmias [28], while common variants of uncertain func-
tions in GUCY1A3 have been implicated in hypertension
by GWAS, and rare non-synonymous variants in disorders
of vascular tone and myocardial infarction [29–34].
Furthermore, transient hypomagnesemia has been re-
ported in acute MI with vasospasm as a proposed mech-
anism [35]. We suggest imbalanced mRNA expression of
CNNM2 predisposes individuals to hypo- or hypermagne-
semia, which could magnify the effect of genetic variants
altering GUCY1A3 expression, either directly or via inter-
mediate mRNAs, to generate conditions that favor MI.
The relationship between these two genes and Mg2+ is

further maintained in one of the shortest paths between
the two in a larger co-expression network. The path
CNNM2|ACSL5|SCARF1|GUCY1A3 appears to be
united by the common themes of magnesium and lipid
processing. ACSL5 binds magnesium ions and activates
long-chain fatty acids, while SCARF1 acts as a scavenger
receptor to regulate uptake of modified LDL – levels of
which are decreased in the presence of magnesium [36].
In addition to observing an association between
CNNM2 and GUCY1A3 individually with MI, the inter-
action term between CNNM2 and ACSL5 is also signifi-
cant (p < 0.05) indicating that relationships determined
by co-expression patterns in healthy individuals can be
informative of disease.
Co-expression in healthy individuals of the same pair

of genes that exhibit a non-linear interaction associated
with disease supports the biological plausibility of the
pair. In this study, 20 % of RNA pairs with non-linear

interactions associated with disease are also co-
expressed in healthy subjects, indicating co-expression
may serve as an additional criterion to prioritize signifi-
cant interactions. We have identified disease-associated
dynamic interactions between mRNA transcripts of
strong candidate genes, gleaned from expression profiles
in whole blood and recapitulated by co-expression in ar-
tery. The results support the notion that RNA profiles in
blood can reveal disease-relevant processes in the tissue
of interest.

Evidence for disrupted network structure in MI
Non-linear pairwise interactions associated with MI
form a well-connected graph that includes virtually all
candidate genes, suggesting that relevant information
about disease is dispersed across a broad network. We
propose that there is a fundamental difference in detect-
ing genes involved in MI pathophysiology by considering
an additive versus a non-linear effect. Defining pairs
based on an additive (rather than interactive) model re-
duces the number of genes included in the network by
half, whereas non-linear interactions appear better to
capture disease risk and may prove useful in accounting
for genetic factors related to complex diseases.

Conclusions
Considering pairwise interactions between candidate
genes reveals strong, disease-relevant pairs – a pos-
sible entry point for broad study of MI systems biol-
ogy. Our results further demonstrate that mRNA
expression profiles encoded by a limited number of
candidate genes yields sparse interacting networks.
Serving as an anchor to extend the analysis genome-
wide, we then searched for relay genes in larger
networks, confirming additional candidate genes and
identifying novel ones. Additional work is needed to
elucidate higher order interactions and further assess
potential utility of the dynamic interactions observed
here in clinical biomarker panels.

Methods
Data
CATHeritization GENetics (CATHGEN)
Expression data, genotypes, and clinical phenotypes
were acquired from CATHeritization GENetics
(CATHGEN) via dbGaP Project #5358 (dbGaP acces-
sion number phs0000703 on 25 March 2015). Expres-
sion levels had been determined using Illumina
HumanHT-12 v3 in RNA from whole blood at the
time of catheterization and recruitment to the study. We
considered age (phv00197199), gender (phv00197207),
and race (phv00197206) as additional covariates in our
models recorded in pht003672. Myocardial infarction
(MI), defined by a previous recorded history of MI
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(phv00197212) or a non-zero CAD index (phv00197202)
recorded in pht003672, was used as a phenotype/outcome
variable. CAD index was used in addition to previous his-
tory of MI to define cases because of a large number of
missing values regarding MI history. Based on work by
both Kitsios et al. and Nikpay et al., we anticipate similar
results for cases defined solely by MI status and those de-
fined by CAD index [37–39]. Hypercholesterolemia
(phv00197204) recorded in pht003672 was also used as a
phenotype/outcome variable. Our access of this study was
approved by the Ohio State University IRB (Protocol
#2013H0096).

Framingham Heart Study (FHS)
Expression data, genotypes, and clinical phenotypes
were acquired from the Framingham Heart Study
(FHS) via dbGaP Project #5358 (dbGaP accession
number phs000007 on 21 July 2014). Expression
levels had been determined using the Affymetrix Hu-
man Exon 1.0 ST Array in RNA from whole blood.
Expression measures were not in anyway timed rela-
tive MI; however virtually all MI events preceded
measurement of gene expression – at times by several
decades (Additional file 12). Genotypes were taken
from the SHARe substudy that used the OMNI5M
genotyping array. We considered age (phv00177930),
gender (phv00177929), and family assignment
(phv00024067) as covariates in our models recorded
in tables pht003099 and pht000183. History of MI,
defined by one of the following recorded events: 1 =
MI recognized, with diagnostic ECG, 2 =MI recog-
nized, without diagnostic ECG, with enzymes and his-
tory, 3 =MI recognized, without diagnostic ECG, with
autopsy evidence, new event (see also code 9), 4 =MI
unrecognized, silent, 5 =MI unrecognized, not silent,
or 8 = Questionable MI at exam 1 (variable
phv00036469 recorded in table pht000309), was used
as the phenotype/outcome variable. Our access of this
study was approved by the Ohio State University IRB
(Protocol #2013H0096).

Genotype and Tissue Expression Project (GTEx)
Tissue specific RNAsequencing data was acquired from
the Genotype and Tissue Expression Project (GTEx) via
dbGaP Project #5358 (dbGaP accession number
phs000424 in April 2014). RNAsequencing had been
generated using poly-adenylated priming with reads
aligned to HG19, Gencodev12. For further details see
Lonsdale et al. and the GTEx website (http://www.gtex-
portal.org/home/documentationPage) [40]. We consid-
ered tibial artery tissue (137 samples) and whole blood
(190 samples). We used tibial artery instead of coronary
artery for a target tissue for MI pathophysiology, because
the number of coronary artery tissue samples in GTEx

was insufficient at the time of this analysis. As plaque
formation also occurs in peripheral arteries, tibial artery
is also suitable for this study. The entire artery sample
was used with no isolation of endothelial versus smooth
muscle cells, etc. We used the number of reads aligned
to a given transcript as the measure of expression. In
each tissue, we selected only those transcripts that were
non-zero in more than 65 % of samples. Accordingly, in
the small networks, we analyzed 132 transcripts in artery
and whole blood; while in the large networks, we
analyzed 8080 transcripts in artery, and 6705 in whole
blood.
The majority of individuals in CATHGEN, FHS, and

GTEx are Caucasian. Accordingly, our results are not
generalizable to more diverse populations.

Gene list
Candidate genes for differential expression analysis and
small co-expression networks were selected from the
CAD Genome Wide Association Study performed by the
CARDIOGRAMplusC4D consortium published in 2014
[1]. Forty-one of the candidate genes assigned to these loci
had corresponding probes on expression arrays used in
both CATHGEN and the Framingham Heart Study. All
probes corresponding to these genes were tested for an as-
sociation between mRNA expression and MI.
For the large co-expression networks, we considered

transcripts included on the Illumina HumanHT-12_V4
expression array and added any candidate genes identified
through literature review and use of large databases (e.g.
dbGaP, OMIM) that were not already included. We
analyzed a total of 12,913 transcripts in 4098 genes. We
obtained transcripts for each gene with the aid of ‘biomaRt’
package in the statistical language R (cran.r-project.org).

Association of gene expression and myocardial infarction
CATHGEN: logistic regression
Association between expression and MI (or hypercholes-
terolemia) was assessed using logistic regression. We
considered age, race, and gender as additional covariates
in the model (n = 1250; 359 cases and 891 controls). Ex-
pression was considered significant with a p-value < 0.05.
Logistic regression was performed considering expres-
sion of a single gene, pairs of genes (with and without
an interaction term), and paths derived from tissue-
specific co-expression networks. The explicit models are
outlined below. Computations were done using the func-
tion ‘glm’ in the ‘stats’ package in R.

Framingham Heart Study: bootstrapped conditional logistic
regression
Association between expression and MI was assessed
using conditional logistic regression (CLR) in R as im-
plemented in package ‘survival’. One hundred and

Hartmann et al. BMC Genomics  (2016) 17:738 Page 10 of 14

http://www.gtexportal.org/home/documentationPage
http://www.gtexportal.org/home/documentationPage


ninety-three cases of MI were matched to 4084 controls
on age (+/− 2 years), gender, and different family assign-
ment (note: all individuals in FHS are Caucasian). CLR
was then performed 5000 times, each time using all 193
cases but with different subsets (resamples) of the 4084
matched controls. For each CLR associated with an indi-
vidual case–control pairing, expression of a given gene
was considered significant if the null hypothesis (effect-
size of gene expression on MI status is zero) was
rejected at p < 0.05 by the Wald test. For each effect
(main effect as well as interaction effect) in the logistic
model, the percent of CLR resamples where expression
was significantly associated with MI was reported. CLR
considering expression of a single gene and pairs of
genes (with and without an interaction term) was per-
formed. The estimation of effects of individual variants
and pairs of variants acting in epistasis was performed
the same way as in the case of expression data. The ex-
plicit models are outlined below.

Expression of individual genes CATHGEN: MI ~ gene
expression + age + race + gender
FHS: MI ~ gene expression

Expression of pairs of genes CATHGEN: MI ~ gene A
expression + gene B expression + age + race + gender
MI ~ gene A expression + gene B expression + gene A

expression * gene B expression + age + race + gender
FHS: MI ~ gene A expression + gene B expression
MI ~ gene A expression + gene B expression + gene A

expression * gene B expression

Expression of paths (CATHGEN only) CATHGEN:
MI ~ gene A expression + gene 1 expression + gene 2 ex-
pression … gene n expression + gene B expression + gene
A expression*gene 1 expression + gene 1 expression*-
gene 2 expression … + gene n expression*gene B expres-
sion + age + race + gender
Note: In FHS covariates (age, gender, and family) were

considered by using matched case–control design.

Estimating odds of myocardial infarction for interacting
gene pairs
We used the confidence bounds generated by the boot-
strapped CLR in FHS to calculate the odds ratio of MI
given that the expression of gene A is at its mean and
increases by one standard deviation as a function of
expression of gene B.

odds ExA þ sd ExAð Þð Þ=odds ExAð Þ

where Ex_A and sd(Ex_A) denote the expression level
and the standard deviation of expression of gene A
respectively.

Co-expression network procedure
Network construction procedure
We evaluated the strength and robustness of co-
expression patterns in a Gibbs-Boltzmann model using
Renyi divergence, with a free parameter α, as described
in detail in Additional file 4 [41]. A similar approach,
called ARACNE [23], has been successfully used in a
wide variety of applications [42]. Briefly, our algorithm
may be described as follows: Suppose that the set of m
transcripts and tissue are fixed. We consider k = 50000
resamples of I individuals for the small networks and k
= 300 resamples of I individuals for the large networks.
For each random subset of individuals, a weighted, un-
directed graph of m nodes (m being the number of tran-
scripts) is generated. Edge weights are defined by
calculating the pairwise Renyi mutual information and
edges are pruned using the Data Processing Inequality
(as described in the Additional file 4). Next with each
random subset of individuals we associated an m x m
adjacency matrix and based on k resamples generate the
m x m average adjacency matrix (‘consensus matrix’)
[M(i,j)]. Each (i,j)-entry is the proportion of resamples
where a particular co-expression of a pair of transcripts
(i,j) was observed.
The analysis was implemented in the statistical soft-

ware R (cran.r-project.org), in particular the package
‘infotheo’ for discretizing the data (we use the method
‘equalfrequencies’) and the package ‘minet’ with function
‘aracne’ for pruning indirect interactions.

Preserved co-expressions
We focused on the co-expressions that have a sample
frequency above 0.5 due to the following observation.
Consider a direct interaction between two RNAs Xi and
Xj and assume that there exists a triangle (Xi, Xj, Xl) with
an indirect interaction (say between Xi and Xl). If the
true values of the Renyi mutual information for (Xi, Xj)
and for (Xi, Xl) are arbitrarily close (but Dα (Xi, Xj) >Dα

(Xi, Xl)), then the sample estimate of Dα (Xi, Xj) should
be greater than the sample estimate of Dα (Xi, Xl) at least
half of the times. In other words, since a direct inter-
action between Xi and Xj, is stronger than their indirect
interaction (acting via an intermediate RNA), then the
co-expression of (Xi, Xj) is expected to appear in at least
half of resamples in the consensus matrix.

Additional files

Additional file 1: GWAS-based candidate genes. The CardioGRAMC4D
Consortium reported 50 loci implicated in risk of CAD and assigned these
variants to one or more genes in the locus. Included is a summary table
of the variants and assigned genes. Also included is any evidence
identified by GTEx for an eQTL associated with expression of the
assigned genes and the linkage structure between these eQTLs and the
reported GWAS variants. (XLSX 47 kb)
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Additional file 2: Distribution of p-values. Histograms of
p-values for 5000 bootstrap replicates of conditional logistic regression
(MI ~ gene expression) in the Framingham Heart Study for those genes
determined as significant in CATHGEN that did not meet the criteria for
being associated with MI in FHS. FURIN, IL6R, RAI1, and UBE2Z were
classified as informative of MI based on right-skewed distribution and are
shown in Fig. 1. CNNM2, GUCY1A3, MRAS, MIA3, PDGFD, PEMT, and
LPAL2 did not show evidence of differential expression given almost
uniformly distributed p-values and are shown here. (PDF 188 kb)

Additional file 3: Non-linear interacting pairs in CATHGEN.
Included are non-linear interacting pairs identified in CATHGEN for
significant (p < 0.05) interaction term in regression model. Probe IDs, gene
names, and ENSGs are reported along with p-value for interaction term
and proportion of resamples the gene pair was co-expressed in tissue
specific co-expression networks. (XLSX 75 kb)

Additional file 4: Introduction of the network construction algorithm.
Detailed background and introduction of the network construction
algorithm presented. (DOCX 115 kb)

Additional file 5: Overview of co-expression network construction and
resampling procedure. Tissue specific co-expression networks were built
based on pairwise mutual information values between RNA transcripts
measured by Renyi divergence. For each tissue type, multiple networks
were generated using different random sub-samples of individuals. Net-
works were pruned based on the Data Processing Inequality and a con-
sensus was taken from the resulting matrices. We report the resample
frequency (i.e. proportion of networks with observed co-expression) as a
measure of the robustness of
co-expression. (PDF 214 kb)

Additional file 6: Tissue specific co-expressions. Gene pairs
co-expressed in artery, blood, and both artery and blood. Reported as ENSGs
with proportion of resamples in co-expression network. (XLSX 47 kb)

Additional file 7: Co-expression as a filter for disease-relevant interac-
tions. Proportion of true null hypotheses (estimated via the qvalue pack-
age in R) when testing differential expression of: single genes, gene pairs,
co-expressed pairs. A lower proportion of the true null indicates greater
specificity of the model. (PDF 119 kb)

Additional file 8: Epistatic pairs. Considering interaction terms between
candidate SNPs (GWAS hits or eQTLs) for all combinations of genes with
expression patterns associated either individually or in combination with
MI in the Framingham Heart Study, we identify five instances of epistasis.
Resampled conditional regression was performed considering the main
effect of each SNP and an interaction term. Reported is the percent of
significant (p < 0.05) resamples out of 5000 for each term. (DOCX 155 kb)

Additional file 9: Differentially expressed candidate genes in
hypercholesterolemia. P-values of association between expression of probe
ID (labeled by assigned gene) and MI (A) or hypercholesterolemia (B)
measured in CATHGEN using logistic regression with age, race, and gender
as additional covariates. C. Venn diagram displaying overlap between genes
individually significant in MI and hypercholesterolemia. (PDF 1435 kb)

Additional file 10: Differentially expressed candidate gene pairs in
hypercholesterolemia. Connected graph formed by pairs of genes with a
significant interaction term in CATHGEN using a logistic model
accounting for MI (A) or hypercholesterolemia (B) with expression of
gene 1, expression of gene 2, expression of gene 1 * expression of gene
2, and additional covariates (age, race, gender). C. Intersection of graphs
for MI and hypercholesterolemia. Pink nodes indicate genes that are
individually significant in MI (see Additional file 9) and orange nodes
indicate genes that are individually significant in hypercholesterolemia
(see Additional file 9). (PDF 1681 kb)

Additional file 11: Replication of differentially expressed genes. A. Venn
diagram displaying number of differentially expressed genes identified by
previous studies reporting differentially expressed genes in MI/CAD. B.
Venn diagram displaying overlap of differentially expressed genes
between CATHGEN and FHS cohorts as determined by our analysis. C.
Venn diagram displaying overlap of candidate genes considered in our
analysis and those previously identified as differentially expressed in the
literature. Gene names colored in red were identified by our analysis as

differentially expressed. Note: gene names reported by each study were
first converted to ENSG identifiers in order to ensure they were directly
comparable. Gene names that did not map to an ENSG were not
included. (PDF 288 kb)

Additional file 12: Timing of MI relative to measure of gene expression
in FHS. (DOCX 49 kb)

Abbreviations
CAD: Coronary artery disease; CATHGEN: CATHeterization in GENetics;
FHS: Framingham heart study; MI: Myocardial infarction
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