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Abstract

Background: Though glioblastoma multiforme (GBM) is the most frequently occurring brain malignancy in adults,
clinical treatment still faces challenges due to poor prognoses and tumor relapses. Recently, microRNAs (miRNAs)
have been extensively used with the aim of developing accurate molecular therapies, because of their emerging
role in the regulation of cancer-related genes. This work aims to identify the miRNA signatures related to survival of
GBM patients for developing molecular therapies.

Results: This work proposes a support vector regression (SVR)-based estimator, called SVR-GBM, to estimate the
survival time in patients with GBM using their miRNA expression profiles. SVR-GBM identified 24 out of 470 miRNAs
that were significantly associated with survival of GBM patients. SVR-GBM had a mean absolute error of 0.63 years and
a correlation coefficient of 0.76 between the real and predicted survival time. The 10 top-ranked miRNAs according to
prediction contribution are as follows: hsa-miR-222, hsa-miR-345, hsa-miR-587, hsa-miR-526a, hsa-miR-335, hsa-miR-122,
hsa-miR-24, hsa-miR-433, hsa-miR-574 and hsa-miR-320. Biological analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway on the identified miRNAs revealed their influence in GBM cancer.

Conclusion: The proposed SVR-GBM using an optimal feature selection algorithm and an optimized SVR to identify
the 24 miRNA signatures associated with survival of GBM patients. These miRNA signatures are helpful to uncover the
individual role of miRNAs in GBM prognosis and develop miRNA-based therapies.
Background
Glioblastoma multiforme (GBM) is the most common
malignant human brain tumor [1]. There are two sub-
types of glioblastoma, primary glioblastoma and second-
ary glioblastoma, which originate from different genetic
pathways and affect patients of different ages [2]. Ge-
nerally, standard therapies, such as radiotherapy and
chemotherapy, do not contribute better survival benefits
to GBM patients due to tumor reoccurrences even after
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multimodality treatment [3]. GBM patients’ median
survival rate is very poor ranging from 12 to 14 months
[4]. Early stage detection approaches are necessary to
better understand the events in GBM and for the devel-
opment of therapeutics.
MiRNA is a small (~18–22 nucleotides) non-coding

RNA which targets messenger RNA (mRNA) for transla-
tion inhibition, thereby regulating protein expression [5].
MiRNA regulates several biological processes, such as
cell proliferation [6], haematopoiesis [7], insulin secre-
tion and apoptosis [8, 9]. Nowadays, miRNA expression
profiling is extensively used in cancer studies due to its
effective role in identifying cancer gene expression
regulations. Many profiling studies have reported altered
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miRNA expressions in different cancers, including lung
cancer, colon cancer, leukaemia, and glioblastoma [10–13].
Over the last several years, molecular characteristics have
been used to predict tumor grades as well as to iden-
tify the microarrays which are associated with patient
survival [14–16]. The combination of gene expression
profiles and machine learning approaches have often been
used to predict risk assessment, cancer recurrence and
survivability, and to identify the potential biomarkers asso-
ciated with cancer treatment. Gene expression profiling
was used to identify genes which can classify different
grades of tumors in GBM patients [17]. Fuller et al. used
the microarray technology and k-nearest neighbour algo-
rithm to classify tumor types in glioma patients [18]. More-
over, it was proven that miRNA expression profiles are
more accurate in classifying different tumor types when
compared with mRNA expression profiles [19]. Several
studies reported that miRNA expression alterations have
prognostic significance and are associated with overall
survival among patients with GBM [20–22]. Recent
miRNA-based studies revealed that miRNA expression is
associated with chemo-resistance and radio-resistance [23,
24]. In conclusion, cancer treatment therapy based on
miRNA expression profiles better contributes to the devel-
opment of novel treatment and diagnosis approaches in
patients with GBM.
Teplyuk et al. obtained promising accuracy using

miRNA profiling of cerebrospinal fluid to develop a
support vector machine model which distinguishes the
glioblastoma and metastatic brain tumors [25]. Roth
et al. distinguish glioblastoma patients from healthy con-
trols using a support vector machine in order to identify
the tumor-specific miRNAs and achieved an accuracy,
sensitivity and specificity of 81, 83, and 79%, respectively
[26]. A k-nearest neighbour method has been used to
classify high-grade gliomas based on gene expression
profiles and it was observed that the prediction models led
to better clinical outcomes by separating diagnostically
challenging malignant gliomas [27]. Current studies of pre-
diction methods have used small datasets and the majority
of proposed methods are concerned with detection and
classification of different types of tumors and malignancies.
However, before miRNA expression profiling can be im-

plemented in clinical practice, effective methods which
can be applied to large datasets are still needed for the
development of potential therapeutics associated with pa-
tients’ survival. Accordingly, this work proposes a support
vector regression (SVR)-based method, called SVR-GBM,
for identification of miRNAs to estimate the survival time
in patients with GBM. High performance of SVR-GBM
was derived from an optimal feature selection method,
inheritable bi-objective combinatorial genetic algorithm
(IBCGA) [28]. In this work, we utilized the cancer genome
atlas (TCGA) data portal to obtain miRNA expression
profiles of 247 patients with GBM. SVR-GBM identi-
fied 24 out of 470 miRNAs for the prediction of
survival time in patients with GBM and obtained a
mean absolute error of 0.63 years and a correlation
coefficient of 0.76 between the real and predicted sur-
vival time. Further, we ranked these miRNAs based
on their contribution to the survival time prediction.
The biological significance of the 10 top-ranked miR-
NAs in cancer pathways was analysed. The identified
miRNA signatures may help to develop miRNA-based
therapies in GBM medicine.

Results and Discussion
Estimation of survival time
We made an attempt to estimate survival time of
GBM cancer patients using their miRNA expression
profiles. We utilized 247 patients with GBM and the
survival time of these patients was between 0.4 to
11 years. SVR-GBM used an optimal feature selection
algorithm IBCGA to identify 24 out of 470 miRNAs
which are associated with survival time of cancer pa-
tients. This study is the first to use a support vector
regression model combining with an optimal feature
selection of miRNAs to estimate survival time among
patients with GBM. SVR-GBM achieved a correlation
coefficient of 0.76 and a mean absolute error of
0.63 years using 10-fold cross-validation. The correl-
ation plot between real and predicted survival time is
shown in Fig. 1.
We employed multiple regression analysis using the

stepwise feature addition method [29] and elastic net [30]
to compare with SVR-GBM. The comparison results are
shown in Table 1. SVR-GBM achieved a correlation coeffi-
cient, mean absolute error, and standard error of estimates
of 0.76, 0.63 years and 11.34, respectively; better than the
multiple linear regression with the correlation coefficient,
mean absolute error, and standard error of estimates of
0.63, 0.80 years and 13.97, respectively; and the elastic net
method with the correlation coefficient, mean absolute
error, and standard error of estimates of 0.39, 0.86 years
and 16.35, respectively.

Ranks of the identified miRNA signatures
We performed a main effect difference (MED) ana-
lysis to reveal the contribution of each miRNA to the
survival prediction model by an orthogonal experi-
mental design [31]. The 24 identified miRNAs and
MED scores are shown in Table 2. The 10 top-ranked
miRNAs using the MED analysis are hsa-miR-222,
hsa-miR-345, hsa-miR-587, hsa-miR-526a, hsa-miR-335,
hsa-miR-122, hsa-miR-24, hsa-miR-433, hsa-miR-574, and
hsa-miR-320. Furthermore, we assessed the biological
significance of these 10 miRNAs using the KEGG
pathway analysis.



Fig. 1 Predicted survival time on Y-axis and real survival time on X-axis
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Characteristics of the identified miRNAs

1) Hsa-miR-222: This miRNA plays a critical role in
GBM intervention. Hsa-miR-221/222 are often
upregulated in GBM. This miRNA regulates cell
proliferation in U251 glioma cells by targeting the
functional p27kip1 gene (a member of the kip family
of cyclin-dependent kinase inhibitors) [32], and
co–suppression of this miRNA by the antisense
approach inhibits advanced tumor cell proliferation
and may function as a potential therapeutic in
glioma [32]. Zhang et al. found the inverse relation
between mir-222 and pro-apoptotic genes in glioma
cells [33]. Alteration of this miRNA in glioma cells
upregulates PUMA expression and promotes apoptosis,
thus reducing tumor size [33]. In addition, investigation
of glioma cell lines revealed that hsa-miR-222 also
targets the gene TIMP2, suppression of this miRNA
regulated cell invasion and angiogenesis [34]. Experi-
mental validation in malignant glioma cells concluded
that mir-222 acts as an oncogenic by targeting con-
nexin 43 (Cx43) and regulating cell proliferation and
invasion [35]. Moreover, mir-222 plays an important
role in small cell lung cancer and hepatocellular
carcinoma by targeting phosphate and tensin homolog
and the tissue inhibitors of metallo-proteinase tumor
suppressors and by enhancing cellular migration [36].
Table 1 Prediction performance of SVR-GBM

Method Features selected Correlation coefficie

SVR-GBM 24 0.76

Multiple regression analysis 15 0.63

Elastic net 6 0.39
2) Hsa-miR-345: Zinn et al. reported that hsa-miR-345 was
correlated with short survival times in glioblastoma
patients [37].We observed that though the participation
of hsa-miR-345 is limited in glioblastoma, it’s expression
is often deregulated in other major cancer types. For
instance, hsa-miR-345 has been found to be deregulated
in non-small cell lung cancer, and its expression is
associated with clinicopathelogical features [38]. In
prostate cancer, mir-345 regulates cell proliferation,
invasion, and migration by targeting the Smad1 gene
[39]. Luciferase assay analysis reported that BCL-2
associated anthanogene-3 is the target of mir-345, and
over expression of this miRNA suppresses cell prolifera-
tion and invasion in colorectal cancer cells in vitro [40].

3) Hsa-miR-335: A real-time quantitative RT-PCR assay
study reported that the expression of hsa-miR-335 is
significantly associated with the clinicopathelogical
factors and survival time of patients with GBM. It was
also noted that expression levels of mir-335 were
higher in a short survival group, when compared with
a long survival group [41]. In most cases, it was down-
regulated in breast and ovarian cancers. In breast
cancer cell lines, mir-335 targets three prime untrans-
lated regions of c-Met and subsequently inhibits cell
migration [42]. Mir-335 expression is down-regulated
in ovarian cancer cell lines when compared with
adjacent normal counterparts [43]. In neuroblastoma,
nt Mean absolute error (MAE) Standard error of estimates

0.63 11.34

0.80 13.97

0.86 16.35



Table 2 Results of the main effect difference analysis. 24 miRNA
sequences and corresponding MED scores

miRNA MED Mature sequence

hsa-miR-222 0.796768 AGCUACAUCUGGCUACUGGGU

hsa-miR-345 0.567302 GCUGACUCCUAGUCCAGGGCUC

hsa-miR-587 0.535874 UUUCCAUAGGUGAUGAGUCAC

hsa-miR-526a 0.461675 CUCUAGAGGGAAGCACUUUCUG

hsa-miR-335 0.457645 UCAAGAGCAAUAACGAAAAAUGU

hsa-miR-122 0.443237 UGGAGUGUGACAAUGGUGUUUG

hsa-miR-24 0.427016 UGGCUCAGUUCAGCAGGAACAG

hsa-miR-433 0.40424 AUCAUGAUGGGCUCCUCGGUGU

hsa-miR-574 0.338432 CACGCUCAUGCACACACCCACA

hsa-miR-320 0.337497 AAAAGCUGGGUUGAGAGGGCGA

hsa-miR-768 0.304775 GUUGGAGGAUGAAAGUACGGAGUGAU

hsa-miR-223 0.287394 CGUGUAUUUGACAAGCUGAGUU

hsa-miR-497 0.266012 CAGCAGCACACUGUGGUUUGU

hsa-miR-370 0.220475 CAGGUCACGUCUCUGCAGUUAC

hsa-miR-137 0.219401 UUAUUGCUUAAGAAUACGCGUAG

hsa-miR-605 0.210376 UAAAUCCCAUGGUGCCUUCUCCU

hsa-miR-491 0.207076 AGUGGGGAACCCUUCCAUGAGG

hsa-miR-656 0.204699 AGGUUGCCUGUGAGGUGUUCA

hsa-miR-15b 0.170935 UAGCAGCACAUCAUGGUUUACA

hsa-miR-801 0.170311 GAUUGCUCUGCGUGCGGAAUCGAC

hsa-miR-221 0.129155 ACCUGGCAUACAAUGUAGAUUU

hsa-miR-95 0.104175 UCAAUAAAUGUCUGUUGAAUU

hsa-miR-603 0.099838 CACACACUGCAAUUACUUUUGC

hsa-miR-519c 0.02755 CUCUAGAGGGAAGCGCUUUCUG
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mir-335 regulates the transforming growth factor-β
(TGF-β) non-canonical pathway and inhibits the
transient potential of neuroblastoma cells [44].

4) Hsa-miR-24: A qRT-PCR assay study reported that
hsa-miR-24 acts as an oncogene that directly targets
ST7L and suppresses the β-catenin/ Tcf 4 transcrip-
tion activity, and that further suppression of this
miRNA expression regulates cell proliferation and
invasion in glioma cells [45]. MTT assay analysis
revealed that hsa-miR-24 targets the MXI1 tumor
suppressor gene and promotes cell proliferation, and
that it is upregulated in glioma cells [46]. Upregula-
tion of mir-24 was also observed in breast and non-
small cell lung cancers. In breast cancer, mir-24
directly targets the p27Kip1 and inhibits apoptosis in
MDA-MB-435 and MDA-MD-468 cells [47], as well
as in non-small cell lung cancer cells. This miRNA
targets nuclear apoptosis–inducing factor 1 and
induces cell proliferation [48].

5) Hsa-miR-320: Quantitative real-time PCR analysis
was used to assess human glioma cell lines and it was
reported that expression of hsa-miR-320a correlated
with patient prognoses. Its over- expression regulates
the insulin-like growth factor-1 receptor and acts as a
tumor-suppressor in glioma [49]. Lower expressions
of hsa-miR-320 were observed when compared with
healthy brain tissues, and also over expression of this
miRNA inhibits cell proliferation and metastasis by
targeting the cell cycle regulator E2F1 [50]. Most
often, down regulation of mir-320 was observed and
functioned as a potential biomarker for early stage
detection in colorectal carcinoma [51].

While the remaining miRNAs in the top-ranked
miRNA list, hsa-miR-587, hsa-miR-526a, hsa-miR-122,
hsa-miR-433, and hsa-miR-574 (scored 0.53, 0.46, 0.44,
0.40 and 0.33 respectively), were not directly involved in
GBM, they are, with one exception, actively associated
with the major cancer types and diseases. Though, they
have less experimental validations in glioblastoma, their
contribution towards the survival estimation is high
according to the MED analysis. Hsa-miR-526a inhibits
apoptosis in tumor cells by targeting the CYLD, and
plays a potential role in tumor migration and invasion
via the NF-kB signaling pathway [52]. Hsa-miR-122 is
frequently down-regulated in hepatocellular carcinoma,
which targets peroxiredoxin 2 and induces apoptosis
[53]. Hsa-miR-433 is down-regulated and is a target of
tumor associated proteins GRB2 and RAB-94 in gastric
cancer [54]. Hsa-miR-574 is involved in the suppression
of colorectal cancer liver metastasis by negatively regu-
lating the metastasis associated in colon cancer [55].
The lone member of the top-10 miRNA not previously
associated with cancer types or diseases is hsa-miR-587.
The membership on this list indicates that hsa-miR-587
may be a valuable subject of further exploration. Al-
though these top-ranked miRNAs do not directly
participate in the glioblastoma cancer, they are worthy
subjects for further investigation in GBM cancer and
might help in the gene target based therapies.
Besides the 10 miRNAs listed in the main effect differ-

ence results table (Table 2), several of the 14 other
identified miRNAs, such as hsa-miR-223, hsa-miR-497,
hsa-miR-137, hsa-miR-656 and hsa-miR-221 (scored
0.28, 0.26, 0.21 and 0.20 respectively), have also been
found to play a potential role in GBM progression. Hsa-
miR-223 targets the paired box 6 (PAX6), which regu-
lates proliferation and invasion of glioblastoma cells
[56]. Hsa-miR-497 expression was associated with gli-
oma drug resistance and it acts as a potential molecular
target in glioma cells [57]. Hsa-miR-137 plays a key role
in glioma, often it was downregulated. Recent investiga-
tion indicated that direct overexpression of hsa-miR-137
and delphinidin treatment effectively controlled glio-
blastoma growth [58]; this miRNA also induces
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apoptosis and inhibits the growth of glioma cells by tar-
geting RAC1 [59]. Hsa-miR-656 expression levels are
downregulated in glioma, and it inhibits the neurosphere
formation and cell proliferation in glioma cell lines by
targeting the bone morphogenetic protein −2 receptor,
type-1 A (BMPR1A) [60]. Expression levels of hsa-miR-
221 in glioma are significantly upregulated; mir-221/222
module regulates cell proliferation and apoptosis in gli-
oma cell lines by targeting PUMA and suppressing
tumor size [32, 33]. Hsa-miR-603 stimulates cell prolifer-
ation via β-catenin-interacting protein 1 (CTNNBIP1)
and Wnt inhibitory factor 1 (WIF1) in glioma cell lines
in vitro and in vivo [61].
It is the work’s finding that the set of the 24 miRNA

signatures can be used to estimate the survival time in
patients with GBM. Additionally, the 10 top-ranked
miRNAs contributed well towards survival estimation
and analysis of these miRNAs revealed their functional-
ity in various properties of cancer cell, such as prolifera-
tion, invasion and apoptosis, which can assist the
understanding of mechanism of cancer progression in
GBM. Several miRNAs in our study have been directly
observed participating in GBM; however, a few miRNAs
are not directly implicated in GBM, but they contributed
towards survival estimation and many also play a key
role in other major cancer types.
To measure the individual effect of these 24 identified

miRNAs on survival time estimation, we used feature
knock-out analysis. The 10 miRNAs, hsa-miR-222, hsa-
miR-345, hsa-miR-587, hsa-miR-526a, hsa-miR-335, hsa-
miR-122, hsa-miR-24, hsa-miR-433, hsa-miR-574, and
hsa-miR-320, individually contributed correlation coeffi-
cients of 0.34, 0.06, 0.29, 0.16, 0.07, 0.17, 0.33, 0.18, 0.22,
and 0.25 respectively corresponding mean absolute
error is also shown in Table 3. Correlation plots for
the 10 top-ranked miRNAs are shown in Fig. 2. The
remaining 14 miRNAs among the 24 are shown in
Additional file 1: Figure S1.
Table 3 Individual effects of miRNAs on survival estimation

miRNAs Correlation coefficient Mean absolute error (in months)

hsa-miR-222 0.34 9.58

hsa-miR-345 0.06 9.73

hsa-miR-587 0.29 9.24

hsa-miR-526a 0.16 9.65

hsa-miR-335 0.07 9.65

hsa-miR-122 0.17 9.61

hsa-miR-24 0.33 8.76

hsa-miR-433 0.18 9.59

hsa-miR-574 0.22 9.33

hsa-miR-320 0.25 9.32
KEGG pathway
To evaluate the biological significance of the 24 identi-
fied miRNAs involved in cancer and non-cancer path-
ways, we employed the KEGG pathway analysis using
the DIANA tools. The 10 top-ranked miRNAs show
statistical significance with cancers, such as chronic
myeloid leukemia, glioma, pancreatic cancer, non-small
cell lung cancer, colorectal cancer melanoma, and pros-
tate cancer, and signaling pathways, such as Hippo
signaling pathway, TGF-beta signaling pathway, thyroid
hormone signaling pathway, FoxO signaling pathway, and
mRNA surveillance pathway to name a few. Complete
KEGG pathway analysis of these 10 miRNAs and statis-
tical significance in different pathways and number of
involved genes are shown in Table 4. The 10 top-ranked
miRNAs and their target gene enrichment in cancer and
signaling pathways are shown in Fig. 3 and all the 24
miRNAs gene enrichment analysis is shown in Additional
file 1: Figure S2.

Target gene prediction
After identifying the miRNAs associated with survival
time, we conducted target gene prediction for the set of
10 top-ranked miRNAs using miRTarBase [62]. We
identified 162 non-redundant experimentally strong evi-
dence target genes for hsa-miR-222, hsa-miR-345, hsa-
miR-335, hsa-miR-24, hsa-miR-433, hsa-miR-574, and
hsa-miR-320 (data not shown). MiRNAs act as both
tumor suppressors and oncogenes in different cancer
pathways for these target genes. So, we reported the
participation of each miRNA in different cancer types.
Among the 10 miRNAs, seven miRNAs have experi-
mentally validated genes and their regulation in various
cancer types. Experimentally validated genes and miRNA
regulation are shown in Table 5.

Conclusion
This study presents the identification of miRNA signa-
tures with respect to their correlation with survival
time in patients with GBM. Many studies used the
GBM data from the TCGA data portal. However, the
outcome results were accordingly not the same. In
fact, the extracted miRNA profiles based on clinical
follow up and filtered procedures were different across
all the studies. In this work, we first developed a
miRNA expression profile-based survival time estima-
tion method called SVR-GBM, which incorporates the
optimal feature selection algorithm IBCGA. SVR-GBM
identified 24 miRNAs associated with the survival
time in patients with GBM. Our model estimated the
survival time of 247 patients with GBM and achieved
a correlation coefficient of 0.76 and a mean absolute
error of 0.63 years, and is comparatively better than
multiple regression analysis method. In this work,



Fig. 2 Individual effect of miRNA on survival time estimation. Top-10 miRNA correlation plots
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Table 4 The 10 top-ranked miRNAs and their target gene involvement in the KEGG pathway

KEGG pathway Genes miRNAs p-value

Hippo signaling pathway 33 3 1.72E-12

Fatty acid elongation 3 2 5.35E-12

Proteoglycans in cancer 60 5 1.36E-08

Fatty acid metabolism 2 2 1.79E-08

Transcriptional misregulation in cancer 55 2 1.40E-06

ECM-receptor interaction 16 2 1.71E-06

Fatty acid degradation 1 1 3.97E-06

Chronic myeloid leukemia 33 2 0.00026795

Glioma 25 3 0.00035641

TGF-beta signaling pathway 29 2 0.00181306

Adherens junction 27 2 0.00272898

Biosynthesis of unsaturated fatty acids 2 2 0.00488867

Viral carcinogenesis 50 3 0.01025578

Pathways in cancer 59 1 0.03687983

Pancreatic cancer 26 2 0.03809962

Metabolism of xenobiotics by cytochrome P450 2 1 0.05544785

Signaling pathways regulating pluripotency of stem cells 43 2 0.06508793

Central carbon metabolism in cancer 24 2 0.06577197

Non-small cell lung cancer 15 1 0.1204275

Colorectal cancer 23 2 0.129777

Thyroid hormone signaling pathway 42 2 0.1389078

Other types of O-glycan biosynthesis 8 1 0.2209965

Lysine degradation 4 1 0.223509

Spliceosome 24 2 0.2736693

Small cell lung cancer 23 1 0.2798967

Prostate cancer 26 2 0.3062628

Melanoma 22 2 0.3099633

Insulin signaling pathway 31 1 0.3635885

Antigen processing and presentation 5 1 0.4749925

Shigellosis 6 1 0.5180352

Cell cycle 22 1 0.5701685

Steroid biosynthesis 1 1 0.6006251

FoxO signaling pathway 25 1 0.6250634

Sulfur relay system 2 2 0.6482195

Estrogen signaling pathway 19 1 0.6860049

Long-term depression 10 1 0.6946705

Base excision repair 2 1 0.738435

Protein processing in endoplasmic reticulum 10 1 0.7774063

mRNA surveillance pathway 7 1 0.8486927

RNA transport 29 1 0.8553475

AMPK signaling pathway 23 1 0.859823

Huntington’s disease 2 1 0.9555257

Adipocytokine signaling pathway 13 1 0.9654451

Allograft rejection 3 1 0.9744973
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Table 4 The 10 top-ranked miRNAs and their target gene involvement in the KEGG pathway (Continued)

Cocaine addiction 8 1 0.9772773

Purine metabolism 5 1 0.9896283

Renin-angiotensin system 1 1 0.9943529

Valine, leucine and isoleucine degradation 1 1 0.9945874

Valine, leucine and isoleucine biosynthesis 1 1 0.9973641
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miRNA expression profiles were solely used to
estimate the survival time, the results were not
tremendous. The model can be refined by considering
other factors, such as mRNA and protein expression
profiles. Furthermore, we ranked the 24 identified
miRNAs based on their contribution towards the
survival time estimation. The biological significance of
these miRNAs was discussed, and miRNA analysis
revealed their functional role in GBM cancer and
other major cancer types. This study would provide a
new insight into molecular therapeutic approaches to
improving the therapies of GBM patients.

Methods
Dataset
All miRNA expression profiles of glioblastoma patients
and corresponding clinical information were retrieved
Fig. 3 Heat map of the KEGG pathway. 10 miRNA signatures involved in d
from the TCGA database. Level 3 data of 528 samples
on the Agilent human 8X15k were downloaded. We
followed certain criteria to retrieve samples: (i) the
patients who undergone chemotherapy/radiotherapy, (ii)
the patients who had survival information (days to
death), (iii) the patients whose survival period equal or
greater than 30 days, and (iv) elimination of duplicate
entries by merging all patient lists and the corresponding
survival periods. After filtering out the samples, there
were a total of 247 samples with 470 miRNAs, which we
used for further analysis.

SVR-GBM
We proposed a novel method SVR-GBM to predict the
survival time in patients with GBM. This method also
identifies the informative miRNAs to determine their
functionality in GBM.
ifferent cancer pathways including glioma and signaling pathways



Table 5 Experimentally validated target genes for miRNAs

miRNA Target gene Regulation Validation method Cancer Reference

hsa-miR-222 GJA1 down Immunofluorescence, Western Blot, Luciferase Reporter Assay Glioblastoma [35]

CDKN1C down Luciferase Reporter Assay Glioblastoma [69]

P27kip1 down Western Blot Glioblastoma [32]

DICER1 down Luciferase Reporter Assay Breast cancer [70]

TIMP3 Down Luciferase Reporter Assay, qPCR, Western Blot Lung cancer [36]

CDKN1B Down Luciferase Reporter Assay Thyroid carcinoma [71]

PPP2R2A Down Luciferase Reporter Assay Lung cancer [72]

hsa-miR-345 MCL-1 and BCL2L2 Up microarray Lung cancer [73]

Smad1 Down microarray Prostate cancer [39]

BAG3 Down Luciferase reporter assay and western blot colorectal cancer [40]

hsa-miR-335 SOX4 Down Northern blot, qRT-PCR etc. breast cancer [74]

TGF-β Down qRT-PCR Neuroblastoma [44]

hsa-miR-122a CCNG1 Down Northern blot, qRT-PCR hepatocellular carcinoma [75]

hsa-miR-24 ST7L Up qRT-PCR glioma [45]

MXI1 Up MTT assay glioma [46]

hsa-miR-433 FGF20 - - Northern blot, qRT-PCR etc. Parkinson’s disease [76]

hsa-miR-320 TfR-1 Down northern blot, qRT-PCR acute myeloid leukemia [77]

Mcl-1, BCL2 Down northern blot, qRT-PCR cholangiocarcinoma [78]
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Integration of IBCGA and SVR for miRNA selection and
modeling
Support vector machine (SVM) is based on statistical
learning theory and successfully applied to classifica-
tion and regression problems [63]. In this work, we
approached support vector regression method to es-
timate the survival time in patients with GBM. The
ν support vector regression (SVR) presents the good
performance because it relies on the number of sup-
port vectors and training error. Given a set of data
points, (x1, y1), (x2, y2)… (xm,ym), where xi ∈ Rn is
an input and yi ∈ R1 is a target output. The
optimization problem of the ν-SVR can be defined
as follows.

min
1
2
wT ϕ xið Þ þ bð Þ þ C υ εþ 1

m

X
i¼1

m ξ i þ ξ�i
� �� �� �� 	
 �

ð1Þ

where ξi ≥ 0, ξi
* ≥ 0, ε ≥ 0; i = 1, 2,…, m; and b is a

constant.
Here, 0 ≤ ν ≤ 1, and C is the regularization param-

eter. The ε-insensitive loss function means that if
wT∅ (xi) is in the range of y ± ε no loss is consid-
ered. The y ± ε is as known as the soft margin where
ν is an upper bound on the fraction of margin errors
and a lower bound of the fraction of support vectors
. In this work, the LibSVM package was used for im-
plementation ofν-SVR [64]. To select a minimal set
of informative features from a large number of
candidate features problem, the inheritable bi-objective
combinatorial genetic algorithm (IBCGA) [28] was used.
In this work, we incorporated the optimal feature selec-
tion algorithm IBCGA and ν-SVR to obtain an optimized
model. The parameters for designing the SVR model to be
optimised simultaneously by the IBCGA are the n binary
variables for selecting informative miRNAs and tuning pa-
rameters C, γ and ν of the SVR. The chromosome of the
IBCGA comprises n binary genes f i to select m miRNA
and three 4-bit genes for encoding γ, C, and ν of the SVR.
The i-th miRNA is excluded from the SVR regression
model if fi = 0 and included if fi = 1. The sum of fi is equal
to m. The IBCGA can simultaneously obtain a set of solu-
tions, Xr, where r = rstart, rstart + 1, …, rend in a single run.
In this work, the parameter values are rstart = 10, rend = 50,
Npop = 50, Pc = 0.8, Pm = 0.05, and Gmax = 60 [28].
To maximize the estimation accuracy in terms of

Pearson’s correlation coefficient (r) used as the fitness
function, we employed 10-fold cross validation (10-CV)
to measure the performance of SVR-GBM in terms of
Pearson’s correlation coefficient and mean absolute error
between the predicted survival time and real survival
time.
The Pearson’s correlation coefficient (r) can be formu-

lated as follows

r ¼
X

i¼1

N xi−xð Þ yi−yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⌊Xi¼1

N xi−xð Þ2⌋ X
i¼1

N yi−yð Þ2
h iq ð2Þ
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where xi and yi are real and predicted survival time of the
ith miRNA, and x and y are their corresponding means.
Here N is the total number of miRNAs in the sample.
The mean absolute error (MAE) is described by

MAE ¼ 1
N

XN
i¼1

yi−xij j2 ð3Þ

The standard error of estimates (SEE) is defined as

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

yi−xið Þ2
n−2

s
ð4Þ

where yi is estimated value and xi is actual value, n is
number of observations.
The customised IBCGA is described below.

Step 1) (Initialization) Generate an initial population of
Npop individuals randomly. All the n binary genes fi
have r 1’s and n-r 0’s, where r = rstart.

Step 2) (Evaluation) Evaluate all individuals using the
fitness function.

Step 3) (Selection) Use a tournament selection method
that selects the winner from two randomly selected
individuals to form a mating pool.

Step 4) (Crossover) Select Pc ·Npop parents from the
mating pool to perform the orthogonal array
crossover, where Pc is the crossover probability.

Step 5) (Mutation) The traditional mutation operator is
applied to the randomly selected Pm ·Npop

individuals except the best individual, where Pm is
the mutation probability.

Step 6) (Termination test) If the stopping condition of
performing Gmax generations for obtaining the
solution Xr is satisfied, output the best individual as
Xr. Otherwise, go to Step 2.

Step 7) (Inheritance) If r < rend, randomly change one
bit in the binary genes fi for each individual from 0
to 1; increase the number r by one, and go to Step 2.
Otherwise, stop the algorithm.

Step 8) (Output) Let m equal the value of r having the
best fitness value. Output the m miRNAs and the
corresponding SVR model.

Multiple linear regression
We employed a multiple regression technique to esti-
mate the survival time. Stepwise feature addition proced-
ure has been used for feature selection. In multiple
linear regression, every value of the independent variable
x is associated with the dependent variable value y [65].
A general multiple linear regression can be defined as

yi ¼ β0 þ β1x1 þ β2x2 þ⋯þ βnxn þ ε: ð5Þ
where yi is the dependent variable; x1, x2, …, xn are the
independent variables; β0, β1, β2, …, βn are the regression
coefficients; n denotes the number of terms in the
model, and Ɛ is the error term.

Diana tools
We employed miRNA pathway analysis using DIANA-
mirpath webserver [66] which utilized DIANA-Tarbase
algorithm to predict the miRNA target. In order to esti-
mate the specificity of results, we performed the pathway
analysis for all identified miRNAs. In the mirpath tool, we
selected the pathway union feature to identify the specific
targeted KEGG pathway for each identified miRNA. The
mirpath server employs enrichment analysis and measures
the significance levels (p-value) between identified miR-
NAs and corresponding pathways using Fisher’s exact test.
The results of this analysis indicate that the probability of
particular pathway is notably enriched with targeted by at
least one selected miRNA.

Gene Target prediction
We used miRTarBase [62] and Tarbase [67] to predict
the experimentally validated gene targets. Mir2 disease
[68] was used to identify the cancer related miRNAs.

Additional file
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Correlation plots for 14 miRNAs Figure S2. Heat map of the KEGG
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enrichment in the KEGG pathway. (PDF 360 kb)
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