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Abstract

Background: Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is
classified into two main taxa — lowland and upland ecotypes — that differ in morphology and habitat of adaptation.
But there is limited information on their inherent molecular variations.

Results: Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to
document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1.
1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of
expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and
development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype.
On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases,
and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands.
At 2100x coverage and 25% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism
(SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference
genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the
transversion mutations.

Conclusions: The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly
higher representation for cellular components associated with photosynthesis machinery controlling carbon
fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed
throughout the genome. The differentially expressed genes and SNP markers detected in this study would be
useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased
biomass yield for biofuel conversion.
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Background

Increasing emission of carbon dioxide into the atmos-
phere from burning nonrenewable fossil fuels causes the
earth to warm up by trapping more heat from the at-
mosphere. A bioenergy alternative to the continued con-
sumption of nonrenewable fossil fuels will avert serious
environmental, social and economic concerns for the
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future. Thus, finding renewable alternative fuel sources
that are environmentally friendly and economically feas-
ible will achieve a dual goal of improving energy security
and decreasing greenhouse gases emissions emitted from
the transportation sector and industry [1]. An increased
attention is given to the lignocellulosic feedstocks as an
alternative [2] to starch- and sucrose based feedstocks
that are in competition as food crops [3].

Switchgrass (Panicum virgatum L.), a warm-season 4-
carbon (C4) fixation perennial grass native to North
America, is being developed as source of dedicated
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biofuel feedstock for production of transportation fuel
[4]. This choice is attributed to several features of
switchgrass such as high biomass yield potential, low ex-
ternal input requirements, and agronomic performance
on marginal lands that are too dry and infertile for most
other agriculture crops.

Switchgrass is a genetically and morphologically diverse
species with an array of ploidy levels and classified into
two phenotypically distinct ecotypes: lowland and upland
[5]. This classification is based on strong ecotypic adapta-
tion difference and population structure across the contin-
ental range [6], which is based on their ploidy level and
morphological variations [7]. The lowland ecotypes are
generally found in warmer and wetter areas of the south-
ern United States. Morphologically, the lowland ecotypes
are taller with thicker stems and wider leaves than upland
ecotypes. The upland ecotypes are generally smaller in
size, have narrower stems and leaves, and produce less
biomass than the lowland ecotype. But they are adapted to
the dry areas and are capable of overwintering in colder
climates of the northern United States.

The causes of genetic diversity in natural populations
and the relative influences of ecology versus population
history are still largely unknown [8]. A switchgrass syn-
thetic cultivar was developed from upland (Summer)
into lowland (Kanlow) cross and released in the mid-
western United States for its better winter survival than
the lowland-type and higher biomass yield potential than
the upland-type [9]. This development of a heterotic
cultivar from the upland into lowland ecotype cross
echoes the natural process of inter-ecotype breeding for
better adaptation. This population can also be used to
select genotypes of better biomass yield potential than
upland-type and reduce recalcitrance for better biofuel
conversion.

The other conspicuous difference between the two
switchgrass ecotypes is in the length of vegetative
growth; the lowlands regrow early in the spring and
flower late in the summer compared to the uplands,
which generally have a shorter vegetative growth period
as a result of late regrowth coupled with early flowering
in the Southern Great Plains (Serba et al., unpublished).
However, intraspecific comparative genome analyses
revealed that the lowland and upland ecotypes are com-
pletely collinear and have similar recombination rates
[10]. They intercross freely at same ploidy levels and
produce fertile progenies, thus there is free gene flow in
both directions. Based on the number of marker loci
mapped in the lowland genotype AP13 and the upland
genotype VS16, lower level of genome heterozygosity
was speculated for the uplands than the lowlands.

The amount of variation observed between DNA
sequences from distinct genotypes of a given species is a
reflection of genetic diversity [11]. Analyzing the
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transcribed portions of the genome is an economical
approach for plants with large genome sizes like switch-
grass. The functional information derived from the ana-
lysis of ESTs can be used for the development of
molecular markers, comparative genomics, genetic ana-
lysis of adaptive traits, and gene discovery [12]. Gene
expression variation between tissues or cell types [12],
developmental stages [13], genotypes [14], and for differ-
ences in stress tolerance [15] have been documented in
switchgrass. In addition to the nuclear genome, chloro-
plast genome sequence variation was also reported for
the lowland and upland ecotypes. Ecotype comparison
of the chloroplast genomes revealed a total of 224 bp of
insertions and deletions that the chloroplast sequence of
lowland ecotype Kanlow (K5) is 58 bp overall longer
than the upland ecotype Summer with polymorphic
rates (0.05% for single nucleotide polymorphisms and
0.02% for insertions or deletions) between the ecotypes
[16]. Similar levels of intersubspecific polymorphic rates
were reported between chloroplast genomes of rice,
Oryza indica and O. japonica [17]. On the other hand,
59 bp deletion in trnL. (UAA) intron sequences of low-
land ecotype AP13 chloroplast genome was observed
compared to the upland ecotype VS16 [18]. A BamHI
RFLP polymorphism in RbcL gene present in upland and
absent in lowland cultivars was also reported [19]. This
polymorphism information between upland and lowland
ecotypes would facilitate a study of cultivar diversity, im-
proved analyses of population structure, direction of
gene flow and genetic mapping [16].

Apart from the distinct phenotypic and chloroplast
genome differences, variation in gene expression pat-
terns between lowland and upland ecotypes has not
been thoroughly investigated yet. RNA-Seq analysis is
reported as the most effective strategy that can be used
to discover new genes as well as to provide high-
density markers [20]. In this study we assessed the dif-
ferential gene expression profiles of upland and lowland
ecotypes in tetraploid representative genotypes using
RNA-Seq and examined the ESTs for development of
molecular markers useful for mapping agronomic and
adaptive traits in switchgrass. The outcome of this
investigation in addition to broadening our understand-
ing of the ecotypic differences in switchgrass, it can be
applied in molecular breeding to fast-track the develop-
ment of improved cultivars for yield and quality for bio-
fuel conversion. The RNA-Seq data is also used to
better understand the transcriptomic differences that
are reflected in the morphological and ecological adap-
tation of the lowland and upland ecotypes, especially
during active growth stages. The high-throughput
markers developed in this study will also facilitate the
accurate and efficient discrimination of the heteroge-
neous switchgrass gene pools [16].
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Results and Discussion

RNA-Seq data acquisition and reads mapping to
switchgrass reference genome

Transcriptome of switchgrass ecotypes was profiled
using two lowland genotypes (AP13 and K5) and an up-
land genotype (VS16) that are tetraploids (2n = 4x = 36).
A high-throughput RNA-Seq data set was generated for
these three genotypes that provide transcriptome ana-
lysis through quantitative readouts [21]. A total of 265.2
million 100 bp reads were obtained for the three geno-
types from three biological replicates. Out of the 265.2
million reads, 209.7 million quality reads were aligned to
the reference switchgrass genome sequence, P. virgatum
v1.1 (http://www.phytozome.net; accessed 30 November
2015). These reads were then used for a reference-
guided assembly and differential expression analysis.

The total number of reads obtained were significantly
higher in VS16 (103.8 million) than in AP13 (80.3
million) and K5 (81.1 million) (Fig. 1). A total of 84.6%
(67.9/80.3) for AP13, 81.8% (66.3/81.1) for K5, and
72.7% (75.5/103.8) for VS16 were mapped to the refer-
ence genome. The result indicated that there was no sig-
nificant difference (p <0.01) among the three genotypes
in the number of reads mapped to the reference genome.
As increasing the number of replicate samples improves
detection power over increased sequencing depth [22],
three biological replicates for each genotype were used
in this experiment for read mapping and downstream
analysis such as assembly of gene transcripts and differen-
tial profiling. Analysis of variance among the biological
replicates were not significant, which implies high repeat-
ability of the samples (Additional file 1: Table S1). How-
ever, an average of 20.3% of the reads could not be
mapped to the P. virgatum v1.1 switchgrass preliminary
release reference genome, probably due to incomplete
genome coverage of the reference sequence. As the
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number of mapped sequences were large enough to suc-
cessfully assemble transcripts with reasonable depth and
coverage, no separate de novo assembly was conducted for
the unmapped sequences.

Differentially expressed genes between genotypes and
ecotypes

Mapping the quality trimmed pair-end reads of the
AP13, K5 and VS16 genotypes representing the ecotypes
of switchgrass enabled us to construct a total of 37,611
differentially expressed transcripts. The total number of
differentially expressed transcripts (q-value < 0.05) were
29,176 between AP13 and VS16, 17,863 between AP13
and K5, and 23,207 between K5 and VS16 (Additional
file 2: Table S2). Among the largest number of differen-
tially expressed transcripts (between AP13 and VS16),
22,761 were annotated genes and had homologs in either
Arabidopsis or rice genome as determined by slimGO
terms. The remaining 6,415 were not annotated as gene
transcripts.

Three-way comparison of 17,832 in AP13, 13,404 in
K5, and 13,980 in VS16 upregulated transcripts
highlighted ecotype difference than genotype differences
(Fig. 2). Ecotype difference in gene expression was ap-
parent by the smaller number of commonly upregulated
transcripts between the ecotypes (2,232 between AP13
and VS16, 3,216 between K5 and VS16) as compared to
the 5,790 between AP13 and K5, the two genotypes of
the lowland ecotype.

The expression level of the gene transcripts ranged
from O to 9,116 FPKM (Fragments Per Kilobase of tran-
scripts per Million mapped reads) in all the three geno-
types. Among the total transcripts detected in the three
genotypes, differential expression analysis also revealed
that a total of 1,736 genes had no detection in AP13;
similarly 2,308 and 2,131 had no detection in K5 and

40.0

35.0 -

30.0 -
39

il 4.3

Million reads
N
o
o

15.0 4

22.7
10.0 19.7

5.0 A

AP13-1 AP13-2 AP13-3 K5-1

switchgrass ecotypes

2 8.6 10.2
53
28.3
23.9 I 5> 5 24.3 (N 55 9
19.9

L ——

Samples (three biological replicates each)

Fig. 1 Total mapped and unmapped RNA-Seq clean reads for the three genotypes representing lowland (AP13 and K5) and upland (VS16)

Unmapped = Mapped

9.5

5.

K5-2 K5-3 VS16-1 VS16-2 VS16-3



http://www.phytozome.net/

Serba et al. BMC Genomics (2016) 17:1040

Genotype comparison

AP13(LL, 4X)
(17832) <

o\
N
5
o
=X
EX
=Y
%\
=) /9
= \ /
— \\ 8532 y (éi
\\ //
< /\48’16 (UL, 4X)
- > (13980)

Fig. 2 Comparisons of differential gene expression (upregulation)
among two lowland (AP13 and K5) and an upland (V516) switchgrass
genotypes (two-fold change, g-value < 0.05) constructed using Cufflinks
v2.1.1. (LL = lowland ecotype, UP = upland ecotype, 4 X = tetraploid). The
comparison reveals distinct ecotype differences as compared to two
genotypes within the lowland ecotype

VS16, respectively. These under detected genes may also
designate the ecotype variations due to gene expression
level or high degree of sequence divergence, but their
function has not yet been discerned.

Function of differentially epxressed genes (DEGs)

We annotated the 29,176 transcripts by blasting all
the distinct unigene sequences against PFAM, PAN-
THER, KOG, KEGG, and slimGO database (http://
bioinfo.cau.edu.cn/agriGO) by BLASTX with a cut-off
E-value of 107°. Genes that were upregulated signifi-
cantly (22-fold change, q<0.05) in the lowland eco-
types compared to the upland VS16 (Table 1) signifies
potential ecotypic variation. Some of these genes had mul-
tiple copies tandemly distributed in the genome with the
copy number ranging from 2 to 10 (Additional file 1:
Table S1). The differential expression between the lowland
and upland ecotypes was consistent for most of the genes
across the gene copies.

There was significant differential expression between
AP13 and K5; upregulation of gene transcripts related to
photosynthesis were the most significantly enriched GO
categories amongst the DEGs between the ecotypes.
Annotation of the putative genes that were upregulated
in both the lowland ecotypes encode chloroplast precur-
sors, photosynthetic electron transport system and associ-
ated ATP synthesis (Table 1). Some of these upregulated
genes encode carbonic anhydrase, cytochrome b6-f
complex iron-sulfur subunit, ferredoxin-NADP reduc-
tase, phosphoribulokinase, photosystem I reaction center
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subunit, photosystem II 10 kDa polypeptide, photosystem
II reaction center W protein, pyruvate, phosphate diki-
nase, ribosomal protein L35, ribulose bisphosphate carb-
oxylase, and transketolase. Genes encoding photosynthetic
electron transport system (Additional file 3: Figure S1)
were also among the upregulated group in the lowland
ecotype. It is evident that many gene products encode the
two main steps of photosynthesis [23], and the number of
genes expressed can affect the inherent photosynthetic ac-
tivity and environmental stress responses in different
ecotypes.

Chlorophyll concentration is the main factor (apart
from light intensity, carbon dioxide concentration, water
availability and temperature) affecting the rate of photo-
synthesis reaction as it absorbs the light energy, without
which the reactions cannot take place. Therefore, the ex-
pression of photosynthetic genes in the nucleus is influ-
enced by the retrograde (from the chloroplast to the
nucleus) signaling that utilizes photosynthetic electron
transport and redox signaling [23]. The differential ex-
pression of photosynthesis-related genes specifically in
the lowland-types suggests the exceedingly efficient light
absorption and higher photosynthetic rate of this eco-
type. Higher content of photoreceptor proteins and non-
protein photo-pigments contribute to the higher light
absorption efficiency and photosynthetic rate in the low-
land ecotype than the upland ecotype.

In addition, genes involved in plant response and
adaptation to stresses such as peroxiredoxin, glutathione
S-transferase, dehydrin, fatty acid desaturase and
hypoxia-responsive family protein were significantly up-
regulated in both the lowland genotypes compared to
the upland genotype. As the plants were not subjected
to any stress during the experiment, the high expression
of such stress-responsive genes indicates that these pro-
teins may have other functions in the plant growth and
development that may reflect the difference between the
switchgrass ecotypes. For instance, peroxiredoxin func-
tions as a peroxidase to sense and regulate local perox-
ides [24] and has a vital role in antioxidant defense in
photosynthesis, and respiration that is modulating redox
signaling during development [25]. ATPases (adenosine
triphosphatase) associated with diverse cellular activities
and Calvin cycle protein chloroplast protein 12 (CP12)
were significantly upregulated in the two lowland geno-
types (AP13 and K5) than the upland VS16. The upregu-
lation of ATPases indicate high dephosphorylation
reaction in lowlands to release energy to facilitate other
chemical reactions that would not otherwise take place.
CP12 is a small, redox-sensitive protein involved in
thioredoxin-mediated regulation of the key enzymes of
the reductive pentose phosphate cycle (Calvin cycle)
such as NAD(P)H-glyceraldehyde-3-phosphate dehydro-
genase in response to changes in light intensity [26, 27].
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Table 1 Photosynthetic efficiency related gene transcripts differentially upregulated in lowlands as compared to upland switchgrass
with more than two-fold change (g-value <0.01)

No Rice homolog Protein function description Average Average Average

FPKM_  FPKM_  Fold
Lowland VS16 change
1 Peroxiredoxin Antioxidant defense system 280 98 29
2 Peptidyl-prolyl cis-trans isomerase Catalysis of the geometric or structural 540 211 26
changes within one molecule
3 NAD dependent epimerase/dehydratase family protein Catalytic activity and coenzyme binding 308 121 25
4 Glutathione S-transferase Detoxication and toxification mechanisms 351 122 29
5  Ftsh protease Eliminating abnormal membrane 1005 401 25
proteins in chloroplast
6  AAA-type atpase family protein F-type ATPase 308 68 48
7 ATP synthase B chain, chloroplast precursor F-type ATPase 780 314 2.5
8  ATP synthase F1, delta subunit family protein F-type ATPase 489 168 29
9  ATP-dependent Clp protease ATP-binding subunit clpa homolog,  F-type ATPase 690 336 2.1
chloroplast precursor
10 Glyceraldehyde-3-phosphate dehydrogenase Glycolysis 893 356 26
11 Cysteine proteinase 1 precursor Hydrolysis of peptide bonds in a 409 107 4.2
polypeptide chain
12 B-box zinc finger family protein Intracellular protein transport 310 118 26
13 Chlorophyll A-B binding protein LHC-Antana protein 2111 794 59
14 Zinc finger A20 and ANT domain-containing stress-associated Metal ion and DNA binding 347 139 25
protein
15 Metallothionein Metal ion binding 4704 1446 52
16  Metallothionein-like protein 3B Metal ion binding 1471 94 143
17 NDH-M H Plastoquinine dehydrogenase Photosynthetic electron transport 276 92 30
18  2Fe-2S iron-sulfur cluster binding domain containing protein Photosynthetic electron transport 462 136 34
19 Calvin cycle protein CP12 Photosynthetic electron transport 1664 402 4.1
20 Carbonic anhydrase, chloroplast precursor Photosynthetic electron transport 1229 300 4.5
21  Ferredoxin—-NADP reductase, chloroplast precursor Photosynthetic electron transport 523 210 26
22 Fructose-1,6-bisphosphatase Photosynthetic electron transport 282 106 2.7
23 Fructose-bisphospate aldolase isozyme Photosynthetic electron transport 1724 714 26
24 Phosphoglycerate kinase protein Photosynthetic electron transport 312 106 3.1
25 Phosphoribulokinase/Uridine kinase family protein Photosynthetic electron transport 285 72 42
26 Pyruvate, phosphate dikinase, chloroplast precursor Photosynthetic electron transport 885 376 24
27 Ribulose bisphosphate carboxylase small chain, chloroplast Photosynthetic electron transport 2367 1113 2.2
precursor
28 Ribulose-phosphate 3-epimerase, chloroplast precursor Photosynthetic electron transport 321 98 33
29 Thioredoxin Photosynthetic electron transport 725 237 39
30 Transketolase, chloroplast precursor Photosynthetic electron transport 399 135 32
31 Proton gradient regulation 5 (pgr5) Photosynthetic electron transport in 294 128 23
photosystem |
32 Photosystem | reaction center subunit, chloroplast precursor Photosystem | subunits 892 416 22
33 Cytochrome bé-f complex iron-sulfur subunit, chloroplast Photosystem Il main subunits 624 153 4.1
precursor
34 Cytochrome b6f complex subunit Photosystem Il main subunits 284 96 29
35 Oxygen evolving enhancer protein 3 domain containing Photosystem Il subunits 233 84 30
protein
36 Photosystem Il reaction center W protein, chloroplast Photosystem Il subunits 555 176 36

precursor
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Table 1 Photosynthetic efficiency related gene transcripts differentially upregulated in lowlands as compared to upland switchgrass

with more than two-fold change (g-value < 0.01) (Continued)

37

38
39

40
41
)

43
44
45
46
47

48

49
50
51

52
53
54
55

Dehydrin

Fatty acid desaturase

Enzyme of the cupin superfamily protein

Tetratrico peptide repeat region TPR domain protein
60S acidic ribosomal protein

Elongation factor

Hypoxia-responsive family protein

Glycine-rich protein A3

RNA recognition motif containing protein

BBTI8 - Bowman-Birk type bran trypsin inhibitor precursor
Egg apparatus-1

Elongation factor thermo unstable (EF-Tu)

Oryzain gamma chain precursor
Ubiquitin family protein

Ubiquitin-conjugating enzyme

CCT/B-box zinc finger protein
Ribosomal protein L35
Aquaporin protein

Membrane protein

Plant response and adaptation to abiotic 299 m 2.7
stresses

Plant responses to abiotic stresses 263 102 26
Protect plants from the effects of oxidative 447 205 2.2
stress

Protein binding 239 77 3.1
Protein synthesis 281 114 25
Protein synthesis in the process of cell cycle 274 82 36
and elongation

regulation of growth and and developmnt 711 148 4.8
RNA-binding 351 158 2.2
RNA-binding domain 905 31 30
Serine-type endopeptidase inhibitor activity 316 95 36
Small secretory proteins and pollen tube 227 63 44
guidance

Synthesizes new proteins by translation at the 484 232 2.1
ribosome

cysteine-type peptidase activity 546 148 36
Targeted protein degradation 477 200 24
Targets a protein for degradation via the 386 110 4.0
proteasome

Transcription factor 291 114 26
Translation, ribosomal component 273 116 24
Transport of water and small solutes 1022 239 48
Water and nutrient transport across 799 255 3.1

membranes

On the contrary,

catalases,

heavy-metal-associated

the adaptive evolution occurred between the two eco-

domain-containing protein, helix-loop-helix DNA-binding
domain containing protein, late embryogenesis abundant
group 1, protease inhibitors, methyltransferases, NADP-
dependent oxidoreductase, and S-adenosylmethionine
synthetase were upregulated in the upland VS16 com-
pared to the lowland ecotype (Table 2). Transcriptional
regulatory proteins such as helix-loop-helix DNA-
binding domain containing protein may have likely
roles in a wide array of developmental processes in
plant. The oxidoreductase enzymes also play crucial
role in electron transport of a wide variety of chemical
reactions in the plant cell.

As light is the prime source of energy for plant growth
and morphogenesis, variation in light harvesting may
arise from morphological and physiological differences
in plants. This result showed that the southern-adapted
lowlands seemed more efficient in photosynthesis than
the uplands. As gene expression is the result of environ-
mental and developmental changes, transcriptome diver-
gence between the two ecotypes implies adaptive
phenotypic selection [28], and the pattern underlying

types to adapt to their current habitat. The lowlands are
adapted to the southern continental USA with relatively
longer growing season and high solar radiation. It is evi-
dent that the lowland ecotypes have maintained efficient
light perception and carbon reduction mechanism,
which ultimately transformed into high biomass accu-
mulation. On the other hand, the uplands are adapted to
the shorter growing season of the upper latitudes and
have reduced plant stature, which may be due to the low
light reception and carbon reduction efficiency. With
the hypothetical south-to-north migration path of
switchgrass [29], we speculate that the upland ecotypes
were derived from the lowland ecotypes through loss of
function adaptive evolution.

Gene Ontology (GO) enrichment of DEGs

Among the significant biological processes, cellular
process, and cellular component (Fig. 3) organization and
localization were significantly higher (p<0.05) in the
AP13 as compared to the reference (Fig. 4a). The percent-
age of cellular components such as macromolecular
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Table 2 Gene transcripts differentially upregulated in upland
VS16 as compared to the lowlands AP13 and K5 switchgrass
with more than two-fold change (g-value <0.01)

Rice homolog function FPKM_ FPKM_  Average Fold
description VS16  lowland change
AP2 domain-containing protein 775 3450 44
auxin-repressed protein 559 3413 539
BTBN22 - Bric-a-Brac, Tramtrack, 80.5 250.7 33
Broad Complex BTB domain with

non-phototropic

hypocotyl 3 NPH3 and coiled-coil

domains

catalase isozyme A 306 3308 30.5
FAD-binding and arabino-lactone 602 4145 20814
oxidase domains containing protein

glycine rich protein family protein 2029 5540 28
heavy-metal-associated 604 2384 44
domain-containing protein

helix-loop-helix DNA-binding domain ~ 436.7 989.7 23
containing protein

HVA22 606 2679 46
late embryogenesis abundant group 1 0.1 671.3 4590.7
LTPL29 - Protease inhibitor/seed 1239 8531 7.8
storage/LTP family protein precursor

magnesium-chelatase 80.0 2020 26
methyltransferase 05 2117 580.0
NADP-dependent oxidoreductase 1426 3756 2.7
PHD-finger family protein 3.1 3275 109.5
phytosulfokines precursor 52.7 2926 5.7
POT family protein 2236 8818 6.5
ribonuclease T2 family 1433 8573 884
domain-containing protein

S-adenosylmethionine synthetase 786 2457 33
SRC2 protein 1144 3100 2.8
universal stress protein domain 1482 3272 22
containing protein

wound induced protein 1286 3972 33

complex, cell and organelle were higher in AP13 than the
proportion in the reference annotated pool. The propor-
tion of most of the molecular functions, except structural
molecular activity, was significantly lower in AP13 than
the reference pool. None of the annotations of the VS16
was significantly different from the reference pool in pro-
portion. However, cellular process and regulation of bio-
logical process in the biological process; cell, cell part,
organelle and organelle part in the cellular component;
and enzymatic activity and catalytic activity among the
molecular function were higher in proportion but not
significantly different from the reference (Fig. 4b). This
implies that the variation in ecotype is not in a particular
set of gene families but in the overall level of expression
across a wide range of gene families.
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Identification of SNPs and Indels between genotypes and
ecotypes

Homozygous and heterozygous SNPs discovered for
VS16 and K5 against the reference AP13 genome were
presented in Fig. 5. A total of 25,894 and 16,979 SNPs
were discovered at >100x coverage and >5% minor allele
frequency for VS16 and K5, respectively (Additional file
4: Table S3). The 8,915 SNPs that were different between
VS16 and K5 may reflect the ecotype variation for the
polymorphism. For VS16, except for C/A, C/T, G/A, and
G/T, the number of homozygous SNPs are larger in
number than the heterozygous SNPs. On the contrary,
for K5, heterozygous SNPs are larger in number than
the homozygous SNPs for each of the transition as well
as transversion SNPs. Among the 12 types of SNPs
assessed, based on the allele combinations, it was
observed that C/T, G/A, A/G and T/C are the abundant
SNPs detected for both K5 and VS16 individually against
the reference genome (Fig. 5). In both the VS16 and K5,
the SNPs of A/T or T/A were less represented. This im-
plies that transition mutations within pyrimidine (C, T)
and purine (A, G) are more prevalent than the transver-
sion mutation, which converts pyrimidine bases into
purines or the vice versa.

Among the SNPs identified, 66% (11,166/16,979) of K5
and 64% (16,625/25,894) of VS16 were mapped on the
reference AP13 pseudomolecules. The distribution of
SNPs detected for K5 and VS16 were visualized on the
reference genome’s pseudomolecules (Fig. 6). The overall
distribution indicated that there is high density of SNPs
in distal (telomeric) regions than the proximal end of
the chromosomes. There are uneven distributions
among the chromosome arms indicating some part of
the genome have high recombination events than the
others. There are also several gaps on each of the chro-
mosomes, which are potential centromeres. In chromo-
some 7a and 7b, one arm has higher density than the
other. On the other hand, chromosome 8a and 8b, had
the least SNPs overall, distributed across both arms.
From the linkage mapping it was not possible to form
chromosome 7a and the probable reason was predicted
as either high homozygosity or aneuploidy [10]. From
this low SNP density we could substantiate that high
homozygosity is more relevant for the disappearance of
the linkage group using the PCR-based and DArT
markers.

Next generation sequencing (NGS) technology has
been used to detect SNPs in crops such as wheat (7riti-
cum aestivum), barley (Hordeum vulgare) [30], cotton
(Gossypium  hirsutum) [31], rice (O. sativa) [32], soy-
bean (Glycine max) [33], potato (Solanum tuberosum
L.) [34] and sorghum (Sorghum bicolor) [35, 36]. DNA
sequence changes in the non-coding region of the gen-
ome may disrupt functional cis-regulatory elements
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that control transcription and leads to change in tran-
scription levels, while mutation in the protein coding
regions leads to altered form of protein [37]. These
SNPs are from gene sequences and indicate allelic
variations among genotypes and/or between ecotypes
for the genes expressed at different levels.

All of the SNPs detected on the unanchored contigs
in or near the gene sequences were screened at 100x

coverage and 5% minor allele frequency. In addition
to the SNPs, Indel polymorphism for K5 and VS16
identified relative to the reference genome were pre-
sented in Additional file 5: Table S4. A total of 143
and 439 Indels were observed for VS16 and Kb5.
Again, high Indels were detected between the lowland
AP13 and the upland VS16, implying allelic differ-
ences in genes transcribed between the two ecotypes.
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Conserved simple sequence repeats (SSRs) among the
genotypes

With the aim of developing SSR markers that are poly-
morphic among genotypes and ecotypes, a de novo as-
sembly was done for the K5 and VS16 transcripts.
Consequently, 1,295 EST-SSRs that are conserved
among the two and three genotypes were identified
(Additional file 4: Table S3). Among the three genotypes,
312 genic SSRs were detected, while the remaining 983
were between a pair of genotypes. The conserved SSRs
were also polymorphic among at least two of the three
genotypes. Genic SSRs were developed for switchgrass
from different genotypes [38, 39] of which some were
used for genetic linkage mapping of the switchgrass gen-
ome [10, 40-42].

Conclusions

In the present study, comparison of expression profiles be-
tween the lowland and the upland ecotypes of switchgrass
during active growing stage disclosed a clear difference in
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photosynthetic efficiency between the two ecotypes. A
genome-wide differential upregulation of chloroplast pre-
cursors and photosystem proteins in the lowland com-
pared to the upland ecotype revealed that the lowland
ecotype is more efficient in photosynthesis than the
upland ecotype. The GO annotation of the transcripts
indicated that lowland ecotype has significantly higher
photosynthesis machinery for efficient light perception
and more carbon fixation. A number of SNP and
conserved SSR markers that were polymorphic between
genotypes and ecotypes were detected throughout the
genome. This discovery would be a useful resource for
trait mapping and gene transfer across ecotypes to signifi-
cantly facilitate switchgrass breeding for increased bio-
mass yield and biofuel conversion.

Methods

Plant materials and experimental design

Two genotypes representing the tetraploid lowland
switchgrass, AP13 and K5, and a genotype representing
the upland ecotype, VS16, were selected for the experi-
ment. The three selected genotypes were clonally propa-
gated by splitting tillers in the greenhouse to plant three
replicates. The growth chamber experiment was ar-
ranged in a randomized complete block design consisted
of three replicates. For each replicate, there were three
plants of each clone in a pot. The growth chamber was
maintained at 29/22 °C day/night temperatures, and a
16-h photoperiod, with a photon flux density of 150 to
200 pmol m2 s™*

RNA extraction and library preparation

Total RNA was isolated from fully expanded young leaf
tissues at third elongation (E3) [43] stage. The RNA was
extracted using TRIzol® Reagent (total RNA isolation re-
agent) following the manufacturer’s instructions (Life
Technologies, Grand Island, NY, USA) as previously
described [44]. The RNA was pooled from three inde-
pendent pots of each genotype and for each of the three
biological replicates. RNA was eluted in RNase-free
water and quantified using a NanoDropl000 spectro-
photometer (Thermo Scientific, DE, USA) and RNA
integrity was evaluated with RNA6000 n Assay using the
Agilent 2100 Bioanalyzer™ (Agilent Technologies, Palo
Alto, CA, USA) according to manufacturer’s instruc-
tions. The TruSeq stranded total RNA library prepar-
ation kit (Illumina, San Diego, CA, USA) was used for
¢DNA libraries construction as detailed in Serba et al
[44]. In brief, polyA containing messenger RNA was first
purified from total RNA using poly-T oligo-attached
magnetic beads and then chemically fragmented and
primed with random hexamer priming for single-
stranded cDNA synthesis. A second cDNA strand was
synthesized as a replacement strand to the RNA to
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create double-stranded cDNA that was ready for TruSeq
library construction. The short overhanging ds-cDNA
fragments were converted to blunt ends using T4 DNA
polymerase. Then, the 3’ blunt ends were adenylated
and ligated to multiple sequencing adapters for
hybridization into a flow-cell. Finally, RNA libraries were
built by PCR amplification to enrich RNA fragments

with adapter molecules by PCR primers annealed to the
end of the adapters. The RNA libraries were quantified
using qPCR, according to the Illumina Sequencing
Library qPCR Quantification Guide. Normalization of
the indexed libraries to 10 nM was conducted. Finally,
quantification was carried out using the Agilent Tech-
nologies 2100 Bioanalyzer and pooled for sequencing.
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RNA-Seq, preprocessing and mapping

Paired-end (2 x 100 bp) of the cDNA libraries were
sequenced using Illumina TruSeq™ sequencing on the
HiSeq™ 2000 platform (Illumina). Quality evaluation and
trimming was as described in Serba et al. [44]. Briefly,
in-house program was used to trim out low-quality bases
(<Q15) from both the 5- and 3’- ends of the reads to
ensure two or more consecutive bases obtained a Phred
score of 30 (99.90% base call accuracy) or more. The
trimmed reads were aligned onto the switchgrass reference
genome sequence (http://www.phytozome.net/panicumvir
gatum v1.1) using TopHat2 [45] with underlying mapping
with Bowtie2 [46], allowing multi-mapped reads and a
maximum of two mismatches per read with other default
settings. Transcripts were quantified with Cufflinks and
comparison of normalized transcript counts between the
genotypes was done using Cuffdiff [47-50] in FPKM
expression level [51]. Differential expression between sam-
ples was assessed at 5% false discovery rate (FDR). Gene
Ontology (GO) [52, 53] analysis of differentially expressed
genes was performed using the Singular Enrichment Ana-
lysis (SEA) tool of the AgriGO (http://bioinfo.cau.edu.cn/
agriGO) [54] with annotations derived from the switchgrass
(Panicum virgatum v1.1) genome sequence.

Gene expression analysis

[lumina reads were mapped on the switchgrass refer-
ence genome (P. virgatum v1.1) using the default param-
eters. PCR duplicates were removed with Samtools
rmdup option [55] and an annotation-guided read align-
ment was performed with Cufflinks v2.1.1 to reconstruct
transcripts and estimate transcript abundance in units of
FPKM. Regions with FPKM values higher than zero
were considered as expressed [56]. Based on the semi-
quantitative measurement of the FPKM scale defined
by Hansey and collaborators, expressed genes can be
divided in three classes [57]: genes with a FPKM value
below 5 are low-expressed, genes with a FPKM value
greater or equal to 5 and less than or equal to 200 are
medium-expressed, and genes with a FPKM value
greater than 200 are highly-expressed.

Ecotype and genotype comparisons

Three-way comparisons were conducted among the two
lowland and an upland genotypes (Fig. 2). The gene
expression of the upland genotype VS16 was compared
separately with the AP13 and K5. Also the two lowland
genotypes, AP13 and K5, were compared to find out
genotypic differences within the same ecotype. The
differentially expressed gene sets for each of the three
genotypes were depicted in a Venn diagram using a web-
based method called InteractiVenn [58].
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SSRs and SNP markers development

To identify conserved SSRs among the genotypes, a de
novo assembly was conducted for the K5 and VS16 tran-
scripts. These new transcripts and the annotated transcripts
from the reference genome (AP13) were run through
RepeatMasker 4.0 [59]. Then, the de novo assembled tran-
scripts of K5 and VS16 were BLASTn against the reference
transcripts (AP13) to find homologs pairs and triplets that
contained the same SSRs.

Transcripts mapped to the reference genome were
converted from SAM to BAM and sorted for variant dis-
covery. Then, SNP and indels based on the mapped reads
were called using SAMtools mpileup v0.1.7a (http://sam
tools.sourceforge.net) [55] and Bcftools. Custom Perl
scripts were used to reformat the original output and filter
the SNPs based on coverage and probability. Another Perl
script was used to identify in which gene each SNP was
found and where it was located relative to that gene se-
quence (exon or intron, upstream or downstream). The
variants were called separately for K5 and VS16 against
the reference (AP13). The SNPs were first called for at
least 5% coverage. Next, the SNPs were refined for over
100x coverage and at least 5% minor allele frequency. The
SNPs discovered on unanchored contigs were checked for
their location with respect to exon sequences of genes.
Similarly, Indels and SSRs were detected using MIcroSAt-
ellite identification tool (MISA v1.0) [60]. Minimum unit
size cutoffs of eight for a di-, six for a tri-, and four for
tetra-, penta-, and hexanucleotide repeats were used to re-
port SSRs. A maximum distance of 100 bp was allowed
between two SSRs. A web based PhenoGram [61] was
used to visualize the distribution of the SNP loci across
the switchgrass pseudomolecules, each line representing a
SNP locus with its base pair coordinate.
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S1, Additional file 2: Table S2, Additional file 3: Figure S1,
Additional file 4: Table S3 and Additional file 5: Table S4.
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