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Abstract

Background: MicroRNAs (miRNAs) have great potential serving as tumor biomarkers and therapeutic targets. As the
rapid development of high-throughput experimental technology, gene expression experiments have become more
and more specialized and diversified. The complex data structure has brought great challenge for the identification of
biomarkers. In the meantime, current statistical and machine learning methods for detecting biomarkers have the

problem of low reliability and biased criteria.

Results: This study aims to select combinatorial miRNA biomarkers, which have higher sensitivity and specificity than
single-gene biomarkers. In order to avoid exhaustive search and redundant information, miRNAs are firstly clustered,
then the combinations of representative cluster members are assessed as potential biomarkers. Both the criteria for
the partition of clusters and selection of representative members are based on Fisher linear discriminant analysis (FDA).
The FDA-based criterion has been demonstrated to be superior to three other criteria in selecting representative
members, and also good at refining clusters. In the comparison with eight common feature selection methods, this
clustering-based method performs the best with regard to the discriminative ability of selected biomarkers.

Conclusions: Our experimental results demonstrate that the clustering-based method can identify microRNA
combinatorial biomarkers with high accuracy and efficiency. Our method and data are available to the public upon

request.
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Background

MicroRNAs (miRNAs) play important regulatory roles
in many fundamental biological processes for disease
development and progression. Especially, tremendous
researches have demonstrated that miRNAs can serve as
oncogene or tumor suppressor in various cancer types
[1, 2]. During the last decade, benefitting from the devel-
opment of miRNA microarray and small RNA-Seq tech-
niques, miRNA expression data has been widely used in
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the comparison of diseased samples with control sam-
ples, or different subtypes of diseased samples. The
miRNAs with most discriminant capacity, regarded as
biomarkers, have assisted in diagnosis, prognosis predic-
tion and therapeutic assessment of cancers [3, 4], and
sometimes they are even more accurate than coding-gene
markers [5, 6].

In order to search biomarkers, the analysis of differen-
tial gene expression is performed and genes are ranked
according to certain criteria. The evaluation on the qual-
ity of biomarkers is mainly based on statistical or machine
learning approaches, whose corresponding measurements
are statistical significance and classification accuracy,
respectively.
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Till now, a variety of statistical methods have been
applied into the gene expression analysis. Fold change
has been used as an initial metric for measuring the
significance of change in expression levels between two
groups of samples [7], and t-test [8] is a widely-used sta-
tistical method to select differentially expressed genes.
Besides, researchers have developed many alternatives of
t-test, such as ANOVA [9], Wilcoxon test [10], SAM [7],
RVM [11], LIMMA [12], VarMixt [13] and SMVar [14].
Most of the present criteria are for univariate analysis.
As the rapid development of high-throughput experi-
mental technology, gene expression experiments have
become more and more specialized and diversified. Espe-
cially, tissue-specific and condition-specific researches
have largely been emerged. The single-gene biomarkers
are often unreliable or have insufficient ability to dis-
tinguish subtypes or different conditions for complex
diseases.

In order to increase the sensitivity and specificity of
biomarkers, in many studies, the top ranked genes accord-
ing to some selection metric were put together and used
as composite biomarkers. This method is not guaranteed
to find optimal biomarkers, since there may be redun-
dant information among the genes because of correlation.
And, many genes individually do not show good discrim-
inative ability between different groups, while perform
well together with other genes. Therefore, multivariate
analysis is necessary to examine the performance of mul-
tiple genes as a whole. A common method for multi-
variate statistical analysis is Hotelling’s t-square test [15].
Note that in gene expression analysis, the number of
samples is often very limited. As the dimensionality
increases, the statistical inference often fails to provide
reliable results.

Feature selection is a major branch of methods for
screening biomarkers [16]. From a machine learn-
ing point of view, biomarkers correspond to the
features with most discerning power. A multivari-
ate feature selection method scores feature subsets
and rank them, usually by their classification accu-
racy. For example, in order to select gene combina-
tions, Cui et al. [17] and Xu et al. [18] used sup-
port vector machines to separate cancer and normal
tissues, and assessed classification accuracy for all the
k-gene combinations, for k < 4 and kK < 8,
respectively. These multivariate analysis methods can
avoid feature redundancy but may run into expo-
nential complexity due to the huge search space.
Another issue is about the interpretation of compu-
tational results. Too complex classifier (often regarded
as a black-box) and too many variables/features in the
composite biomarkers could be useless, because the
results are extremely difficult for biological explanation
and validation.
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MiRNA expression analysis usually follow the same
procedure and approaches as mRNA expression anal-
ysis, such as hypothesis test [19], clustering [20] and
classification [21] based on machine learning models.
Meanwhile, the above mentioned problems also exist
in miRNA data. Besides, due to the low intensity on
expression level and small difference between miRNA
sequences, the selection of miRNA biomarkers becomes
more challenging. In this study, instead of screening sin-
gle miRNAs or large miRNA sets, we aim to find the
combinatorial biomarkers, i.e., k-miRNA combinations,
where k is a small number. To avoid exponential number
of combinations, we propose a clustering-based method
to reduce the number of candidate combinations and
conduct a highly efficient search. The basic idea is to
assess only the combinations consisting of representa-
tive members from clusters that are generated based on
expression level similarity, rather than all combinations.
In order to further reduce the search space, a proper
criterion is needed to rank the miRNAs in the clusters,
and only the most promising ones can be selected as
the representatives of their clusters to form the candidate
biomarkers.

Clustering approaches have been extensively used to
find co-expressed genes. Genes in the same clusters are
usually functionally related. There have been some studies
that adopted clustering-based methods for feature selec-
tion. For example, Jaeger et al. proposed to use a fuzzy
C-means clustering method to pre-filter genes before
ranking genes individually [22]. That is, only one repre-
sentative gene is selected from each cluster and involved
in the ranking procedure. A similar approach was pro-
posed by Hanczar et al. [23], who used k-means clustering
to select ‘prototype genes. In both of these two methods,
the number of clusters needs to be pre-defined. Actually,
it is an important issue to find the proper number of clus-
ters. In order to address this issue, Wang et al. developed
a novel hybrid approach [24]. They applied hierarchi-
cal clustering on these genes to generate a dendrogram,
then the optimal number of clusters was determined by a
leave-one-out cross-validation (LOOCYV) strategy by try-
ing all of the different clusterings by breaking up the
dendrogram.

In all of these methods, there is no defined crite-
rion on how to determine the number of clusters or
the proper size of clusters, though Wang et al. con-
ducted an empirical analysis of LOOCV [24]. Moreover,
these methods typically used genes which are the clos-
est to centers of their clusters as the representative genes,
while whether the center gene is the best choice is ques-
tionable. In another similar research proposed by Sahu
et al. [25], k-means clustering was adopted, while signal-
to-noise ratio (SNR score) was used to rank genes in
every clusters.
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Our approach has two major differences from the pre-
vious approaches: i) there is a new criterion to select the
most discriminant member in each cluster, ii) there is a
defined criterion to determine whether a cluster should be
split. And the goal of this study is slightly different from
the aforementioned literatures in that we aim to develop
efficient method for identifying miRNA combinatorial
biomarkers, instead of large feature subsets which are hard
to be interpreted in biology. We have conducted a series
of experiments to compare different criteria for selecting
representative genes from clusters and splitting raw clus-
ters. We also compared the new method with some widely
used feature selections methods. The experimental results
demonstrate that our proposed method is very effective in
screening genes in the clusters. The resulting clusters can
greatly reduce the number of combinations to be assessed,
and obtain high-quality combinations in the mean time.
The selected miRNA combinations have not only high
discriminative ability, but also enriched pathways closely
related with tumorigenesis. Moreover, many frequently
present miRNAs in these combinations have been vali-
dated to be associated with breast cancer development in
previous literatures.

Methods

The proposed method consists of three major steps. The
first step is a pre-screening to remove uninformative
miRNAs using Welch’s t-test. The second step is a
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hierarchical clustering on the remaining genes. In the
last step, representative miRNAs are selected from every
clusters to form miRNA combinations as candidate
biomarkers. Both the criteria for assessing the quali-
ties of clustering and selecting representative miRNAs
within clusters are defined through a linear discrimi-
nant method. The flowchart of the method is shown
in Fig. 1.

Fisher linear discriminant analysis

Fisher linear discriminant analysis (FDA) [26] seeks a best
linear combinations of features to achieve maximum sep-
aration on the projected feature space, by optimizing the
object function which is a ratio of inter-class difference
to intra-class difference of data. Since FDA projects orig-
inal features onto one-dimensional features, it is used not
only for classification but also for dimensionality reduc-
tion. Different from principal component analysis (PCA),
FDA works in a supervised manner, thus the projected
features are more discriminative with respect to the clas-
sification task. The algorithm of FDA is briefly described
in the below.

For a binary classification problem, suppose X is the
training set which has # samples with p dimensions,
ie, X = {x1,x9,X3,---,Xy}, where x;s (1 < i < n)
are p-dimensional sample vectors belonging to class ¢
or c¢;. Let mg and m; be the mean vectors of samples
in these two classes, respectively, and w be the optimal

Identification of miRNA combinatorial biomarkers
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Fig. 1 Flowchart of the feature extraction method
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projection direction. According to FDA’s object function,
w is obtained by Eq. (1),

w oS, (mg — my), (1)

where S, is the sum of variance within each class, i.e.,

Sw= Z (x; — my) (x; —mg) '+ Z (x; —my) (x; —mj) T

X;€Co X;€C1

(2)

Given this optimal direction, all x;s are projected onto
w to get the new one-dimensional sample sets Y =
{y1.92:++ ¥}, where

yi=waif0ri=1,2,~~~,n (3)

As for classification, the definition of threshold (class
boundary) has multiple choices. Normally, the threshold,
90, can be computed as Eq. (4),

nomo + nimi
yo=—"—" (4)
no + ny
where mg and m; are means for the two classes in the
projected data space, i.e.,

moy = WTmo (5)
m =wlm (6)

In the test phase, a test sample x is firstly projected
onto w, then the resulted value y is compared against
yo. If y is larger than or equal to yg, it will be assigned
to Class ¢g. Otherwise, it is regarded as belonging to
class c;j.

The criteria for selecting representative members
In order to avoid feature redundancy, a representa-
tive member is selected from each cluster of miRNAs.
Although many methods directly choose the mean or
center member, it is necessary to define some criterion
to rank the members by their contribution or potential
in the separation of groups of samples. As described in
“Fisher linear discriminant analysis” section, FDA aims
to find the projection direction, w, with maximum dis-
criminative capacity. And, w can be regarded as a vector
of weights, indicating the importance of features. Intu-
itively, those features with the largest weights are the most
informative for classification. In other words, the magni-
tude of each component of w implies the relevance of the
corresponding miRNA to classification.

Let I be the index set of all miRNAs, i.e. I = {1,2,...,p},
and I, be the index set of the miRNAs in the cluster c.
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The index of the representative member of ¢, i, satisfies
Eq. (7):

[w(ic)| = rjrée;X(IW(j)l), (7)

where w(-) is a component of w.

The criteria for splitting clusters

Besides selection of miRNAs, the determination of num-
ber or size of clusters also has a great impact on the
performance of search algorithms. Too many clusters are
more likely to find high quality combinatorial biomark-
ers but can result into huge computational complexity.
The extreme case is the trivial clustering that each sin-
gle miRNA is a cluster. On the contrary, too few clusters
would miss valuable combinations since only a few rep-
resentative miRNAs are considered. Thus here is a trade-
off between accuracy and efficiency. Instead of explicitly
specify the number of clusters, we seek proper criteria for
determining whether a given cluster needs to be split into
smaller clusters.

Here, we define the criterion mainly based on the loss of
information caused by projection. Intuitively, if the cluster
members are diversified, it would be very hard to find a
unified direction for projection, so the data samples would
suffer great information loss after projection, which indi-
cates that the cluster needs to be split. Thus, we define a
measure called mean squared loss (MSL), to estimate aver-
age information loss in a cluster. Equation (8) formulates
this measure.

Let / be the hyperplane that passes the mean point of
the data samples and has normal direction of w (FDA
projection direction), then MSL is defined as:

n L 2
s = S PO —m)” ©
n

where Pj,(-) denotes the projection of a vector onto s, m
is the mean vector of samples, x; is the ith data sample.
Since % is perpendicular to w, we regard the projection of
the difference between x; and m on / as an approximative
loss caused by FDA projection.

Furthermore, considering that the samples may differ in
data magnitudes, we define another criterion called mean
loss rate (MLR) as shown in Eq. (9),

D |Ph(xifm)|
MILR = ’l—h‘l" )
n

where MLR denotes the averaged loss rate, i.e. the ratio of
the loss (in the projection) to the norm of sample.

The whole pipeline is described in Algorithm 1, in which
the MLR is used as the selection criterion.



The Author(s) BMC Genomics 2017, 18(Suppl 2):210

Algorithm 1

Input: Pre-screened miRNA set M

Output: Candidates for combinatorial miRNA
biomarkers 3

1: Perform hierarchical clustering on M and obtain a
dendrogram D.
2. Break down D into clusters C, and set a threshold ¢ to
split complex clusters.
. for Each cluster ¢ € C do
Use FDA to get the projection direction w
Project all samples onto w and compute MLR,
if MLR, > t then
Split ¢ into two subclusters ¢; and ¢
Repeat Steps 4-9 for ¢; and ¢, respectively
end if
10: end for
11: Select representative miRNAs in all clusters and put
them in the set R
12: Let S be the set of all k-tuple subsetsC R, where
k < k* (a predefined number).
13: for Eachs € S do
14:  Evaluate its classification accuracy on all samples
using SVMs
15: end for
16: Put the top ranked s in B
17: Output B

RS B A

Evaluation criteria
The performance of different criteria are evaluated using
two measures for the resulted combinations which are
ranked top 10, 100 and 1000, respectively. One is average
rank, denoted by AvgRank, and the other is the proportion
of the true top combinations identified by the method,
denoted by HitRatio.

These two measures are defined in Egs. (10) and (11),
respectively. For top n k-miRNA combinations searched
by the method,

. rank;
AvgRank, = 7215’5” L
n

(10)

where rank; is the true rank of the ith best combination
identified among all k&-miRNA combinations (In contrast
of the rank obtained by the proposed heuristic search, we
call the original rank of the miRNA combination by using
the exhaustive search as “true rank”). All these ranks are
determined according to classification accuracy.

hit
HitRatio, = —~=,
n

(11)

where hit,, is the number of hits in the # best combinations
searched by the method. A hit means the searched result
is truly among the top-z combinations.
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Apparently, small AvgRank and high HitRatio of the
search results indicate good performance of the algorithm
for identifying high-quality biomarker candidates.

In addition, to evaluate the classification performance
of the selected miRNA combinations, we used three accu-
racy measures, namely sensitivity, specificity and total
accuracy (TA).

Results

Data sets

In this study, we used two public miRNA data sets from
NCBI GEO [27], GSE22220 [28] and GSE40525 [29],
which were measured by Illumina Human vl miRNA
panel and Agilent-019118 Human miRNA microarray
platform, respectively. Both of these two studies aim to
explore function of microRNAs in breast tumorigenesis,
and reveal potential therapeutic targets. There are a total
of 120 samples collected from 64 breast cancer patients,
including 56 pairs of matched tumor and adjacent peri-
tumoral breast tissues, and 8 unmatched tissues in GSE
40525. And in GSE22220, there are 210 samples from
219 breast cancer patients, including 84 estrogen recep-
tor (ER)-negative tissues, and 135 ER-positive tissues. The
detailed statistics of patient characteristics are shown in
Table 1.

In order to ensure the data quality, we removed the miR-
NAs whose expression levels were not detected or below
the threshold value in more than 30% of the samples.
GSE40525 was classified into two categories according
to tumor and peri-tumor status, while GSE22220 was
divided into two categories according to ER status. Finally,
the GSE40525 data set contains 52 pairs of tumor and
peri-tumor profiles and the GSE22220 data set contains
127 samples of ER-positive and 80 of ER-negative.

Experimental settings

As a pre-screening step, Welch’s t-test was conducted
on the two data sets. MiRNAs with pvalue greater than

Table 1 Sample statistics

Characteristics GSE22220 GSE40525
Grading
Gl 42 3
G2 87 31
G3 65 27
Nodal status
NO 127 29
N+ 92 32
Estrogen receptor
Positive 135 47
Negative 84 27
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0.05 were filtered out, and the remaining miRNAs were
clustered by a hierarchical clustering with average-link
method. Next, the hierarchical tree was cut into raw
clusters. In order to find natural cluster divisions in the
hierarchical tree, we computed inconsistency coefficient
for each link in the tree [30]. This value compares the
height of a link in a hierarchical tree with the aver-
age height of links below it. Inconsistent links indicate
the border of naturally divided clusters. The inconsis-
tency coefficients range from 0 to 1.15 for both the
two data sets. Thus we specified an inconsistency coef-
ficient threshold of 1 to partition the two hierarchical
trees into raw clusters, resulting in 82 and 63 clusters,
respectively.

Further, FDA-based criteria were used to determine
whether or not those clusters should be split into smaller
clusters. After the final clusters were determined, a repre-
sentative member was selected from each cluster to form
miRNA combinations. The comparison on several crite-
ria for selecting representative members within clusters
and for splitting clusters are given in the following two
sections.

In the final step, each combination was assessed by
classification accuracy. We evaluated the classification
accuracies of all k-combinations (k < 4) comprised by
the selected representative miRNAs using LIBSVM ([31]

Table 2 Comparison of four selection criteria on GSE22220
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with default parameters via 5-fold cross validation. The
AvgRank and HitRatio were calculated based on the true
ranking lists obtained by exhaustive searches.

Comparison of criteria for selecting representatives in
clusters

In previous researches, the center gene, i.e. the gene
closest to the cluster center, was usually selected as the
representative member of a cluster [22-24]. Also, some
researchers proposed specific ranking criteria, such as the
signal-to-noise ratio (SNR) proposed by Sahu et al. [25].
Here, we compared the FDA measure with three other
methods based on center-gene, SNR, and pvalue of t-
test, respectively. All the k-miRNA combinations (2 <
k < 4, i.e. pair, triple and quadruple) resulted from these
selection criteria were assessed.

In order to evaluate the quality of the search results, we
examined top 10, 100 and 1000 best combinations identi-
fied by these four methods and recorded their AvgRanks
and HitRatios obtained on GSE22220 and GSE40525 in
Tables 2 and 3, respectively.

The results show that a proper selection criterion is
crucial for searching high-quality miRNA combinations.
Specifically, FDA and t-test based criteria have significant
advantage over other two methods, and SNR is slightly
better than center-gene. For instance, on GSE22220, FDA

Feature combination Performance measure

Selection criteria

FDA T-test SNR Center®
Pair AvgRankig 76 82 96.7 1122
AvgRankigo 829 84.4 4123 5575
AvgRanki oo 1586.5 1624.4 32487 33557
HitRatio1o(%) 80.0 70.0 0 0
HitRatio100(%) 59.0 58.0 6.0 4.0
HitRatioq000(%) 33.0 320 16.0 11.0
Triple AvgRankio 9.9 8.6 333.1 3333
AvgRankiog 934 94.4 2607.6 2270.7
AvgRank; oo 1612.2 1684.3 13833.3 14626.0
HitRatio10(%) 60.0 500 100 0
HitRatio100(%) 580 580 20 1.0
HitRatioqgoo (%) 280 271 13 15
Quadruple AvgRankio 12.8 12.8 417 7449
AvgRankiog 1154 108.5 408.2 4938.1
AvgRankiooo 1482.3 1562.6 10491.6 39605.2
HitRatio1o(%) 40.0 40.0 50.0 0
HitRatio100(%) 50.0 450 24.0 0
HitRatioq000(%) 26.2 244 84 0.5

@Center denotes the method using center gene as the representative member
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Table 3 Comparison of four selection criteria on GSE40525

Feature combination Performance measure Selection criteria

FDA T-test SNR Center

Pair AvgRankio 9.1 9.1 39.1 57
AvgRankiog 103.6 103.0 3356 402.6
AvgRankiogo 1469.8 1470.5 2085.6 2683.6
HitRatioo(%) 40.0 40.0 10.0 0
HitRatio100(%) 64.0 64.0 180 120
HitRatio1000(%) 39.0 39.2 244 15.8

Triple AvgRankio 26.3 263 262.8 360.2
AvgRankiop 2294 2294 1427.0 1737.2
AvgRankioog 15739 1577.2 9085.5 11949.7
HitRatio(%) 20.0 20.0 0 0
HitRatio00(%) 66.0 66.0 6.0 40
HitRatio1000(%) 37.0 36.8 4.6 2.8

Quadruple AvgRankio 174 174 229 191
AvgRankiog 273 273 26109 1906.5
AvgRankiogo 2836.0 2826.5 2926.7 2965.3
HitRatio0(%) 40.0 40.0 20.0 60.0
HitRatio100(%) 4.0 4.0 26 6.0
HitRatio1000(%) 193 19.0 26 4.8

and t-test successfully identified the best pair and triple
miRNAs, and the second-best quadruple, whose accu-
racy is only 0.4% lower than the best one. FDA and t-test
have much smaller AvgRanks than SNR and center-gene,
no matter what the k is and how long the top list con-
sidered. Moreover, FDA hits 80% of the top 10 pairs.
Both FDA and t-test catch majority of the top-ranked
miRNA pairs and triples. As k increases to 4, the hit
ratio decreases greatly, which is mainly due to the expo-
nentially expanded search space. AvgRank and HitRatio
values of the top 100 lists obtained by the four meth-
ods on GSE22220 data set are depicted in Figs. 2 and 3,
respectively.

Generally, these methods have consistent performance
on the two data sets. For GSE40525, the accuracies of
combinatorial miRNAs are very high. Even a pair of miR-
NAs can achieve the accuracy as high as 92.3%, and the
highest accuracy of quadruples is 95.2%, which suggests
that the k-miRNA combinations (k < 4) are sufficient
for separating the samples from two classes. The goal
of GSE40525 is to discriminate tumor and peri-tumor
samples, thus the differential expressed signal may be
widespread. If too many combinations can achieve high
accuracies, the real biomarkers may become not that
notable. Thus, the results of average rank and hit ratio
seem to be worse than those of GSE22220.

Comparison of criteria for splitting clusters

In this study, we propose two criteria for determining
whether a given cluster should be split, i.e., mean squared
loss (MSL) and mean loss rate (MLR). Considering that
different clusters contain different numbers of miRNAs,
instead of using the original MSL, we divide the squared
loss by m (number of miRNAs in the cluster), and use
MSL = MTSL in the analysis. The MSL's for all raw clus-
ters in GSE40525 sorted in ascending order are shown in
Fig. 4. It can be observed that a dramatic change occurs a
little above 0.6 on the curve. Thus, we set the threshold as
0.65, where the steepest ascent locates. And we found that
in GSE22220 the value is very close.

Obviously, MLR would grow rapidly as the number of
miRNAs in the clusters increases. Here we set the thresh-
old as 1 — #, which is a relatively loose criterion. MLR
works as a supplement to MSL. In our experiment, if either
of these two criteria is not satisfied (i.e., MLR/MSL is
greater than its threshold), the cluster should be parti-
tioned.

We compared the refined clustering (RC) by using these
two criteria and the conventional hierarchical clustering
(HC) without further splitting. The results are shown in
Table 4. Considering that the results obtained after refine-
ment are generally better than those from raw clusters
because more clusters make larger search space of miRNA



The Author(s) BMC Genomics 2017, 18(Suppl 2):210

Page 8 of 14

6000

5000

4000
m FDA

3000 W T-test
B SNR

2000 M Center gene

1000

0 - |
Pair Triple Quadruple
Fig. 2 AvgRank of top 100 lists obtained by the four methods for GSE22220

combinations, we did not use results of the raw clusters
in the RC experiment. Instead, we tried different inconsis-
tency coefficients for HC, which produced close number
of clusters as RC did, and selected the best results, while
in RC the inconsistency coefficient and thresholds of MSL
and MLR are fixed as mentioned above.

Generally, RC has a comparable or better performance
to the best HC. For the top 10 list, HC shows some advan-
tage, while for top 100 and 1000, RC performs better.
These results suggest that MSL and MLR can help to
improve the clustering quality, and save effort on search-
ing good threshold to yield clusters in the hierarchical
tree. Basically, both MSL and MLR measure the part of
information that cannot be expressed by the projected

features, i.e. information loss during the projection. Dif-
ferent from the absolute loss represented by MSL, MLR
measures the relative loss and plays a part in screening
low-quality clusters when the variances of miRNAs differ
greatly.

Comparison with existing feature selection methods

We further compared the new method with some
widely used feature selection methods, including the
Correlation-based Feature Selection (CFS) [32], best-
first search (BFS), consistency-based selection [33], Chi-
square score [34], information gain (IG) [35], Random
forest (RF) filter [36], t-test [37] and the Wilcoxon rank-
sum test [38].
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Fig. 3 HitRatio of top 100 lists obtained by the four methods for GSE22220
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Among these methods, CFS, BES and consistency-based
methods determine the number of selected features auto-
matically. For other methods, we chose the subsets con-
sisting of top 2, 3 and 4 features in the assessment. The R
package FSelector [39] was adopted to implement these
eight methods in the comparison experiments.

Table 4 Comparison of clustering methods on two data sets

Most feature selection methods shown in Table 5 are
filtering methods, except that BES is a wrapper method,
and the proposed method can be regarded as a hybrid
method, which conducts filtering within clusters and then
acts as a wrapper method using SVMs. The best miRNA
combinations identified by the new method achieve the

Feature combination Performance measure GSE22220 GSE40525
HCP RC? HCP RC?
Pair AvgRankio 7 8.2 85 9.1
AvgRankioo 922 84.4 180.9 103.0
AvgRank; oo 20031 1624.4 10696.8 1470.5
HitRatio(%) 70.0 70.0 60.0 40.0
HitRatio; 0o (%) 54.0 58.0 320 64.0
HitRatio1000 (%) 30.0 320 150 392
Triple AvgRankig 82 8.6 92 263
AvgRanki oo 954 943 68.7 2294
AvgRankiooo 1776.2 1684.3 36752 1577.2
HitRatio1o(%) 60.0 60.0 20.0 20.0
HitRatio100(%) 580 580 71.0 66.0
HitRatio100(%) 27.1 27.1 303 36.8
Quadruple AvgRank;g 142 128 9.0 174.0
AvgRankioo 1126 108.5 257.2 2730
AvgRank; oo 1639.1 1482.3 31713 2826.6
HitRatioo (%) 30.0 40.0 780 40.0
HitRatio; 00 (%) 48.0 50.0 120 4.0
HitRatio1000 (%) 232 264 16.0 19.3

@RC: refined clustering, in which the inconsistency coefficient for raw clusters and thresholds of MSL and MLR are fixed
PHC: hierarchical clustering, which performs the best by trying different inconsistency coefficients
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Table 5 Comparison of feature selection methods on two data sets?
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Methods Feature # GSE22220 GSE40525
Sensitivity Specificity TA Sensitivity Specificity TA
CFS 29/6 0.984 0.744 0.783 0.942 0.925 0933
BFS 4/3 0.953 0.733 0.758 0.904 0.904 0.904
x° 2 0976 0.701 0.729 0923 0.906 0913
3 0913 0.753 0.763 0.923 0.923 0923
4 0.945 0.764 0.787 0923 0.923 0.923
Consistency 13/5 0.953 0.771 0.797 0.942 0.925 0933
IG 2 0976 0.701 0.729 0.827 0.896 0.865
3 0913 0.753 0.763 0.942 0.925 0933
4 0.945 0.764 0.787 0.923 0.906 0913
RF 2 0976 0.701 0.729 0.923 0.906 0913
3 0913 0.734 0.744 0.942 0.891 0913
4 0.953 0.747 0.773 0.942 0.907 0.923
t-test 2 0913 0.753 0.763 0.923 0.906 0913
3 0.890 0.807 0.802 0.923 0.889 0.904
4 0.890 0.837 0.826 0.942 0.891 0913
Wilcon test 2 0913 0.753 0.763 0.923 0.906 0913
3 0.890 0.807 0.802 0.942 0.891 0913
4 0.937 0.793 0.812 0.942 0.925 0933
CIUFDAP 2 0.969 0.750 0.783 0.923 0.923 0.923
3 0976 0.775 0.812 0.942 0.925 0.933
4 0.906 0.833 0.831 0.962 0.943 0.952

“The numbers before and after //' denotes feature numbers of GSE22220 and GSE40525, respectively

Sensitivity = TP/(TP+FN), Specificity = TN/(FP+TN)
TA: total accuracy

SCIUFDA denotes the clustering-based feature selection using FDA method for selecting representative miRNAs

highest accuracies on both data sets, increasing the total
accuracies by about 0.5% on GSE22220 and 1.9% on
GSE40525 compared with the best accuracies obtained by
other methods. This result again demonstrates the valid-
ity of clustering-based screening and the FDA criteria.
Given the representative members selected from clusters,
the search space is greatly reduced and the best combina-
tions can be efficiently searched. Hence, the new method
achieves a good balance between efficiency and accuracy.

Functional analysis on the selected miRNAs

In order to perform functional enrichment on the miRNA
combinatorial biomarkers, we analyzed the enriched path-
ways of their target genes by using mirPath [40]. For
GSE40525 data set, triples of miRNAs have the best
discriminant capacity, and the top 5 significant path-
ways for the best triple are: Fatty acid biosynthesis,
PI3K-Akt signaling pathway, Prostate cancer, TGF-beta
signaling pathway and p53 signaling pathway, all of

which have pvalues below 5 x 10~7. For the GSE22220
data set, the enriched pathways include PI3K-Akt sig-
naling pathway, NF-kappa B signaling pathway, focal
adhesion, etc. Interestingly, PI3K-Akt signaling path-
way is significantly enriched in both data sets. This
pathway acts as regulator of cell proliferation, dif-
ferentiation, apoptosis, and plays important roles in
tumorigenesis.

In addition, we found that the top-ranked combina-
tions usually have overlapped members. For example,
all the top 10 pairs and triples of GSE40525 contains
hsa-miR-139-5p. And, best quadruples often contain best
pairs and triples. Therefore, we recorded the most fre-
quent miRNAs in pairs and triples respectively and got
their intersection set (Table 6). There are 8 miRNAs and
7 miRNAs for GSE22220 and GSE40525, respectively.
Furthermore, these miRNAs were searched against two
miRNA-disease relationship databases, namely HMDD
v2.0 [41] and miR2Disease [42]. Among the 15 most
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Table 6 Most frequent miRNAs in pairs and triples?

GSE22220 GSE40525

MiIRNA Pvalue MIRNA P value
hsa-miR-18a* 2.09E-10 hsa-miR-139-5p 2.37E-24
hsa-miR-146b-5p 2.79E-10 hsa-miR-378 7.59E-20
hsa-miR-149 7.01E-09 hsa-miR-145 5.07E-18
hsa-miR-224 143E-08 hsa-miR-125b-2* 1.53E-14
hsa-miR-577 1.02E-07 hsa-miR-340 1.30E-10
hsa-miR-452* 1.51E-07 hsa-miR-100 1.34E-10
hsa-miR-18a 1.89E-07 hsa-miR-141 1.02E-08
hsa-miR-365 2.28E-07

2MiRNAs that have evidence of association with breast cancer (from HMDD and
miR2Disease) are in bold

frequent miRNAs, 9 miRNAs were reported in previ-
ous literatures as being involved in the development of
breast cancer (Table 7). It is worth noting that 4 of the
miRNAs are not covered in the top 10 list evaluated by
statistical significance of the conventional t-test ranking
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method, but all of them have supporting literatures.
Specifically, hsa-miR-365 ranks 11, hsa-miR-340 ranks
33, hsa-miR-100 ranks 34, and hsa-miR-141 ranks 56.
Both miR-340 and miR-100 have been demonstrated as
inhibitors of tumorigenesis with biological-experimental
evidence.

Discussions

In this paper, we propose to identify miRNA combina-
torial biomarkers due to the important role that miR-
NAs play in the development of cancer and also some
good properties of combinatorial biomarkers. The rea-
sons for searching biomarkers of miRNA combinations
are manifold. Firstly, single-gene biomarkers identified by
uni-variate analysis are often unreliable with low speci-
ficity for discriminating complex disease properties. Thus,
multi-gene biomarkers are in great need. However, the
biomarkers containing too many genes, resulted from
feature subset selection, are extremely difficult to be inter-
preted in biomedicine. For instance, if we have identi-
fied a k-tuple combinatorial biomarker, and we want to

Table 7 Most frequent miRNAs in pairs and triples

MiRNA name PMID Description
hsa-mir-18a 16754881 Copy number loss
19684618 Higher levels of expression in ERalpha-negative tumors
19624877 Differentially expressed between breast cancer cells and mammary epithelial cells, highly expressed in MCF-7
cells
21755340 Expression was much higher in ERa-negative than in ERa-positive tumors.
hsa-mir-146b 16461460 Overexpressed
19190326 miR-146: Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis
18634034 miR-146:rs2910164 were associated with increased risk of breast cancer in Chinese women
21409395 miR-146b-5p preferentially expressed in normal basal cells
21472990 Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers.
hsa-mir-149 18634034 miR-149: rs2292832 were associated with increased risk of breast cancer in Chinese women
hsa-mir-224 21953071 Down-regulated during lobular neoplasia progression compared to normal epithelium.
22809510 MicroRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer
cells.
hsa-mir-452 22353773 Differentially expressed between serum samples from patients with cancer and serum samples from healthy
controls
hsa-miR-365 18812439 Up-regulated greater than 2-fold in BC compared with NAT, potential target genes include members of RAS
oncogenes.
hsa-mir-340 21225860 Inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met
21692045 Inhibites breast cancer cell migration and invasion through targeting of oncoprotein c-Met.
hsa-mir-100 21634028 Regulates beta-tubulin isotypes in MCF7 breast cancer cells.
22926517 Suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling.
hsa-mir-141 18376396 Downregulated
22952344 CTC (circulating tumour cells)-positive had significantly higher levels of miR-141 than CTC-negative MBC and

controls.
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Table 8 Accuracies of different feature subsets®
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Feature subset Accuracy measure GSE22220 GSE40525
T-test FDA SNR Center T-test FDA SNR Center
All Sensitivity 0.874 0.882 0.921 0.906 0.962 0.962 0.962 0.942
Specificity 0.804 0.794 0.770 0.762 0.806 0.781 0.806 0.817
TA 0.792 0.787 0.783 0.768 0.865 0.846 0.865 0.865
Pair Sensitivity 0.969 0.969 0.929 0.984 0.923 0.923 0.885 0.846
Specificity 0.750 0.750 0.756 0.714 0.923 0.923 0.920 0917
TA 0.783 0.783 0.773 0.749 0.923 0.923 0.904 0.885
Triple Sensitivity 0976 0.976 0.850 0.984 0.942 0.942 0.942 0.904
Specificity 0.775 0.775 0.812 0.714 0.925 0.925 0.925 0.922
TA 0.812 0.812 0.787 0.749 0.933 0933 0.933 0913
Quadruple Sensitivity 0.906 0.906 0.906 0.890 0.942 0.942 0.887 0.923
Specificity 0.833 0.833 0.821 0.819 0.961 0.961 0.940 0.960
TA 0.831 0.831 0.821 0.812 0.952 0.952 0915 0.942

@All: the full set of representative miRNAs selected from clusters
Sensitivity = TP/(TP+FN), Specificity = TN/(FP+TN)
TA: total accuracy

validate the overexpress/unexpress rule as well as inter-
correlation in this biomarker, the over/under express pat-
tern has a total of 2% possibilities. Moreover, correlation
coefficient can only be computed between two genes,
and now there have been some studies on the condi-
tionally independent properties in triples (3-gene com-
binations). But there have been no effective means to
measure or validate the interconnection among multiple
genes yet. Moreover, according to our results, combina-
tions with small k have sufficient capability to separate
groups of samples. We have also examined the accuracy
of using all representative members selected from every
clusters (Table 8), which are much lower than the best
k-miRNA combinations (k < 4), decreasing by about
4% on GSE22220 and 9% on GSE40525. This result fur-
ther demonstrates the usefulness of small combinatorial
biomarkers.

Conclusions

MiRNA expression files have been widely used in the iden-
tification of biomarkers for complex diseases. Due to the
low specificity of single-gene biomarker and difficulty in
interpretating large gene set, this study aims to develop
efficient algorithm for searching miRNA combinatorial
biomarkers with high discriminability. We propose a
clustering-based method to avoid brute force search, and
define two types of criteria for refining clusters and select-
ing representative members. The former criterion aims to
measure the loss during the feature projection by Fisher
linear discriminant analysis, and determine whether or
not to partition the given clusters. The latter criterion
aims to select the most informative miRNAs in the

clusters according to their contribution for classification
in FDA model. We conducted experiments on two breast
cancer miRNA expression profiles. The FDA-based selec-
tion method performs the best with regard to average
rank of the top searched results and hit ratio on the
true top list. The FDA-based cluster splitting rule has
also been demonstrated to be effective in refining the
clustering results. For the two data sets, k-miRNA combi-
nations with k < 4 have sufficient capacity to discriminate
the samples (83% for GSE22220 and 95% for GSE40525).
This method can also be applied to the search of com-
binations with larger k, and mRNA expression data. The
top-ranked miRNA combinations are worth further study
on their functions as well as interactions of the miRNAs.
As an additional computational analysis, the most fre-
quent miRNAs occurring in top 10 pairs and triples have
been searched again miRNA-disease database. Among the
15 most frequent miRNAs, 9 miRNAs have supporting
literatures of their roles in the development of breast
cancer.
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