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Abstract

Background: Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary
events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for
reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are
raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network,
and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic
network. Both the problems are NP-complete.

Results: A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed
and implemented in C. The resulting program is further extended into a computer program for fast computation of
the Soft Robinson–Foulds distance between phylogenetic networks.

Conclusions: Two computer programs are developed for facilitating reconstruction and validation of phylogenetic
network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough
for use in practice. Additionally, the distribution of the Soft Robinson–Foulds distance between phylogenetic networks
is demonstrated to be unlikely normal by our simulation data.

Keywords: Phylogenetic network, Cluster containment problem, Tree containment problem, (Soft) Robinson–Foulds
distance, Exponential-time algorithm

Background
Since Darwin’s The Origin of Species, the evolutionary his-
tory of life has been widely depicted as phylogenetic trees.
However, the simplified tree-like evolutionary models are
being challenged by the accumulating amount of evidence
of lateral genetic transfer between lineages, particularly
in prokaryotes [1–3]. Additionally, other reticulate evo-
lutionary events also cause complications in constructing
tree-like models, such as hybridization and introgres-
sion between species [4, 5], and recombination of vari-
ous forms [6]. The recognized limitations of phylogenetic
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trees motivated the adoption of phylogenetic networks
to model these reticulation events [7, 8]. Phylogenetic
networks can be used to either visualize conflicting phy-
logenetic information or model reticulation events explic-
itly. The former are typically unrooted, whereas the latter
are rooted, which is the focus of this study. In recent
years, phylogenetic networks have been the subject of
intensive theoretic studies [9–12]. However, considerable
challenges in reconstructing phylogenetic networks still
exist [13].

In a phylogenetic tree, the taxa below a node form a
unique subset of the taxa, called its cluster. A phylogenetic
tree is uniquely determined by the set of “nested" clusters
in the tree (see, for example, [10]).

A phylogenetic network is a generalization of a phy-
logenetic tree in which there are additional reticulation
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nodes, which are the nodes with an in-degree of at least
two. Since most gene families have tree-like evolution-
ary histories, the network model of the evolution of a set
of genomes is often built and validated by checking its
consistency with the available related gene trees and/or
clusters [10].

In a phylogenetic network, a non-reticulation node is
called a tree node. Each tree node represents a cluster and
a set of soft clusters. Similar to the case of phylogenetic
tree, a node’s cluster consists of all taxa below it, whereas
its soft clusters are the clusters represented by this node in
the phylogenetic trees that are displayed in the network.
Here, a phylogenetic tree is said to be displayed in a phy-
logenetic network if it can be obtained by deleting all but
one incoming edges from each reticulation node and then
contracting all the nodes of degree two.

The tree containment problem (TCP) and the cluster
containment problem (CCP) have arisen from recon-
structions of phylogenetic networks [14]. The TCP asks
whether a phylogenetic tree is displayed in a phylogenetic
network. The CCP asks whether a cluster is a soft clus-
ter of some tree node in a phylogenetic network. Both
the TCP and CCP are NP-complete [10, 14], even for
restricted networks [15].

A polynomial-time algorithm for the CCP is given
for reticulation-visible networks [10]. A network is
reticulation-visible if, for each reticulation node, a leaf
exists such that every path from the network root
to the leaf contains this reticulation node. Recently,
a linear-time algorithm is presented for the CCP on
this class of networks [16]. Given that a large frac-
tion of phylogenetic networks are not reticulation-visible
[17], however, it is necessary to develop an algorithm
for the CCP for arbitrary networks for the following
reason.

Measuring the dissimilarity between phylogenetic net-
works is important for assessing a network reconstruction
method. One of the metric functions that has been pro-
posed for this purpose is the Robinson–Foulds (RF) dis-
tance, which is a generalization of the same metric for
phylogenetic trees. Simply put, it is the half of the car-
dinality of the symmetric difference of the two sets of
clusters respectively contained in the two networks [18].
It takes linear-time to compute the RF distance between
phylogenetic networks [10].

By replacing clusters with soft clusters, we obtain the
Soft Robinson–Foulds (SRF) distance [10]. Since the CCP
is NP-complete, there is unlikely a polynomial-time algo-
rithm for computing the SRF distance. To the best knowl-
edge of the authors, only a straightforward method has
been implemented in the software Dendroscope [19]. The
method exhaustively searches the clusters that are in a
phylogenetic tree displayed in one network but are not in
any phylogenetic tree displayed in another.

Recently, Gunawan et al. [20] developed a computer
program for solving the TCP on arbitrary networks.
Although it has exponential-time complexity in the worst
case, it runs fast enough to be used in practice.

Here, we first develop an algorithm for the CCP by using
the decomposition theorem in [16]. We then extend it into
an algorithm for computing the SRF distance. We imple-
mented these two algorithms in C and tested them on
empirical and simulated network datasets. As an appli-
cation of the programs, we examined the differences of
networks reconstructed for two datasets in the literature.
We also conducted a preliminary study of the distribu-
tions of the RF and SRF distances in the phylogenetic
network space.

Methods
We first introduce the basic concepts and notation, then
recap the decomposition technique for arbitrary phyloge-
netic networks, and finally describe the algorithms for the
CCP and the SRF distance.

Concepts and notation
Let X be a set of taxa. A rooted phylogenetic network
(network for short) over X is an acyclic digraph in which
the leaves (i.e., nodes of out-degree zero) are bijectively
mapped to X. A taxon typically represents some extant
organism or species. A network has a unique root (of
in-degree zero).

There can be two types of internal nodes in a net-
work: tree nodes, which include the root and nodes of
in-degree one and out-degree of at least one, and reticula-
tion nodes, which have out-degree one and in-degree of at
least two. The tree nodes represent speciation events and
the reticulation nodes represent reticulation events. We
allow degree-two nodes in a network.

Here, we use the following notation for a network N :

• T(N): the set of tree nodes in N.
• L(N): the set of leaves in N.
• R(N): the set of reticulation nodes in N.
• V (N): the set of all nodes in N, namely

T(N) ∪ L(N) ∪ R(N).
• E(N): the set of edges in N.
• ρ(N): the root of N.
• N − E: the subnetwork (V (N), E(N)\E) for a subset

E ⊆ E(N).
• N − S: the subnetwork (V (N)\V (S), E′), where

E′ = {(x, y) ∈ E(N) | {x, y} ⊆ V (N)\V (S)} for a
subnetwork S of N.

For u, v ∈ V (N), u is a parent of v and v is a child of u
if (u, v) ∈ E(N). We use c(r) to denote the unique child of
r ∈ R(N). If there is a direct path from u to v, v is called a
descendant of u.
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We use [r]N to denote the subnetwork below r ∈ V (N),
which consists of all the descendants of r and the edges
between them in N. For a leaf � below r, we use N−[r]N +�

to denote the subnetwork obtained by replacing [r]N with
� so that � becomes the child of r.

If each reticulation node in a network has exactly two
parents, the network is bi-combining. A bi-combining net-
work is binary if each tree node is of out-degree two. A
phylogenetic tree is a binary network without reticulation
nodes. If the unique child of each reticulation node in a
network is a tree node or a leaf, this network is called
reduced.

Following Gunawan et al. [16], we allow a network to
have dummy nodes (i.e., unlabelled nodes of out-degree
zero) because such a network may be generated in a
recursive step of our algorithms.

Given the set of taxa X, a cluster is any proper subset of
X (excluding the empty set and the full set). A cluster is
trivial if it contains only one element.

In a phylogenetic tree T over X, each non-root node
induces a unique set of taxa that consists of the labels of
the leaves below the node, which is called the cluster of the
node. A cluster is in T if it is the cluster of some node in T.

Given a network N over X and a phylogenetic tree T
over X, we say that T is displayed in N if T can be obtained
from N by the following operations: removing all but one
incoming edges for each reticulation node in N, removing
nodes that are not in any path from ρ(N) to a leaf � ∈ X,
and contracting degree-two nodes (i.e., nodes of in-degree
one and out-degree one). To contract a degree-two node w
which has two incident edges (u, w) and (w, v), we merge
the two edges into one edge (u, v).

A cluster B ⊂ X is a soft cluster in N if there is a tree
T displayed in N such that B is a cluster in T. A tree
node in a network may represent multiple soft clusters,
which could be obtained from different trees displayed
in the network. We use SC(N) to denote the set of soft
clusters in N.

Given B ⊂ X and a network T on X, the CCP asks
whether B is a soft cluster in N [10], which is formulated
as below:

CLUSTER CONTAINMENT
Instance: A phylogenetic network N over a set of
taxa X and B ⊂ X.
Question: Is B ∈ SC(N)?

Let N1 and N2 be two networks over the same set of
taxa X. The SRF distance between them is defined to
be (|SC(N1)\SC(N2)| + |SC(N2)SC(N1)|)/2 denoted by
dSRF(N1, N2).

It is worth noting that the SRF distance is not a
strict metric, since two distinct networks may repre-
sent the same set of soft clusters and hence the SRF

distance between them will be zero [10]. Nevertheless,
the SRF distance provides a useful measure of network
dissimilarity.

A decomposition theorem
The key to solving the CCP and computing the SRF
distance is the decomposition theorem, which was first
proposed by Gunawan et al. [16] for reticulation-visible
networks and used later for arbitrary networks in [20].

The decomposition theorem says that an arbitrary net-
work N can be decomposed into a set of connected tree
components which are separated by reticulation nodes.
Specifically, there is a tree component Cr for each r ∈
R(N) ∪ {ρ(N)}, which is either {c(r)} if r ∈ R(N) and
c(r) ∈ R(N), or a subtree induced by all the tree nodes and
leaves that are reachable from r. A tree component is triv-
ial if it contains only one leaf or if it is empty (for a dummy
reticulation node).

A node is visible on a leaf � if it lies on all the paths from
ρ(N) to �. If a node r ∈ R(N) ∪ {ρ(N)} is visible on a leaf
�, its tree component Cr is visible on � as well. Given two
tree components Cr′ and Cr′′ , r′ and Cr′ are right below Cr′′
if a parent of r′ is in Cr′′ . A tree component is exposed if it
contains only one leaf or if all the tree components right
below it are trivial.

Obviously, N contains at least one exposed non-trivial
tree component. In addition, an exposed tree component
Cr is visible if and only if Cr contains a leaf or if a reticula-
tion node r′ exists right below Cr such that all the parents
of r′ are in Cr .

These concepts are briefly illustrated in Fig. 1. See
[16, 20] for more details of the decomposition theorem.

Description of the algorithm
The CCP algorithm
With the aid of the generalized decomposition theorem,
we extend the linear-time CCP algorithm for reticulation-
visible networks in [16] to arbitrary networks.

Roughly speaking, our new CCP algorithm works as
follows:

To determine whether or not a cluster C is in a
phylogenetic network N, the algorithm selects a
non-trivial exposed component M of N. If M is visible,
we either find the negative answer to the problem by
working on M or we obtain an instance of the problem
that is simpler than the input instance (C, N) in linear
time proportional to the size of M. In the latter, we
reduce the original instance of the CCP to a simpler
instance.

If M is not visible, there is then a reticulation node
which has a unique leaf child and does not have all
parents in M. In this case, two phylogenetic networks N1
and N2 are derived from N, which contain fewer nodes
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Fig. 1 A network N and its tree components. There are nine tree
components in N. Five of these components are non-trivial: Cr , Cr1,
Cr2, Cr5, and Cr6, where Cr6 = {r4}. Cr7 and r7 are right below Cr5, Cr2,
and Cr . Cr is visible on all the leaves. Cr1 and Cr2 are visible, but neither
of them is exposed. Cr5 is exposed but not visible

than N. The algorithm is then called on both instances
(C, N1) and (C, N2) recursively.

Although this algorithm seems simple, it has signifi-
cantly less time complexity when the input network is
binary. In the rest of this section, we present a formal
description of the algorithm.

Let N be a network over X and B ⊂ X, respectively. We
examine a non-trivial exposed tree component Cr of N.

The reticulation nodes below Cr are divided into inner-
reticulation nodes for which the parents are all in Cr , and
cross-reticulation nodes for which some parents are not in
Cr . We use IR(Cr) and CR(Cr) to denote the sets of inner-
and cross- reticulation nodes, respectively. For example,
in Fig. 1, IR(Cr5) = ∅ and CR(Cr5) = {r4, r7, r8}.

We use Lr to denote the set of leaves on which Cr is
visible:

Lr = {c(r′) | r′ ∈ IR(Cr)} ∪ L(Cr).

We use Ľr to denote the set of leaves below Cr which are
in B and on which Cr is not visible:

Ľr = {c(r′) | r′ ∈ CR(Cr) s.t. c(r′) ∈ B)}.
For example, in Fig. 1, Lr5 = ∅ and we can get Ľr5 =

{leaf1, leaf2} when assuming B = {leaf1, leaf2, leaf5}.
Suppose that Lr is non-empty. Cr is then visible with

respect to a leaf � ∈ Lr . We first check whether B is a
soft cluster in Cr . This can be solved by a linear-time algo-
rithm [16]. If not, we then solve the CCP according to the
relationship between Lr and B.

Let B̄ = X\B. If Lr ∩ B 	= ∅ and Lr ∩ B̄ 	= ∅, B must be a
soft cluster of a node in Cr if B is a soft cluster in N [16].

If Lr ∩ B̄ = ∅, B may be a soft cluster of ρ(Cr) or a node
in a larger subnetwork containing Cr . Assuming that r′ ∈
CR(Cr), we then define:

Na = N − {(u, r′) ∈ E(N) | (c(r′) /∈ B ∧ u ∈ V (Cr)}
−{(u, r′) ∈ E(N) | (c(r′) ∈ B ∧ u /∈ V (Cr))}.

The leaves below the root of Cr in Na (i.e., L([ ρ(Cr)]Na ))
are then Lr ∪ Ľr . We denote L([ ρ(Cr)]Na ) as B̂ for conve-
nience.

Since Lr ⊆ B and Ľr ⊆ B, B̂ ⊆ B. If B̂ = B, B is a soft
cluster of ρ(Cr) in Na. Otherwise, if B̂ ⊂ B, we set:{

B′ = (B ∪ {�})\B̂,
N ′

a = N−[ ρ(Cr)]Na +�. (1)

If Lr ∩ B = ∅, B may be a soft cluster of a node in Cr if
Ľr 	= ∅. Otherwise, when B is not a soft cluster of a node
in Cr and r′ ∈ CR(Cr), we define:

Nb = N − {(u, r′) ∈ E(N) | (c(r′) /∈ B ∧ u /∈ V (Cr))}
−{(u, r′) ∈ E(N) | (c(r′) ∈ B ∧ u ∈ V (Cr))}.

We can then set:

N ′
b = N − [ρ(Cr)]Nb + �. (2)

With this notation, we can get Theorem 1 for arbi-
trary networks, which is similar to a theorem proved for
reticulation-visible networks in [16]. Theorem 1 is proved
in the Additional file 1.

Theorem 1 Assume that Cr is a non-trivial, exposed
and visible tree component in a network N over the taxa
set X, and that B ⊂ X. Let Lr, B̂, B′, N ′

a, and N ′
b be defined

above.

(i) If B̂ ⊂ B, B is a soft cluster in N if and only if B′ is a
soft cluster in N ′

a.
(ii) If B is not a soft cluster of a node in Cr and
Lr ∩ B = ∅, B is a soft cluster in N if and only if B is a
soft cluster in N ′

b.

Suppose that Cr is not visible. If Cr 	= {c(r)}, there is
at least one reticulation node r′ right below Cr such that
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Cr′ is trivial and at least one parent of r′ is not in Cr . If
Cr = {c(r)} and c(r) = r′, then at least one parent of r′ is
not r. We can now define:

N ′ = N − {(u, r′) ∈ E(N) | u 	∈ Cr} if Cr 	= {c(r)}
N − {(u, r′) ∈ E(N) | u 	= r} if Cr = {c(r)} (3)

and

N ′′ = N − {(u, r′) ∈ E(N) | u ∈ Cr} if Cr 	= {c(r)}
N − {(u, r′) ∈ E(N) | u = r}. if Cr = {c(r)} (4)

Clearly, B is a soft cluster in N if and only if B is a soft
cluster in either N ′ or N ′′.

In consideration of all the cases above, we have come
up with an algorithm for solving the CCP on an arbitrary
network, which is given in Fig. 2.

The SRF distance algorithm
We now use the CCP algorithm to compute the SRF dis-
tance between two arbitrary networks on the same taxa
set X.

For X, we define a k-cluster as a cluster having k taxa. We
enumerate all the possible clusters over X by generating all
the k-clusters of X for each k ranging from 1 to |X|−1. We
then call the CCP algorithm on each cluster to see whether
it is a soft cluster in only one network.

Fig. 2 An algorithm for solving the CCP on an arbitrary network

The time complexity of this SRF distance algorithm is
O(2|L(N)|T(N)), where T(N) is the time complexity of the
CCP algorithm.

The program for computing the SRF distance in Den-
droscope first finds trees displayed in each network, then
extracts clusters from these trees to get the soft clus-
ters in each network, and finally traverses the two sets of
soft clusters to compute their symmetric difference. If the
networks are bi-combining, the time complexity for this
method is O(2|L(N)| ∗ 2|R(N)| + 2q), where q is the num-
ber of the soft clusters in a network. We will compare this
approach and our SRF distance program in next section.

Results and discussion
Performance of the CCP program
In this subsection, we first analyze the time complexity of
the CCP algorithm. We then report the performance of
the CCP program on both simulated and empirical net-
works. The simulated networks were generated by using a
network generator reported by Zhang [17].

Theoretical analysis of the time complexity
According to the analysis in [16], the runtime of Step 3 of
the CCP algorithm is O(|E(Cr)|), where E(Cr) is the set of
edges in the tree component Cr . Thus the time complex-
ity of the CCP algorithm is O((m + 1)|E(N)|) for a general
network N, where m is the number of times Step 3 is exe-
cuted. Note that m should be an exponential function of
|R(N)| because of the NP-completeness of the CCP. If N is
a bi-combining reduced network, the time complexity of
the CCP algorithm is

(
20.694|R(N)||E(N)|) [20].

We denote log2(m) as b(N , B) and call it the effective
reticulation number of the CCP algorithm for the network
N and the cluster B [20]. We use b(N) = maxB b(N , B)

to represent the effective reticulation number of the CCP
algorithm for the network N.

To the best of our knowledge, the only previously known
algorithm for solving the CCP on an arbitrary network is
the naive algorithm which considers all the trees displayed
in a network and checks whether the input cluster is in one
of them. The number of possible trees displayed in a net-
work N can be as large as

∏
r∈R(N) deg−(r), where deg−(r)

is the in-degree of r. This number equals 2|R(N)| when N
is bi-combining. It takes O(|L(T)|) time to check whether
a cluster is in a tree T [10]. Thus the effective reticulation
number seems to be a good indicator of the efficiency of
the CCP algorithm. If log2(m) is smaller than |R(N)|, the
CCP algorithm will be faster than the naive algorithm in
theory.

Performance on random networks
We examined the performance of the CCP program
on random networks in term of the effective retic-
ulation number. The tests were done on computers
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each with 32 GB RAM and a 2.1 GHz AMD Opteron
32-core CPU.

We tested the CCP program on random networks with
10 to 30 leaves and 10 to 80 reticulation nodes. Given
that the number of clusters over 15 leaves is huge, it
was hard to conduct the evaluation on the whole space
of clusters. We therefore generated random clusters for
testing on networks with more than 15 leaves. According
to the results, the effective reticulation number for each
network–cluster pair was frequently smaller than half the
number of reticulation nodes in the network.

Here, we report the performance of the CCP program
on five groups of networks with 10 leaves and all the pos-
sible 1022 (= 210 − 2) clusters. Each group contained 20
networks, and the networks in the kth group had 5(1 + k)

reticulation nodes for each k from 1 to 5. The wall clock
time on 102,200 (= 5 × 20 × 1022) network–cluster pairs
was 15 minutes and 15 seconds, implying that on aver-
age, the program took about one centisecond for each
network–cluster pair.

Figure 3 shows the percentages of the clusters in the
entire cluster space with the same effective reticulation
numbers for each network. Several facts were observed
from the test. Firstly, the effective reticulation numbers
for the networks in each group increase with the number
of reticulation nodes. For example, the effective reticu-
lation numbers for most networks are <5 for the first
group, whereas the effective reticulation numbers for
more than half of the networks are >9 for the last group.
Secondly, there are at least three distinct values of effec-
tive reticulation numbers for each network and all the

clusters, except for five networks. The effective reticula-
tion number of value one appears for all the networks,
since it is easy to determine whether the trivial clus-
ters are soft clusters in a network. Thirdly, the highest
effective reticulation number 12 only appears for the
12th network in the last group and one cluster, which
is barely seen in Fig. 3 because of the extremely low
percentage.

Application to a network in the literature
We selected one of the largest networks in the litera-
ture to validate the performance of the CCP algorithm.
This is a bi-combining network (denoted A, Additional
file 1: Figure S1) from [21] that has 7 leaves and 32
reticulation nodes. This network is an ancestral recom-
bination graph reconstructed to study the phylogenetic
relationships among the M2 double-stranded RNA in the
Rhizoctonia species complex.

Our test showed that all the clusters on the seven taxa
appear as soft clusters in the network A. We calculated
b(A, B) for each cluster B on the seven taxa. The dis-
tribution of b(A, B) is shown in Table 1. The effective
reticulation number b(A) is 8, 1/4 of the number of retic-
ulation nodes in A. This suggests that the CCP program is
about thousands of times as fast as the naive method for
this real network.

Performance of the program for the SRF distance on
random networks
In this subsection, we first compare the program in Den-
droscope and our program for the SRF distance. We
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Table 1 The distribution of b(A, B) in the space of clusters over
the same set of taxa as the network A

b(A, B) 0 2 4 6 8

#Cluster 8 3 45 49 21

#Cluster refers to the number of soft clusters with the same value of b(A, B)

then report the performance of a parallel version of our
program.

The tests were performed on computers each with 128
GB RAM and a 2.6 GHz Intel Xeon E5-2690 24-core CPU.
For the generation of random networks, we considered six
cases. In the kth case, we generated six groups of network
pairs. The jth group consists of 3000 pairs of networks with
4k leaves and kj/4 reticulation nodes, where k was from 1
to 6 and j = 1, 2, 4, 5, 6.

For the comparison test, we computed the SRF distance
for each pair of networks in every group. The results are
summarized in Fig. 4.

Our program ran faster than the program in Dendro-
scope for networks with up to 16 leaves. However, our
program became slower than the latter when there were

more than 16 leaves. This is reasonable, since the num-
ber of clusters increases exponentially with the number of
taxa and it takes even long time for our program to merely
list all the possible clusters when there were more than 16
leaves.

Additionally, the memory usage of our program was
extremely low compared with the program in Dendro-
scope. The memory usage of the Dendroscope program
increased rapidly with the number of reticulation nodes
in a network. For example, the average maximum resident
memory for networks with 12 leaves and 18 reticula-
tion nodes was around 95 GB, which is approximately
six times that for networks with 12 leaves and 15 retic-
ulation nodes. Because of this, the average runtime of
the Dendroscope program for networks with 12 leaves
and 18 reticulation nodes sharply increased. During test,
the Dendroscope program failed to get results for net-
works with more than 12 leaves and 20 reticulation nodes.
Hence, some data points are missing for the Dendroscope
program in the two panels at the bottom in Fig. 4. In
contrast, our program can run on networks with more
than 30 reticulation nodes. Even for networks with 24
leaves and 36 reticulation nodes, the average maximum
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resident memory of our program was less than 32 MB.
Thus the test shows that our program is computation-
ally efficient when the number of reticulation nodes in the
input network is large.

Although our program runs slow for networks with
many leaves, it can be easily parallelized for speeding up.
We used OpenMP to implement a parallel version of it
by parallelizing the enumerations of clusters. This paral-
lel version ran at least 20 times faster than the original
program with slightly extra memory. For 3000 pairs of net-
works each with 20 leaves and 25 reticulation nodes, the
parallel version finished in about 36 seconds with less than
40 MB memory on average.

Computing the SRF distances on real biological data
In this subsection, we examine the SRF distance between
phylogenetic networks reconstructed from two datasets in
the literature.

Computing the SRF distance between networks over a set of
grass species
The Proaceae dataset, originally from the Grass Phylogeny
Working Group [22], has often been used for validating
network reconstruction methods. The dataset contains
sequences for six loci: ITS (internal transcribed spacer of
ribosomal DNA), ndhF (NADH dehydrogenase, subunit
F), phyB (phytochrome B), rbcL (ribulose 1,5-biphosphate
carboxylase/oxygenase, subunit), rpoC (RNA polymerase
II, subunit β ′′), and waxy (granule bound starch synthase
I). Rooted binary gene trees were built for these loci previ-
ously by Schmidt [23]. From the six trees, van Iersel et al.
[24] constructed 57 subsets of gene trees for comparisons
of network reconstruction methods.

A recent method called Hybroscale [25] can compute
all the representative networks with the minimum num-
ber of reticulation nodes from a set of multiple binary
phylogenetic trees. We ran Hybroscale on three subsets
of gene trees from the grass dataset, which are on 11,
12, and 15 taxa, respectively (Table 2). The reconstructed
networks have less than seven reticulation nodes. Since
there are tens of output networks for each input dataset,
we computed their pairwise SRF distances to examine
their dissimilarity. As shown in Table 2, the average SRF

Table 2 The average pairwise SRF distances between the output
networks from Hybroscale on three sets of gene trees reported
by van Iersel et al. [24]

Gene trees #Taxa #Ret #Networks Average pairwise
SRF distance

rbcL, waxy, ITS 11 6 63 12.2

ndhF, rbcL, waxy 12 5 123 8.0

phyB, rbcL, rpoC 15 6 40 1.4

#Ret refers to the number of reticulation nodes in the reconstructed networks

distances between the networks for all the datasets are
relatively small, which implies that the computed net-
works are rather similar.

On the other hand, different network reconstruction
methods on the same data could produce very different
networks. Using five gene trees (ITS, ndhF, phyB, rbcL,
rpoC2), we constructed three networks: a cluster network
(Additional file 1: Figure S2) obtained from a program
in [26], a galled network (Additional file 1: Figure S3)
obtained from a program in [27], and a reticulate net-
work (Additional file 1: Figure S4) obtained from PIRN
[28]. Since the original network reconstructed by PIRN
had reticulation nodes with more than one child and
leaves with more than one parent, it was transformed
into an equivalent one satisfying our definition in this
paper. The three networks have 18, 7, and 13 reticulation
nodes and contain 445, 261, and 209 soft clusters, respec-
tively. The SRF distance between the cluster network and
the galled network is 199. The SRF distance between the
galled network and the reticulate network is 118. The
SRF distance between the reticulate network and the clus-
ter network is 185. This suggests that the galled network
is more similar to the reticulate network than to the
cluster network. This also reflects that the SRF distance
is sensitive to the structural properties of phylogenetic
networks.

Computing the SRF distance between networks over six
mosquito species
To study phylogenetic relationships and introgression
among six mosquito species in the Anopheles gambiae
species complex, Fontaine et al. [5] constructed a net-
work (denoted M1) by employing tree-based methods
on the whole-genome sequences. Later, Wen et al. [29]
rebuilt a similar network (denoted M2) for the six species
by directly applying a network inference method on the
gene trees. The two networks are shown in Additional
file 1: Figure S5. M1 has three reticulation nodes and
M2 has four reticulation nodes. There are 18 and 24
soft clusters in M1 and M2, respectively. The SRF dis-
tance between M1 and M2 is 7, implying that the two
networks are still quite different in the embedded soft
clusters.

Comparison of the RF distance and the SRF distance
Although the RF and SRF distances were proposed to
measure the dissimilarity of networks, their relationship
is unclear [10]. In this subsection, we present our prelimi-
nary comparison of these two measures.

Given a fixed number of leaves and reticulation
nodes, we generated 100,000 random network pairs
and computed their RF and SRF distances. Figure 5
shows the distributions of these two measures in the
space of networks with different numbers of leaves and
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Fig. 5 The distribution of the RF (orange) and SRF (red) distances between random networks. Histograms of the number of network pairs with k
leaves and m reticulation nodes, where (k, m) = (5, 10) (top left), (5, 20) (top right), (10, 10) (middle left), (10, 20) (middle right), (15, 10) (bottom left),
and (15, 20) (bottom right)

reticulation nodes. The results suggest the following
three facts:

(i.) There are at least as many soft clusters as clusters
in a network. Therefore, as expected, the SRF
distance has larger range than the RF distance.

(ii.) The RF distance seems to have a normal
distribution of small mean and small variance.

(iii.) The distribution of the SRF distances seems not
to be normal. It is skewed towards small distances
(especially for networks with more leaves) and a
small fraction of network pairs had much larger
SRF distances than the average SRF distance.

Taken altogether, these three facts indicate that the SRF
distance is a fine metric for networks and hence more suit-
able than the RF distance for measuring the dissimilarity
of networks.

Conclusions
The generalized decomposition technique developed in
[20] was shown to be powerful for solving the TCP
on arbitrary networks. In this work, by applying this

technique, we have developed efficient algorithms for
solving the CCP and computing the SRF distance for arbi-
trary networks. These two algorithms were implemented
in C.

Both programs facilitate reconstructing and validat-
ing network models in evolutionary and comparative
genomics. Our simulation experiments showed that the
SRF distance program ran fast for networks with an inter-
mediate number of leaves and reticulation nodes. There-
fore, the SRF distance program is ready for assessing a
network reconstructed by a new method via comparing it
with other networks.

Additional file

Additional file 1: Supplementary material. Supplementary material
contains the proof for Theorem 1 and Supplementary Figures. (PDF 229 kb)
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