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Abstract

Background: To understand the changes of gene regulation in carcinogenesis, we explored signals of DNA
methylation — a stable epigenetic mark of gene regulatory elements — and designed a computational model to
profile loss and gain of regulatory elements (REs) during carcinogenesis. We also utilized sequencing data to
analyze the allele frequency of single nucleotide polymorphisms (SNPs) and detected the cancer-associated SNPs, i.
e, the SNPs displaying the significant allele frequency difference between cancer and normal samples.

Results: After applying this model to chronic lymphocytic leukemia (CLL) data, we identified REs differentially
activated (dREs) between normal and CLL cells, consisting of 6,802 dREs gained and 4,606 dREs lost in CLL. The
identified regulatory perturbations coincide with changes in the expression of target genes. In particular, the genes
encoding DNA methyltransferases harbor multiple lost-in-cancer dREs and zero gained-in-cancer dREs, indicating
that the damaged regulation of these genes might be one of the key causes of tumor formation. dREs display a
significantly elevated density of the genome-wide association study (GWAS) SNPs associated with CLL and CLL-
related traits. We observed that most of dRE GWAS SNPs associated with CLL and CLL-related traits (83%) display a
significant haplotype association among the identified cancer-associated alleles and the risk alleles that have been
reported in GWAS. Also dREs are enriched for the binding sites of the well-established B-cell and CLL transcription
factors (TFs) NF-kB, AP2, P53, E2F1, PAX5, and SP1. We also identified CLL-associated SNPs and demonstrated that
the mutations at these SNPs change the binding sites of key TFs much more frequently than expected.

Conclusions: Through exploring sequencing data measuring DNA methylation, we identified the epigenetic
alterations (more specifically, DNA methylation) and genetic mutations along non-coding genomic regions CLL, and
demonstrated that these changes play a critical role in carcinogenesis through damaging the regulation of key
genes and alternating the binding of key TFs in B and CLL cells.
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Background

Cancer, a leading cause of death worldwide [1], is a major
focus of biological and clinical research. Dramatic pheno-
typic alterations in cancer cells have often been attributed
to gene mutation and gene regulatory variation [2]. In the
last decade, evidence has been accumulating that the mal-
function of gene regulatory elements, such as promoters,
enhancers, etc., makes a substantial contribution to cancer
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initiation and progression. For example, the promoter
inactivation of von Hippel-Lindau (VHL), leading to the
silencing of this gene, has been reported as a biomarker of
renal cancer [3]. Similarly, in many cancers, the transcrip-
tion of cyclin-dependent kinase inhibitor 2A (CDKN2A),
an important tumor suppressor gene, has been found to
be terminated after the chromatin blocking of its pro-
moter region [4]. Also, the disruption of super-enhancers
plays a key role in inhibiting the oncogene MYC in
multiple myeloma [5]. More recently, aberrant DNA
methylation along super-enhancers has been reported in a
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broad spectrum of cancers, such as breast, colon, lung
cancer [6].

To delineate the activity alteration of regulatory
elements (REs) during carcinogenesis, the signals of epi-
genetic marks are commonly measured and compared
between cancer and normal cells [7]. DNA methylation,
predominantly occurring at the 5 position of the cyto-
sine in CpG dinucleotides, is a stable epigenetic mark
that can be combined with other epigenetic modifiers,
such as Histone 3 lysine 4 trimethylation (H3K4me3),
for defining the function of the DNA. DNA methylation
preliminarily affects the activity of regulatory elements,
prompting research into how DNA methylation alters
gene regulation. Since the original report in 1983 that
DNA methylation is substantially decreased in tumor
tissues, aberrant DNA methylation has been well-
established as a signature in cancer [8—10]. Global hypo-
methylation of repetitive DNAs elements has been found
to be responsible for promoting multiple cancers, such
as inducing the overexpression of oncogenes in leukemia
cells [11], silencing the tumor suppressor genes in colo-
rectal cancer [12], and enhancing the chromatin instabil-
ity in lymphoma [13].

With the knowledge that de-methylation is strongly
correlated with activation of regulatory elements [14],
we developed a computational model, in which a
genome-wide methylation profile was analyzed to map
REs in cancer and normal cells. The comparison
between these RE maps in turn established differentially-
activated REs (dREs), including dREs gained and lost
during cancer development. We tested this model on
chronic lymphocytic leukemia (CLL), due to its relatively
abundant data resources, and observed that the gained
and lost dREs were enriched in the neighborhood of up-
and down-regulated genes during CLL carcinogenesis.
The genes encoding transcription repressors and DNA
methyltransferases have multiple lost dREs in their loci,
suggesting an important role for these genes in main-
taining normal B-cells and initiating CLL development.
Also, dREs are enriched for the GWAS SNPs associated
with CLL or, more broadly, cancer traits. CLL genetic
mutations, i.e., the substitution of wild - type alleles with
CLL-susceptible alleles, are associated with a change in
binding of major B-cell TFs. In this study, we identified
epigenetic and genetic changes during carcinogenesis
and evaluated the impact of these changes on gene
regulation.

Methods

Data processing of reduced representative bisulfite
sequencing (RRBS)-seq profiling

We analyzed the genome-wide methylation profiles from
32 B cells of 32 chronic lymphocytic leukemia (CLL)
patients and 10 normal CD19+ B cells [15] (which have
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been deposited to Gene Expression Omnibus GSE66121
by the authors of the referenced study). Methylation
levels of CpG sites were measured using reduced repre-
sentative bisulfite sequencing (RRBS)-seq.

We downloaded the raw RRBS-seq reads to establish
the methylation profiles and detect the genetic muta-
tions in CLL. We established a workflow to analyze
these raw sequence data (Additional file 1: Figure S1).
Bismark [16] coupled with Bowtie2 [17] was used to
align the raw reads to the human genome with the
settings “-q —phred64-quals -n 1 -1 40”. The alignment
results, ie., one sam file per sample, were transformed
into bam files using the samtools (“samtools view -bT”)
[18]. The bam files were used as input to BisSNP [19] to
calculate the methylation levels of CpG sites and to call
genotypes. The parameters for BisSNP were set as
default, i.e., -maxQ 40, -stand_call_conf 8, -stand_emit_-
conf 0, -mmgq 30, -mbq 0. Only SNPs with the minor al-
lele frequency (MAF)>0.01 in 1000 Genomes Project
[20] were used to run BisSNP.

Mapping consensus dREs in a sample class

We combined methylation profiles of all samples from a
class (i.e., either CLL or control) to obtain consensus
dREs. In a methylation profile of a sample, we excluded
CpG sites with less than five aligned reads. To account
for the variable numbers of reads across samples, we pe-
nalized each sample according to its total number of
aligned reads. That is, the combined number of reads at
a CpG site (e.g., k) was calculated as

Tik
, (D)
E . ; . Wi
iesamples under consideration

E . X . Wi
iesamples under consideration
R(k) = =

where r;, is the number of the reads at the site k from
the sample i w;, the weight of the sample i, is deter-
mined as the reciprocal of the total number of the
aligned reads in the sample i. After replacing ry with
mry, the number of the methylated reads, in eq. (1), we
obtained the combined number of methylated reads at k.
After collecting these numbers, we had a combined
methylation profile for each tested sample class. We
then applied MethylSeekR [21] to each combined methy-
lation profile with the setting of chr.sel = chr2, meth.cut-
off = 0.5 and nCpG.cutoff = 3. At the end, we established
a map of consensus dREs, together with sREs and
hiMRs, in each sample class.

To categorize dREs based on their genomic location,
we employed the annotatePeaks.pl script from HOMER
with default settings. The obtained gained dREs, lost
dREs and sREs, with average lengths of 660, 814, and
1094 bp, have the average CpG density of 2.4, 3.9 and
5.6 CpGs per 100 bp, respectively.
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Hierarchal clustering and PCA

After filtering out CpGs with less than five aligned reads,
we used the classic hierarchal clustering algorithm to
analyze the similarity of methylation profiles from differ-
ent samples (32 CLL cells and 10 control B-cells). For
this purpose, we employed the MATLAB function “link-
age” to build a hierarchal clustering tree using the dis-
tance of “Euclidean” and the method of “ward.” The
constructed tree was then visualized using the MATLAB
function “dendrogram” with the default settings.

We also used principal component analysis (PCA) to
visualize the distribution of samples. PCA was con-
ducted by using the MATLAB function “princomp” with
the default settings.

Alignment of human and mouse genomes

To map genomic regions (i.e., dREs, sREs and hiMRs)
from the human to the mouse genome, we used the soft-
ware “bnMapper” (available at https://bitbucket.org/
james_taylor/bx-python/wiki/bnMapper). The pair-wise
genome alignment (chain file) between the mouse and
human required by bnMapper was downloaded from the
UCSC Genome browser. bnMapper was run with the
setting “—gap 20 —threshold 0.1”. A human genomic re-
gion was considered as conserved between human and
mouse when the aligned sequence was longer than
20 bps.

Repeat composition along dREs

We used the repeat tables downloaded from the UCSC
Genome browser to investigate the repeat content of
dREs. Given a group of dREs, the fraction of these re-
gions covered by repetitive elements was calculated.
Similarly, the repeat composition of sREs and hiMRs
was estimated and was used as a baseline to evaluate the
enrichment of repeats in dREs.

Enrichment of dREs in loci of genes differentially
expressed in CLL

The RNA-seq profiles of the 32 CLL samples, together
with five normal B-cell samples (of which two samples
were also included in the methylation data), were down-
loaded from Gene Expression Omnibus (accession
number GSE66117). To avoid unreliable RNA-seq mea-
surements, we filtered out genes with very low expres-
sion, i.e., those for which the average expression was less
than 0.1 in either CLL or normal B-cells. For each of the
remaining genes, the fold change of its expression in
CLL was then calculated as the ratio of the average
expression in CLL to that in normal B-cells. Ranking the
genes based on their expression fold-change, we identi-
fied genes up- and down-regulated in CLL by selecting a
percentile of top differentially regulated genes.
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Following a general rule, we assigned a genomic region
(either RE or hiMR) to the gene with the closest tran-
scription start site (TSS). Given gained (or lost) dREs
and a group of genes (say R and G, respectively), we
identified dREs linked to any given gene, and calculated
the fraction of these dREs from all dREs associated with
the genes having reliable RNA-seq measurements (de-
noted as fract(R, G)). Using the sREs (represented by S)
as background, we evaluated the enrichment of G in the
surrounding of R as the ratio of fract(R, G) to fract(S, G).
The significance of this enrichment was measured under
a binomial test.

Functional analysis of dREs and genes

We used the Genomic Regions Enrichment of Annota-
tions Tool (GREAT, available at http://bejerano.stanfor-
d.edu/great/public/html/) [22] to examine the function
of dREs with the whole human genome as the back-
ground. Also, the Database for Annotation, Visualization
and Integrated Discovery (DAVID, available at https://
david.ncifcrf.gov/) [23] was used to estimate the function
of a set of genes with the whole list of human genes as
the background.

Distribution analysis of dREs
Given a class of dREs, we calculated the distance from
each dRE to its nearest within-class neighbor and then
computed the distribution of these distances. Through
randomly shuffling class labels among dREs, sREs and
hiMRs, we generated a background class and assessed
the distribution of within-class distances in the back-
ground class. We generated 1,000 background classes in-
dependently and used the average of their within-class
distributions as background for statistical analysis. Simi-
larly, we built the distribution of cross-class distances of
gained dREs to their nearest lost dREs and compared
this distribution with the background estimated the
same way as in the case for within-class computations.
The bimodal distribution of within-class distances
among lost dREs (Additional file 1: Figure S2) implies
that parts of lost dREs are clustered close to each other
(the distance of <10 kb). To investigate the function of
these lost dREs, we identified the lost dREs with the dis-
tances to their nearest within-class neighbor less than
10 kb. We used GREAT to evaluate the function of these
lost dREs (see Functional analysis of dREs).

GWAS analysis of dREs

We downloaded the NHGRI GWAS Catalog in April
2015 [24]. For each GWAS SNP, we identified all SNPs
in a tight LD with the GWAS SNP (+* > 0.8 and distance
<500 kb) based on at least one population from the
1000 Genomes Project (CEU, YRI and CHB/JPN) by
using SNAP [25]. After that, we linked these tight-LD
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SNPs to the corresponding traits. At the end, we had
1,759 GWAS traits associated with 324,454 SNPs.

Considering that 54% of the traits are linked to a small
number of SNPs, i.e., less than five tagged SNPs, we ag-
glomerated similar traits together to obtain reliable stat-
istical results. For example, we identified the GWAS
SNPs associated with the lymphoma traits (but not
CLL), and marked them as “lymphoma”. Similarly, we
built SNP categories for “CLL” and “cancer” due to their
immediate and close relevance with CLL. Finally, the
GWAS SNPs not included in these categories were
marked as “irrelevant” and were used as the baseline of
our statistical analysis.

To evaluate the association between a class of dREs
(e.g., gained dREs) and a GWAS trait, we identified all
SNPs from the 1000 Genomes Project in gained dREs.
After that, we counted among these SNPs the ones that
have been associated with a given trait. This count mea-
sures the overlap between the given GWAS trait and
gained dREs. To examine the significance of this count,
we adopted a permutation strategy. We randomly shuf-
fled class labels among dREs, sREs and hiMRs, and
counted the SNPs linked to the tested trait in the
randomly-labeled gained dREs. After repeating this
process 1,000 times, we examined the probability of
randomly-labeled gained dREs displaying a higher num-
ber of given-trait-associated SNPs than the gained dREs.
This probability measures the significance of the associ-
ation between the gained dREs and the tested given trait.

Identification of SNPs and their alleles associated with
CLL

We investigated RRBS reads at SNP positions. For those
SNPs that were not polymorphic in the set of RRBS
reads, we dubbed them non-assayed if they overlapped
with less than 10 reads or non-mutated otherwise.

Given a SNP, we compared its allele frequencies in the
population of CLL samples with those of the control
population using a binomial test. Given a SNP and its al-
lele k, we have

c c i (ne=i)
PT(X > nk,c) = I_Z’L/Z((; <”; )pk,n (l_pk,n) ’
(2)

where ny . is the occurrence count of k in the CLL sam-
ples, and 7. is the summation of the occurrence count
of all alleles in the CLL samples. py, is the frequency of
k in the control samples. We used the MATLAB func-
tion “binocdf” for this calculation. We also examined the
significance of each diploid genotype state in CLL sam-
ples with reference to controls. The minimum of the p
values (i.e., Pr s) of the alleles and genotype states mea-
sures the significance of genotypic difference between
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CLL and control. The nucleotide positions having mini-
mum of Prs < 0.05 were marked CLL-associated SNPs. In
this study, we detected 305 and 186 CLL-associated
SNPs located in lost and gained dREs, respectively. Fur-
thermore, for a CLL-associated SNP, the allele enriched
in CLL was considered as the CLL-associated allele.

Haplotype association between alleles

Given a CLL-associated SNP (i.e., m) and a GWAS tag
SNP (i.e., m_tag) of which the risk allele has been
reported in GWAS studies, we explored the 1000 Ge-
nomes Project genotype data to examine haplotype asso-
ciation between the CLL-associated allele (represented
as 1|m) and the risk allele at the tag SNP (say 1|m_tag).
In detail, we downloaded the genotype data of m and
m_tag from the 1000 Genome Project for all populations
and built a 2 x2 contingency table composed by D,
Dy5, Dyy, and D,, (Additional file 1: Figure S3). Dy, is
the number of the chromosomes genotyped as (1|m,
1|m_tag). This rule was applied to define D5, Dy, and
Dy, with 2|m representing the non CLL-susceptible al-
lele(s) at m and 2|m_tag representing the non-risk al-
lele(s) at m_tag. With the built contingency table, the
haplotype association of (1|m, 1|m,,,) was tested using
Fisher’s exact test and the odd ratio (OR) was esti-
mated as

_ DDy

OR = .
D13D

(3)

TFBS representation and enrichment along dREs

We used the TRANScription FACtor (TRANSFAC)
version 2010.3 [26] and JASPAR [27] databases of TFBS.
We scanned dREs sequences using position weight
matrices (PWMs) from these two databases using Find
Individual Motif Occurrences (FIMO) [28] with the
default settings.

Given a dREs, we randomly sampled the human gen-
ome to obtain 10 control sequences with matching GC
content, repeat density, and sequence length. TFBS
enrichment in the dREs was calculated as the ratio of a
TFBS density in dREs to counterpart in control
sequences.

Binding affinity changes at CLL-associated allele substitu-
tion positions

Given a CLL-associated SNP, we regarded the CLL-
associated allele as the mutant allele (MU), and the other
allele as the wild - type allele (WT). To estimate the im-
pact of the CLL-associated alleles in lost dREs, we evalu-
ated the fraction of the TFBSs disrupted after replacing
WT with MU alleles (Additional file 1: Figure S4). For a
TEBS t, we have
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the number of TFBSs in WT but not in MU
the number of TFBSs in WT

_ N@WT, not MU)

N N(t|WT)

Fract(lost|t) =

(4)

To evaluate the significance of Fract(lost|t), we first
generated control sequences for lost dREs. Given a CLL-
associated SNP s, we scanned the lost dRE sequence
carrying s and randomly chose N nucleotide positions
having the matched WT allele (i.e., the reference alleles
for non-mutated positions) with s. For a background
position, its MU sequence was constructed by replacing
the WT allele with the MU allele of s. In this study, we
set N =30, i.e., we had 30 background positions for each
CLL-associated SNP. The significance of Fract(lost|t)
was then estimated using a binomial distribution,

Pr(X > N({{WT, not MU)) = 1=y N§IWT-roe M)

(N Yo aepy.
(5)

where p, is Fract(lost|t) in controls.

On the other hand, the impact of the CLL-associated
alleles in gained dREs is the significance of the number
of TEBSs generated after substituting WT with MU al-
leles. For a TEBS ¢, we have

the number of TFBSs in MU but not in WT
the number of TFBSs in MU

_ N(MU, not WT)

N N(t|MU) '

Fract(gained|t) =

(6)

The significance of Fract(gained|t) was estimated as

Pr(X > N(t|MU, not WT)) = 1—21;[ @Ag”v not WT)
(N(t|MLI)

i >pti(1_pt)(mi)v

(7)

where p, is Fract(gained|t) in the background positions
generated using the strategy for lost dRE SNPs.

Results

Methylation of non-promoter CpG sites is informative for
distinguishing CLL from control

CLL is a biologically and clinically heterogeneous dis-
ease, in which the genomic and genetic alterations lead-
ing its progression and development have yet to be fully
understood [29]. We started our analysis with the
genome-wide DNA methylation profiles previously
established by applying reduced representation bisulfite
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sequencing (RRBS) to CD19+ B-cells from 32 CLL pa-
tients and 10 normal B-cell samples [15] (see Methods).
Thirty-two percent of three million assayed CpG sites
reside in CpG islands (Additional file 1: Figure S5). With
the aim of understanding proximal and distant gene
regulation mechanisms during carcinogenesis, we fo-
cused on gene regulatory elements (consisting of pro-
moter, intronic and intergenic elements), excluding
other genomic segments (such as exons). Eighty-four
percent of assayed CpG sites reside along gene regula-
tory elements (Fig. 1la and Additional file 1: Figure S6,
see Methods). To delineate the contribution of pro-
moters and distal regulatory elements (such as en-
hancers and silencers), we further divided these
regulatory elements into two parts — promoter and non-
promoter sequences (i.e., intronic and intergenic gen-
omic loci).

Next, we directly compared the CpG methylation pro-
files in CLL with those of normal B-cells. To control the
noise introduced during data generation and processing,
we focused on the CpGs having a considerable methyla-
tion change (i.e., the difference of methylation level be-
tween CLL and normal cells is greater than 0.3),
denoted as methyl-change CpGs. Thus, every methyl-
change CpG is either highly methylated in normal cells
but not CLL (we refer to this class as de-methylated in
CLL) or, in the opposite case, highly methylated in CLL
but not in normal (we refer to those as highly methyl-
ated in CLL). After focusing on regulatory elements (i.e.,
non-promoter, intronic and intergenic elements), we ob-
served that about 70% of non-promoter methyl-change
CpGs are de-methylated in CLL (69.1% and 69.7% for
intergenic and intronic, respectively), significantly higher
than that in promoters (33.7%, binomial test p < 10 **°
intergenic/introns vs. promoters, Fig. 1b), which demon-
strates that non-promoter CpGs predominantly lose
methylation, while promoter CpGs become predomin-
antly methylated. This is in accordance with the report
that de-methylation is widespread in intergenic and in-
tronic regions in cancer cells [30]. Promoters display the
smallest fraction of methyl-change CpGs among all gen-
omic regions (Fig. 1b), reflecting that the promoters are
more likely to become methylated than other genomic
regions in carcinogenesis [31].

We applied a classic hierarchical clustering algorithm
to the CpGs methylation profiles in regulatory elements
(see Methods). Using the methylation levels of CpGs lo-
cated in non-promoter gene regulatory loci, all CLL
samples, being clustered into a homogeneous group,
were distinguished from normal samples (Fig. 1c). On
the other hand, the methylation signals of promoter
CpGs could be used to cluster the majority but not all
CLL samples together (Fig. 1c). These findings are fur-
ther supported when using principal component analysis
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Non-promoter CpGs

T

§ O S DU O S

\ 55 T S R D e 1S S O U S S I o S R e S ) O TS S S B P I e

40423941373334353638 1 4 5251831 220 B 1211 19222417232829303227 3 26 9 7151310161421

Promoter CpGs

LU, L LU U UL LU L A S S S S I S S S S O S O O S S N S O S A |

intergenic  intronic  promoter UTR coding

=xp < 10710 w1 t. promoter

regulatory loci can distinguish CLL (in red color) from control (black)

TS (2%)
a JUTR (1.2%) c
Bxon (9.7%) SUTR (2%) x10'
non-protein coding asF- 1T
(1.1%)
3
Intron (37.3%) o 25-
Promoter-TSS (14.4%) =
s =
=
o sk
Intergenic (32.3%)
.
05
b x10°
80 2
. o o 181
£ 8 8-
-
z Feo % 14}
o 8 @ 12r
S = &l s
-
5 840 *% *x 08|
§&
§ 06
P I "l 4]
“
20

41423940333437 1 5293018252627 3231 220 8 312 4112224172328 6 9 7 191510 13 16 35 36 38 14 21
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(PCA) to visualize the distribution of CLL and control
samples (see Methods, Additional file 1: Figure S6). Col-
lectively, the nucleobase-resolution methylation profiles
of CpGs in gene regulatory elements (including pro-
moter and non-promoter elements) contain sufficient in-
formation to discriminate CLL from control samples.
Especially, non-promoter CpGs are capable of distin-
guishing two sample classes better than promoter CpGs
(Fig 1c and Additional file 1: Figure S6).

Mapping consensus REs in CLL and control

As methylation is highly correlated over short genomic
distances and the methylation change at individual CpG
sites correlates with chromatin accessibility and tran-
scription factor association of the flanking context [32],
our next step was to expand base-resolution methylation
levels to local methylation states. By connecting multiple
adjacent CpGs (i.e., at least three CpGs in this study)
with similar methylation levels [21], we identified the
de-methylated regions and marked those located in gene
regulatory loci as activated REs (see Methods and
Additional file 1: Figure S1). Our assumption was that
methylation change corresponds to the change in the
activity of a RE—as methylated REs are likely inactive,
long spans of CpG de-methylation in CLL likely corres-
pond to REs that have been inactive in normal cells, but
have been activated in CLL. Throughout the rest of the

manuscript, we use these differential methylation data in
reference to REs that are active in either normal or CLL
cells.

To obtain consistent methylation signals in a sample
class, we adopted a read-number-based normalization
strategy to average methylation signals across samples in
a class. We then used the averaged methylation profile
to predict consensus REs for a tested sample class
(Fig. 2a). By comparing the landscapes of REs in CLL
and control, we identified dREs which were further sub-
categorized into dREs gained and dREs lost during CLL
development (Fig. 2a, see Methods). We also identified
REs shared by CLL and control (sREs) and the regions
highly-methylated in both CLL and control (hiMRs),
which were used as a background reference in the
following analysis. In total, we identified 6,802 gained
dREs, 4,606 lost dREs, 14,091 sREs and 123,233 hiMRs
(Fig. 2b). In additional file 1: Figure S7, examples of
dREs and sREs are given.

dREs occupy non-promoter regions (i.e., intronic and
intergenic genomic loci) more often than sREs (88%
gained and 79% lost dREs vs. 60% sREs, binomial test p
<107, Fig. 2b), which is in line with the preceding
finding that non-promoter CpGs display larger methyla-
tion changes than promoter CpGs (Fig. 1b), and suggests
a pronounced role of enhancer changes during CLL
development.
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In addition, gained dREs in 22.6% of promoters and
3.6% of non-promoters overlap CpG islands (CGIs),
which is significantly lower than their lost dRE and sRE
counterparts (44% and 58.7% of promoters lost dRE and
sRE, respectively, and 18% and 28.7% of non-promoters
lost dRE and sRE, respectively; p < 10~ '%°, Additional file
1: Figure S8, see Methods). The significant depletion of
CpG islands (CGIs) along the gained dREs coincides
with the report that DNA methylation in tumors is
higher within CGIs but is lower outside of CGIs [33].

dREs of different categories show distinct evolutionary
conservation
We assessed evolutionary conservation of dREs by align-
ing their human and mouse counterparts (see Methods).
First of all, more than half of sREs and dREs have mouse
orthologues (65% of sREs, 60.9% of lost dREs and 52.3%
of gained dREs), which is significantly higher than that
of hiMRs (40.8%, binomial test p <10~ %, Fig. 2¢). This
elevated evolutionary conservation is suggestive of mo-
lecular maintenance of dRE and sRE functionality.
Moreover, dREs show higher sequence divergence than
sREs (60.9% and 52.3% v.s. 65%, binomial test p <10~
190) " indicating the propensity of functional change of
dREs during CLL development.

In addition, forty-four percent of hiMR sequence
nucleotides are DNA sequence repeats, which is consist-
ent with DNA repeats and repeat-derived regions

spanning about half of the human genome [34] (Fig. 2¢
and Additional file 1: Figure S9). The low repeat density
of dREs and sREs (17.65%, 22.14%, and 36.15% in sRE,
lost dRE, and gained dRE sequences, respectively) is in
agreement with a previous observation of decreased
repeat content in regulatory elements [35] and correlates
with their elevated evolutionary conservation. As
compared with sREs and lost dREs, the gained dREs
show the higher content of all classes of retrotranspo-
sons (Additional file 1: Figure S9, S10 and Additional file
2: Table S1), which supports the implication of retro-
transposons in cancer initiation [36].

Gain and loss of dREs positively correlate with the change
of target gene expression

To gain insight into the phenotypic impact of dRE alter-
ation, we explored gene expression data of the tested
CLL and control samples (see Methods). Gained dREs
are highly enriched in the neighborhood of the genes
up-regulated in CLL samples. For instance, in the neigh-
borhood of the top 1% of CLL-up-regulated genes are
gained dREs enriched by two times as compared to sREs
(binomial test p =7 x 10~ ', Fig. 3a and Additional file 2:
Table S2). Similarly, significant enrichment of gained
dREs was also observed in regions around the top 2%,
5% and 10% of genes highly up-regulated in CLL (p < 10
~7). By contrast, the lost dREs are pronouncedly de-
pleted in the neighborhood of the CLL-up-regulated
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genes (p=6x10"2, Fig. 3b and Additional file 2: Table
S2). In addition, lost and gained dREs shows opposite
distribution trends in the neighborhood of CLL-down-
regulated genes. That is, lost dREs are overrepresented
in the loci of CLL-down-regulated genes (p < 10 *°). All
these observations support that the loss and gain of REs
in CLL are strongly correlated with the changes in gene
expression — the upregulated genes witness the gain of
REs while the downregulated genes are associated with
the loss of REs, suggesting that the change in gene regu-
lation might be one of the key mechanisms of
carcinogenesis.

Next, we binned human genes according to the pres-
ence of dREs and sREs in their neighborhood (see
Methods). About 69% of the genes associated with the
gained dREs (2,626/3,784) also harbor one or more sREs
in their loci, while only 50% of the lost dRE genes
(1,464/2,905) host sREs (Additional file 1: Figure S11).
The genes linked to either the gained dREs or sREs or
both are enriched with the genes participating in apop-
tosis, cell death and immunological process. All these
biological processes are activated in normal B-cells and

are impaired in cancer cells [37]. Also, genes exclusively
linked to the lost dREs play a role in cell motility
(Fig. 3c and Additional file 2: Table S3), and abnor-
mal motility has been found in CLL cells [38]. Fur-
thermore, the observation that the genes associated
with both the gained dREs and sREs have a function
in T cell differentiation and activation (Fig. 3c)
partially explains the finding that T cell numbers are
increased in most patients with CLL [39].

Lost dREs cluster near the genes encoding DNA

methyltransferases and transcription repressors

The analysis of the distribution of dREs revealed that the
distances between two neighboring gained dREs (ie.,
within-class distances between gained dREs) are signifi-
cantly shorter than expected (Wilcoxon rank-sum test p
<107 ', Additional file 1: Figure S3, see Methods). Simi-
larly, the within-class distances of the lost dREs are
much smaller than expected (p < 10™'¢). The cross-class
distance (i.e., the distance of a gained dRE to its nearest
lost dRE) is longer than expected (p < 10™ ¢, Additional
file 1: Figure S3). These findings show that dREs having
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the same activity likely cluster together, suggesting that
the change of DNA activation occurs selectively, rather
than randomly, along the human genome during CLL
development. That is, certain genomic regions are sub-
ject to become activated (e.g., methylation decrease),
while others tend to be de-activated (e.g., methylation
increase).

As indicated by the bimodal distribution of within-
class distance among lost dREs, there exist genomic re-
gions having a high abundancy of lost dREs (Additional
file 1: Figure S3). We hypothesized that the genes
located near these regions play essential roles in main-
taining normal B-cells, being buffered for regulatory al-
teration and thus requiring multiple lost dREs for their
transcriptional disruption during CLL carcinogenesis. To
examine this hypothesis, we detected the genes harbor-
ing multiple lost dREs in their loci (see Methods), and
noticed that these genes are significantly associated with
methyltransferase activity (enrichment fold =2.06, p =
1.67 x 10~ % Table 1). For example, the two DNA methyl-
transferase genes MGMT and DNMT1 harbor three lost
dREs but no gained dREs in their loci. Transcriptional
disruptions of these genes and inactivating mutations
at their coding regions have been reported in
leukemogenesis, such as acute myelogenous leukemia
(AML) and CLL [40]. Besides, the genes regulating
the binding of NFKB, such as P53 and hypoxia-
inducible factor 1 (HIF1), host multiple lost dREs in
their neighborhood. NFkB is a major TF in normal
and CLL B-cells, of which the binding activity is al-
tered during CLL development [41].

CLL and CLL-related GWAS SNPs fall in dREs

To address the phenotypic or pathological impact of dREs,
we explored the results of GWAS. The NHGRI GWAS
collection [24], in which approximately 200,000 SNPs are
associated with 1,106 phenotypic or pathological traits,
was used for this purpose. Overall, 3,262 GWAS SNPs or
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the SNPs located in tight - link disequilibrium blocks with
GWAS SNPs (* > 0.8) reside in dREs and sREs, of which
415, 608, and 2,239 SNPs are in the lost dREs, gained
dREs, and sREs, respectively (see Methods). As more than
half of GWAS SNP categories consist of less than five
SNPs, we agglomerated the GWAS SNP categories linked
with similar traits to generate broad SNP categories for
CLL, lymphoma, and other cancers (such as melanoma,
colorectal, ovarian and breast) to obtain reliable statistical
estimates. These diseases were chosen due to their direct
relevance to CLL. We labeled all GWAS SNPs not falling
into any of these three broad categories as irrelevant and
used them as baseline (see Methods). No enrichment of ir-
relevant SNPs in dREs suggests that our analysis strategy
is able to address the ascertainment bias of GWAS SNPs
(Fig. 4a and Additional file 2: Table S4). Our analysis re-
vealed that each dRE group shows a distinct profile of
GWAS traits. Gained and lost dREs are significantly
enriched for the SNPs associated with CLL or, more
broadly, lymphoma, (p <5 x 10”°, Fig. 4a and Additional
file 2: Table S4). In addition, the dREs, rather than the
sREs, are significantly enriched for cancer SNPs (p < 0.02),
suggesting that dREs mutations are primarily susceptibility
candidates for cancers, including haematological cancers.
All dRE/sRE CLL and lyphoma SNPs are detailed in Add-
itional file 1: Figure S12 and Additional file 1: Figure S13,
respectively.

We also examined the association of dREs with indi-
vidual GWAS traits (see Methods). The results consist-
ently support the aforementioned functions of dREs
(Fig. 3c), since the gained and lost dREs are strongly
enriched for the SNPs linked to CLL and/or other can-
cers (p<5x107>, Fig. 4b and Additional file 2: Table
S5). Also, the sREs are remarkably linked to immunity-
related traits, such as asthma and adaptive immunity (p
<1x10%), which is in line with the observations that
sREs are significantly associated with T cell activation
and differentiation (Fig. 3c).

Table 1 Functional analysis of multi-lost dREs with respect to all lost dREs

Rank Molecular function P-value Enrichment fold Number of elements
multi-lost dREs all dREs

1 NF-kappaB binding 1.67E-04 2.06 12 12
2 DNA-methyltransferase activity 1.67E-04 2.06 12 12
3 miRNA binding 3.46E-04 2.06 1 1
4 oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor 346E-04 2.06 1 1
5 superoxide-generating NADPH oxidase activity 346E-04 2.06 11 11
6 peptidyl-histidine dioxygenase activity 7.16E-04 2.06 10 10
7 oxygen sensor activity 7.16E-04 2.06 10 10
8 peptidyl-asparagine 3-dioxygenase activity 7.16E-04 2.06 10 10
9 protein methyltransferase activity 7.16E-04 2.06 10 10
10 protein-lysine N-methyltransferase activity 7.16E-04 2.06 10 10
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Examples of GWAS SNPs in dREs

We next examined all cancer-related GWAS SNPs
located in dREs. As an example, a gained-dRE SNP
rs1839563 is strongly linked to rs6466479 (* = 0.93, dis-
tance = 11804 bp), a GWAS SNP significantly associated
with autoimmune disease and hematological cancers,
with G being the risk allele [42]. Also, the examination
of the genotype state based on RRBS-seq data (see
Methods) reveals that the T allele of rs1839563 is
enriched in CLL with respect to the control (binomial
test p<107'°, see Methods, Fig. 5a). In addition,
through exploring the data from the 1000 Genomes Pro-
ject [20], we noticed that the allele T at rs1839563 is in a
prominent haplotype with the risk allele G of GWAS
SNP rs6466479 (OR = 257.9, Fisher’s exact test p =4 x 10
~238 see Methods). These observations further elaborate
the association of rs1839563 and its allele G with the
haematological cancer. Furthermore, the mutation from
C to T generates binding motifs for interferon regulatory
factor 1 (IRF1), transcription factor 3 (TCF3), and RBPJk
(Fig. 5a). All these TFs are over-expressed in CLL. IRF1
activates the transcription of interferons, which in turn
up-regulates CD26 and CD38 in malignant B-cells [43].
RBPJk, an important regulator in the Notch signaling
pathway, plays a critical role in anti-apoptotic mecha-
nisms during CLL development [44]. TCF3, a major B-
cell transcription factor also known as E2A and E47,

promotes proliferation of CLL [45]. Taken together,
rs1839563 demonstrates the potential association with
CLL after being mutated from C to T.

Another example lies at rs3806624, a lost-dRE SNP.
rs3806624 has been associated with Hodgkin’s lymph-
oma and has G as a risk allele in a GWAS study [46].
Our analysis shows that the allele G of rs3806624 is sig-
nificantly enriched in CLL (allele frequency is 0.57 and
0.21 in CLL and control, respectively; binomial test p =
0.0029, Fig. 5b), indicating the possible deleteriousness
of this allele in CLL. The allele substitution of G to A
potentially disrupts the binding motif of P53 and
CCAAT-enhancer-binding protein (CEBP) (Fig. 5b), TFs
known to play roles in apoptosis and hematopoietic cell
differentiation. The coincidence between the CLL-
enriched allele and the reported risk allele, together with
the binding disruption caused by the CLL mutation, sup-
ports the possible pathogenicity of rs3806624-.

We have a total of six cancer-associated GWAS SNPs
exhibiting a significant difference of allele frequency
between CLL and control (Additional file 2: Table S6).
Among these SNPs are the above example SNPs,
rs1976684, rs2151512, rs8077394 and rs133018 (see
Additional file 1: Figure S14 and S15). Most of these
SNPs (5/6) exhibit a prominent haplotype association
between the CLL-enriched alleles and the risk alleles
detected in GWASs (Additional file 2: Table S6). These
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for the gained-dRE SNPs (a), and the TFBSs mapped to the grey alleles but not black alleles are displayed in the case of the lost-dRE SNPs (b).
Two additional examples are shown in Additional file 1: Figure S14 and S15

cancer SNPs, coupled with the statistical results presented
in the previous section, suggest a significant association of
dREs and genetic mutations inside these regions with CLL
or CLL-related traits. We also observed that genetic muta-
tions are able to change the binding sites of CLL/normal
B-cell TFs, which may be the driver of phenotypic
alterations.

Changes of TFBS in CLL development

To investigate gene regulatory changes underlying car-
cinogenesis, we evaluated and contrasted transcription
factor binding site (TFBS) enrichment in gained and lost
dREs (see Methods). The results reveal that all gained
and lost dREs display a significant enrichment of eight
TEBSs (Fig. 6a), including those of NFKB1, estrogen re-
ceptor 2 (ESR1), and P53, all well-known for activating
and maintaining B and CLL cells. Gained dREs are
exclusively enriched for the TFBSs of TCF3 and PPAR
(Fig. 6a and Additional file 2: Table S7). These TFs are
major TFs in CLL and, more broadly, leukemia, as
discussed above. Lost dREs are enriched with the TFBSs
of PAX5, AP2, and E2F1. E2F1 has been found to be

involved in tumor suppression and cell cycle, and the
loss of E2F1 results in the progress of carcinogenesis
and the decrease of lymphocyte tolerance [47]. PAX5 is
an essential marker in the development and activation of
B-cells and leukemogenesis [48]. Overall, the different
TEBS signatures suggest that CLL B-cells use the distinct
gene regulation pathways found in normal B-cells.

Next, we examined how genetic mutations, ie., the
allele substitutions at SNPs identified in this study, impact
the binding affinity of TFs. We did not have genetic vari-
ation data directly available for the tested CLL samples.
Therefore, we explored RRBS-seq data to identify SNPs
strongly associated with CLL, in which the genotype in
CLL samples is significantly different from the controls,
along with the CLL-associated substitutions at these SNPs
(see Methods). In total, 491 such SNPs were identified in
dREs, of which 305 were located in the gained dREs and
186 were in lost dREs. We assessed TF binding alterations
potentially caused by the CLL-associated substitutions
(see Methods). By a comparison to the random positions
having matched base-pair composition along the lost
dREs, we noticed that the detected CLL-associated
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substitutions are associated with the loss of binding site
of P53, NFKB2, E2F1, and PAX5 more frequently than
expected (enrichment of TFBS loss>1.5 and p <0.05,
Fig. 6b and Additional file 2: Table S8). E2F1 and PAX5
are the major regulators in normal B-cells, of which
TFBSs have been found to be enriched uniquely along
the lost dREs (Fig. 6a and Additional file 2: Table S7).
Also, in the context of the gained dREs, 15 TFBSs are
enriched only in the sequences carrying CLL-associated
alleles (p < 0.01, see Methods, Fig. 6¢ and Additional file
2: Table S9). Most of these TFBS correspond to well-
known CLL TFs, such as TCF3 and HIF1. HIF1 is
required for the survival of leukemia stem cells under
hypoxic environments, such as bone marrow niches
[10, 49]. In addition, the CLL-association substitutions
are more likely than expected to alter the binding affin-
ity of NFKB and PAX5 in both the gained and lost
dREs, compatible with the functions of these TFs in
CLL as well as normal B-cells.

Discussion and conclusion

In this study, we established a workflow to identify
differentially-activated REs (dREs) in carcinogenesis and
applied it to CLL data. Most of the CLL dREs are located
in non-promoter gene regulatory loci, indicating a

substantial role enhancer alterations play in CLL
carcinogenesis. We found that dRE changes are strongly
correlated with the change of gene expression, ie.,
gained/lost dREs are enriched in the loci of up-/down-
regulated genes in CLL, respectively.

We found that lost and gained dREs rarely co-occur in
the same gene loci, suggesting reprogramming of the
regulatory architecture is locus-long and not necessarily
targeting individual regulatory elements in carcinogen-
esis. As expected, gained dREs are significantly associ-
ated with CLL-induced biological processes. For
example, 68% of the genes having the function of DNA
damage response exclusively harbor gained dREs, which
is 2.3 times higher than expected. Also 74% of genes
regulating B cell activation host gained dREs. DNA
methyltransferase genes, for example, DNMT3A and
MGMT, which are essential for maintaining cell cycle
and methylation levels of normal B-cells, harbor mul-
tiple lost dREs but zero gained dREs in their neighbor-
hood. In addition, both gained and lost dREs
significantly coincide with CLL, lymphoma, and, more
broadly, cancer-associated GWAS SNPs. Furthermore,
most of the cancer-associated alleles at these SNPs
(83%) are in predominant haplotypes with the risk alleles
reported in GWAS. All of these findings indicate the
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phenotypic consequence of RE changes during CLL
development.

By examining TEBS enrichment in dRE sequences, we
observed that normal and CLL B-cells recruit distinct
gene regulatory pathways, although both of them employ
common TFs, such as NFKB and P53. Apart from these
common TFs, the key TFs in normal B-cells include
PAX5, E2F1 and AP2, while CLL employs TCF3, PPAR,
etc. Moreover, through analyzing the impact of the iden-
tified CLL-associated mutations on TF binding, we
found that these mutations change the binding activity
of key TFs, i.e., disrupting/generating TF binding sites in
the lost/gained dREs, more frequently than expected.

Conclusion

Overall, through exploring sequencing data of chromatin
states, we established the maps of REs in normal and can-
cer cells and identified genetic mutations during CLL de-
velopment. The comparison between these RE maps
enabled us to identify gene regulatory variations during
cancer initiation in different layers, such as TF binding
and chromatin interaction. To test the generalization of
our pipeline, we applied it to a liver tumor dataset consist-
ing of 4 tumor and 4 control samples [50], and noticed
that the distribution of dREs is highly correlated with the
change of expression of local genes (Additional file 1: Fig-
ure S16), which is similar to the finding on the CLL data
analysis. This indicates that our observations are likely not
limited to CLL and could be generalized to other cancers.

Additional files

Additional file 1: Supplementary figures. Figure S1. Flowchart for
our data analysis. Figure S2. Distribution of dREs. The distributions of the
distances between two nearest dREs (red) are shown for (a) gained dREs,
b) lost dREs, and ¢) cross-class dREs (i.e, gained dREs and their nearest
lost dREs). Figure S3. Contingency table to estimate the haplotype asso-
ciation between the

allele 1 at a LD SNP m and the allele 1 at its tag GWAS SNP m_tag.
Figure S4. Evaluation of impact of CLL substitutions on TFBS. MU, the
mutant allele, is the allele enriched in CLL with respect to normal B-cells,
while WT, the wild - type allele, is the allele depleted in CLL with respect
to normal B-cells. Figure S5. Genomic distribution of the assayed CpG
sites. The CpG sites located within CpG islands (CGls) and those not in
CGls are analyzed separately. Figure S6. PCA of methylation levels of
CpG sites located at gene regulatory regions. (a) non-promoter CpG sites
and (b) promoter CpG sites. The CLL and normal samples are represented
by red and grey dots, respectively. Figure S7. Examples of dREs and sREs
in the loci of (a) IRF4 and EXOC2, (b) FOXF2 and (c) E4F1 and MLSTS. sREs
are marked in red bars, while gained and lost sREs are plotted in blue
and green, respectively. Also promoter dREs/sREs are indicated by a black
asterisk and the name of the corresponding genes. Figure S8. Fraction
of REs (REs, lost dREs, gained dREs) and hiMRs (controls) residing in CGls.
Figure S9. Coverage of repeats along REs and hiMRs. Figure S10.
Enrichment of different types of repeats in REs with respect to hiMRs.
Figure S11. Overlap among the gene groups. Gene groups are defined
according to the distribution of REs. “Shared” represents the set of genes
containing the sRE(s) in their loci. Similarly “Lost” and “Gained” are the
genes harboring the lost and gained dRE(s), respectively. Figure S12.
GWAS CLL SNPs located within the detected dREs and sREs. For each
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SNP, GWAS association is -log10(p value estimated in GWAS studies). In
the figures, sREs are represented by red bar, while gained and lost dREs
are marked by blue and green bars, respectively. Figure S13. GWAS
lymphoma SNPs located with the detected dREs and sREs. For each SNP,
GWAS association is -log10(p value estimated in GWAS studies). In the
figures, sREs are represented by red bar, while gained and lost dREs are
marked by blue and green bars, respectively. Figure S14. rs1976684, a
SNP residing in a lost dRE, is in an LD block (p? = 1.0, distance = 2564 bp)
with rs501764, a GWAS SNP significantly associated with Hodgkin's
lymphoma [1] (Figure S13). The allele G of rs501764 is in a prominent
haplotype (OR =432.6, Fisher's exact test p=2x 10" 133) with the allele G
at rs1976684, the pathogenic allele for Hodgkin's lymphoma [1].
Furthermore, the allele G at rs1976684 recurs significantly in CLL samples
as compared to controls (p=2x 10 '°). Another line of evidence is that
rs1976684 has a strong linkage (P =1.0) with rs4143094, a colorectal-cancer
SNP with the risk allele of T [2]. Also, the disease allele T at rs4143094 is in a
significant haplotype with the CLL-rich allele G at rs1976684 (OR=70.7,
Fisher's exact test p=23x 10 >*%). Collectively, a lost-dRE SNP rs1976684 is
significantly linked to two GWAS SNPs associated with cancers, including
lymphoma, a haematological cancer. The CLL-enriched allele of rs1976684
significantly co-occurs with the risk alleles of these GWAS SNPs. Moreover,
the mutation from A to G at rs19766684 results in the loss of binding motifs
of nuclear receptor subfamily 2 group F member 1 (NR2F1), a TF found to
play a crucial role in development and differentiation processes in B-cell [3],
further suggesting that rs1976684 is a potential CLL SNP with G as the cul-
prit allele. Figure S15. rs211512, a cancer-associated gained-dRE SNP.
rs211512 has a strong LD to rs4925386 (P =10, distance = 7549 bp), a
colorectal-cancer GWAS SNP [4]. Its over-represented allele C (p < 107 '9) is
in a significant haplotype with the cancer-risk allele at rs12193698 (OR =
1482.16, Fisher's exact test p < 10~ %), Al of these suggest the cancer-
association of rs2151512 and its allele C, which is further supported by the
observation that the CLL mutation at rs2151512 (replacing T with C)
generates the binding motifs for GFI1B. GFI1B is a well-recognized major
regulator of early hematopoiesis and hematopoietic stem cells, and has
been associated with human blood diseases, including leukemia and
lymphoma [5, 6]. The black allele is the one enriched in CLL (ie, CLL-
associated), while the grey allele is the one associated with normal samples.
To show the TFBS change caused by this gained dRE SNP, the TFBS
exclusively mapped to the black allele is presented here. Figure S16. The
results of liver tumor dataset. This dataset consists of DNA methylation
profiles of 4 tumor and 4 control samples (Gene Expression Omnibus,
GSE70090, [7]). We detected 51988 gained dREs, 22948 lost dREs and 12476
SREs. The gained and lost dREs are enriched around the genes up and
down-regulated in liver tumor, respectively. ** means binomial test

p < 00001, while * is for the case of p <0.05. (DOCX 987 kb)

Additional file 2: Supplementary tables. Table S1. Overlap and
enrichment of repeated elements along dREs. Table S2. Enrichment of
dREs in the regulatory domains of CLL-up/down-regulated genes. Table
S3. Enrichment of gene groups to Gene Ontology biological processes.
Table S4. Density of GWAS SNPs associated with agglomerated traits
along dRE. Table S5.

Association of dREs to individual GWAS traits. Table S6. Prediction results
and GWAS knowledge of the cancer-related GWAS SNPs which exhibit
the significant allele frequency difference between CLL and normal samples.
Table S7. Enrichment of TFBSs along dREs. Table S8. Enrichment of TFBS
loss caused by CLL-associated alleles along lost dREs. Table S9. Enrichment
of TFBS gain caused by ClLL-associated alleles along gained dREs.

(XLSX 64 kb)
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