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Abstract

Background: The current literature establishes the importance of gene functional category and expression in
promoting or suppressing duplicate gene loss after whole genome doubling in plants, a process known as
fractionation. Inspired by studies that have reported gene expression to be the dominating factor in preventing
duplicate gene loss, we analyzed the relative effect of functional category and expression.

Methods: We use multivariate methods to study data sets on gene retention, function and expression in rosids and
asterids to estimate effects and assess their interaction.

Results: Our results suggest that the effect on duplicate gene retention fractionation by functional category and
expression are independent and have no statistical interaction.

Conclusion: In plants, functional category is the more dominant factor in explaining duplicate gene loss.
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Background
The proliferation and the advancement of tools for genetic
analysis changed the understanding of the role of poly-
ploidy in evolution [1]. Polyploidy, which can result from
whole genome duplication events of doubling or tripling
of the genome, is now considered to be a recurrent and
frequent theme in plant evolution. Virtually all land plants
have a polyploid ancestor [2–5] with many lineages hav-
ing additional rounds of whole genome duplication events
(Fig. 1). These special events in evolutionary history
have been linked to increased morphological and genetic
diversity [6, 7].
After whole genome duplication events there is mas-

sive duplicate gene loss, a process known as fractionation.
Duplicate genes from whole genome duplications are sen-
sitive to pseudogenization and excision of chromosomal
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fragments. Notably, fractionation continues even after the
polyploid species has been rediploidized. Models such as
the Gene Balance Hypothesis [8] and the Gene Dosage
Hypothesis [9, 10] attempt to explain the pattern of these
duplicate gene losses [11].
The Gene Balance Hypothesis argues that the need

to maintain stoichiometry ratio between important gene
products results in the maintenance of these duplicate
genes. In this model, duplicate regulatory genes and dupli-
cate genes responding to stimulus are expected to be
maintained at a greater rate due to gene product inter-
actions. Gene products that do not need to interact with
other gene products to maintain a delicate balance, such
as many metabolic and enzymatic genes which interacts
with metabolites such as food, sugar, and fat, are expected
to be lost at a greater rate. We have verified these general
expectations in previous work [12–14] as documented
in Fig. 2.
A striking example of gene balance is provided by the

preferential retention of circadian clock genes after the
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Fig. 1Whole genome duplication history. Star symbols mean whole
genome triplication events while triangle symbols are duplication
events [3, 20, 30]. Phylogeny branch lengths not to scale

whole genome triplication event in the history of Brassica
rapa [15]. The regulation of these genes in plants is
assured by stoichiometric negative feedback loops. These
clock genes, as a whole, are preferentially retained com-
pared to other core eukaryotic genes or to neighbouring
genes flanking the clock genes.
The competing model, the Gene Dosage Hypothesis,

argues that important genes are simply more likely to
be kept, and because of how biologically expensive it
is to maintain high expression levels, high gene expres-
sion level is a good indicator that the gene is important.
Prior to the WGD, loss of these genes would entail sig-
nificant loss of fitness. After WGD, the organism has
reached a new normal, with twice the previous activity,
and disproportionate loss of these expensive gene via
fractionation would also incur a decrease of fitness.

Therefore, duplicate genes with high expression levels will
be maintained in duplicate. In this model, gene func-
tion is still the driving force to maintain these duplicates,
but high level general functional categories, such as the
above-mentioned metabolic, enzymatic, regulatory, and
response patterns, are too general to be of use in predict-
ing duplicate gene retention. Gout et al. [16] reported, in
Paramecium, that high expressing genes are maintained
in duplicate more than low expressing genes. Controlling
for different functional categories having different expres-
sion levels does not change this result (Fig. 3). In [14], we
also reported that duplicate genes are more likely to be
maintained as duplicates if they have high expression lev-
els, regardless of their functional categories. However, our
results showed the effect of gene expression on maintain-
ing duplicate gene after whole genome duplication events
is much less pronounced than in the Paramecium study.
Both the Gene BalanceHypothesis and theGeneDosage

Hypothesis are needed because each model explains
observations that the other model can not fully explain.
However, teasing apart the relative importance of those
factors require rigorous multivariate analysis. This what
we undertake in the paper, and despite the intuitive appeal
of the Gene Dosage Hypothesis, we find that gene func-
tional category is far more explanatory of variable reten-
tion rate than gene expression.

Methods
Data
We construct gene families based on the sequence similar-
ity and the conserved gene order between extant species

Fig. 2 Based on retention of paralogs resulting from ancient polyploidization in three rosids and three asterids. Retained genes identified in
homeologous syntenic blocks detected by SynMap [17, 18]. “Increase in fractionation resistance” ranges from 1 (singleton in all three species) to 4
(three paralogs retained in all species). “Normalized proportions” measures how many of the gene paralogy groups with a given fractionation
resistance are annotated by a specific Gene Ontology (GO) term. E.g., in the rosids, 80% of the paralogy groups with fractionation resistance 1 are
annotated with the GO term “Cellular Process”. From [14], Figure 3
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Fig. 3 The Paramecium genes are filtered by GO terms before putting inside the expression bins. The Y-axis describes the retention rate of genes
inside the expression bins. From [16], Figure S3

using CoGe [17, 18]. These gene families are pruned into
smaller units that are linked by the whole genome dupli-
cation in the ancestor using the “Orthologs for Multiple
Genomes” program [19]. Detailed flowcharts and param-
eters for generating gene families have been presented
previously [12, 13].
The species grape [20], peach [21] and cacao [22] form

the rosid data set. These species can trace their last com-
mon ancestor to the period after the divergence of the
asterids, following the core eudicot hexaploid about 120
million years ago [3]. There are no additional rounds of
whole genome duplication in the evolutionary paths lead-
ing to the these present-day species [20–22]. Therefore,
whole genome comparative analysis of the rosid data set
offers insights on the effects of fractionation over long
period of time.
The asterid data set provides a different viewpoint of

the fractionation process compared to the rosid data set.
The last common asterid ancestor diverged five to ten
million years after the hexaploid core eudicot ancestor.

This early divergence means the fractionation process
after the hexaploid ancestor of the asterid data set is
mostly independent from the fractionation process in the
species of the rosid data set. Furthermore, the species
of the asterid data set, which consists of extant species
tomato [23], Mimulus [24], and Utricularia [25], have
additional rounds of whole genome duplication [3].
The asterid data set addresses two potential concerns.

The first concern is whether the results of the rosid data
set represent a general effect or a clade-specific trend.
The second concern is whether the additional rounds of
whole genome duplication introduce a different pattern
compared to single ancient whole genome duplication
event. Thus far the fractionation pattern of genomes of the
datasets is consistent with the literature and appears to be
general [11, 13].
For the expression analysis, we use grape to represent

the rosids and tomato to represent the asterids. High
quality RNA-seq expression data, already normalized and
organ-specific, are available for both species [23, 26].
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Fig. 4 Number of gene families of in each fractionation resistance categories. “All singletons” have retention index of zero, “mostly singletons” have
retention index of one, “mostly duplicates” have retention index of two, and “all duplicates” have retention index of three

Since a gene’s function may be relevant to specific tissues
only, for each gene, we use the highest expression level it
displays across all organs to represent its expression score.

Retention indices
We use retention indices to measure how fractionation
resistant or prone gene families are. The retention index
of each gene family is calculated by counting in how
many species the genes is still maintained in duplicate. For
example, if a gene family of the rosid data set is maintained
as duplicates only in grapes, then the retention index of
that gene family is one. Since there are three species in
both the rosid data set and the asterid data set, retention
indices range between zero (gene set reduced to singletons
in all species) and three (gene maintained as duplicates in
all species).
Figure 4 summarizes howmany gene families are in each

retention category based on each gene family’s retention
index. For rosids, a much larger proportion of gene fam-
ilies have become singletons. While the “all singletons”
(retention index of zero) category also contain the highest
number of gene families in asterids, the families are more
evenly distributed among the retention categories.

Expression
For the expression analysis, we use individual genes
instead of gene families, for two reasons. The first rea-
son is that genes in duplicate families have varying gene
expressions that may differ by orders of magnitude. The
skewness of the data prevents us from using averages. Sec-
ond, we cannot just take the highest expressing gene in
the gene family in the same way as we chose the organ
with the highest expression to represent the gene’s score.
This is to avoid the artifact that the more genes a gene
family has, the higher the expression of the gene family
will be by virtue of having more chance to include a high
expressing gene.

We also bin gene expression data into two groups, High-
Exp and LowExp, as an additional normalization step.
Genes of theHighExp group have expression levels greater
or equal than the median gene expression level of the
particular functional category. The LowExp group con-
tains genes that have expression levels lower than the
median gene expression level of the particular functional
category.

Annotations
We use GO [27] terms to classify gene families into
functional categories via Blast2GO [28]. GO terms are

Fig. 5 Example of nested structure of GO terms. Starting at a low-level
GO term “protein secretion”, it is inherited by two higher GO terms
“secretion by cell” and “protein transport”. After a few more levels of
GO terms (represented by dashed lines), the starting GO term is now
inheriting two high level terms “cellular process” and “localization”.
These high level terms are then linked to the root term, “biological
process”. There are three root terms in gene ontology, they are
“biological process”, “cellular component”, and “molecular function” [27]
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nested within each other to provide different resolution
of annotation (Fig. 5). We call GO terms that are close to
the one of the three “root terms” “high level terms”. These
high level terms describe general functional categories. As
a result, a particular gene may be annotated with multiple
high level terms as shown in Fig. 5.
We designate three high levels of GO functional cat-

egories (Fig. 5) that we previously found to have the
highest effect on fractionation [13, 14]. The first category
is “Metabolic process (Z1)”, one of the most fractionation-
prone. The second category is “Enzyme class (Z2)”.
It is also highly fractionation-prone but it includes
enzymes involved in signalling pathways so the cate-
gory as a whole may show increased retention compared
to Z1. The third category is “Regulation and Response”
(Z3). This is composed of two most fractionation-
resistant GO categories. These three high level GO func-
tional categories cover two of the three GO distinct

domains: “biological process” (Z1 and Z3) and “molecular
function” (Z2).
Each high level functional categories is further divided

into six low-level GO categories to represent more spe-
cific and biologically distinct functions. GO terms “sec-
ondary metabolic process”, “lipid biosynthetic process”,
“steroid metabolic process”, “nucleobase-compound con-
taining metabolic process”, “carbohydrate metabolic pro-
cess”, and “protein metabolic process” represents Z1.
These six metabolic GO terms are representative of
diverse metabolic processes. GO terms “transferase activ-
ity”, “oxidoreductase activity”, “hydrolase activity”, “ligase
activity”, “lyase activity”, and “isomerase activity”, the six
major enzyme classes, represent Z2.
GO terms “regulation of metabolic process”, “nucleic

acid transcription factor activity”, “signal transduction”,
“response to hormone”, “response to temperature”, and
“response to stress” represent Z3. This is a combination

Table 1 GO terms and number of genes

Tomato Grape

Metabolic Process (Z1) Z11 GO.0008610 lipid biosynthetic
process

286 397

Z12 GO.0008202 steroid metabolic
process

54 75

Z13 GO.0006139 nucleobase con-
taining compound
metabolic process

655 1055

Z14 GO.0005975 carbohydrate
metabolic process

575 810

Z15 GO.0019538 protein metabolic
process

1109 1389

Z16 GO.0019748 secondary metabolic
process

131 214

Enzyme Class (Z2) Z21 GO.0016740 transferase activity 962 1227

Z22 GO.0016491 oxidoreductase activ-
ity

529 693

Z23 GO.0016787 hydrolase activity 878 1254

Z24 GO.0016874 ligase activity 177 246

Z25 GO.0016829 lyase activity 119 152

Z26 GO.0016853 isomerase activity 67 131

Regulation Response (Z3) Z31 GO.0019222 regulation of
metabolic process

965 1043

Z32 GO.0001071 nucleic acid binding
transcription factor
activity

403 324

Z33 GO.0007165 signal transduction 550 573

Z34 GO.0009725 response to
hormone

492 464

Z35 GO.0009266 response to tempera-
ture stimulus

291 284

Z36 GO.0006950 response to stress 1032 1301
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Fig. 6 Summary of average retentions indices in grape and tomato. Each functional category has two data points: average retention index under
low expression (LowExp) and average retention index under high expression index (HighExp)

of two highly fractionation-resistant functional categories
in “biological regulation” and “response to stimulus” [13]
so that there are six low level and biologically distinct GO
terms in each high level functional categories (Table 1).

Results and discussion
From our previous results [13, 14], we predict Z1 to be
the most fractionation-prone, closely followed by Z2, and
then Z3.
The inherently different gene count for different func-

tions (Table 1) means the categories are not balanced as
would be required for ANOVA. We sidestep the issue by
using the average retention index of each functional cate-
gory instead of the raw count. This strategy comes at the
expense of statistical power since we are now left with
just two data points for each low-level functional category.
Still, Fig. 6 shows the expected result of high expression
correlating with high fractionation resistance.
Figure 6 is a visual representation of what the average

retention indices are for each functional category. This
result is consistent with our prediction that genes of Z3
are more fractionation-resistant than gene of Z2 and Z1.

This is further reinforced in Fig. 7. This supports
our prediction that genes of Z3 are more fractionation-
resistant than Z1 and Z2. In grape, the adjusted p-value
for the statistical test of the difference between Z3 and
Z2 is only marginally significant, likely due to insufficient
data. That the difference is real is bolstered by the clear
difference between Z3 and Z2 in tomato.
Figure 7 also shows that in grape, the difference between

fractionation-resistant Z3 and fractionation prone Z1 and
Z2 are smaller than the difference in tomato. A reason for
this observation being that gene families that are single-
tons in all three species of the rosid data set constitute
a far more higher proportion than in the asterid data
set, so even the fractionation-resistant functional category
contain many singleton gene families.
The ANOVA table (Table 2) answers the main objec-

tive of the paper: which of Gene Balance Hypothesis and
Gene Dosage impact duplicate gene retention more? We
answer this by calculating whether functional categories
or expression levels have the bigger effect size in the two-
way ANOVA. In the table, the effect size, measured in
partial eta squared, supports the conjecture in the Chen
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Fig. 7 Tukey’s honest significant difference test. The horizontal bar
indicate the Tukey test statistics (which include corrections for
multiple comparisons) of the estimated difference between labelled
categories. The vertical lines indicate the 95% confidence interval. In
both grape and tomato, category Z2 and Z1, in red, are not
significantly different from each other. In grape, category Z3 and Z2,
in light blue is not highly significant (adjusted p-value is 0.06887)

et al. paper [14] that functional category carries more
weight in determining retention indices than expression
levels. The table also shows that while functional cate-
gories strongly affect average retention indices, the effect
that expression levels have on average retention indices
are no longer significant.

Conclusion
Expression has been suggested to be the most impor-
tant factor in determining duplicate retention after whole
genome duplication events [16]. Our results suggest oth-
erwise, that functional category is the more dominant
factor of the two. Furthermore, our results in Table 2
suggests that there is no interaction between functional
category and expression level.
We expect the result presented here to be present in

other flowering plant lineages as well, given how both the
rosid dataset and the asterid dataset show a consistent
trend. Also, our previous analyses on fractionation resis-
tance [13, 14] show these retention trends to be consistent
across different lineages, giving us more confidence in this
prediction.
Going forward, we want to further explore the role of

expression on fractionation. One direction is to explore
the different types of expression. Some genes are only
expressed in certain tissues or at certain developmental
stages, such as the development of flowers, or genes that
have organ specific expression pattern, or genes that are
always on but fluctuate depending on the situation. Dif-
ferent expression pattern may have different fractionation
tendencies.
Another direction is to expand the analysis to other

genes that are currently not part of the analysis. One par-
ticular analysis for future work is the relationship between
retained duplicates and the nearby genes. Retained dupli-
cates are reported to have an effect on the distribution of
genes with copy number variation in humans [29]. We can
explore if similar effects are also present in plants.
In summary, we have evidence to suggest that functional

categories plays a more important than gene expression
levels in duplicate gene retention after whole genome
duplication. There are many challenges and possibilities
that can build upon this work to better explain the mech-
anisms and the effects of the fractionation process.

Table 2 ANOVA table on balanced grape and tomato data

Grape Anova Table (Type II tests)

Partial etaˆ2 Sum Sq Df F value Pr(>F)

GOf 0.9071 36.193 3 97.64771 <1e-15 ***

ExpQ 0.06236 0.121 1 1.9953 0.1681

GOf:ExpQ 0.02797 0.017 2 0.4317 0.6534

Residuals 1.0918 30

Tomato Anova Table (Type II tests)

GOf 0.96865 36.193 3 308.9591 <2e-16 ***

ExpQ 0.0937 0.121 1 3.1016 0.08841 .

GOf:ExpQ 0.01395 0.017 2 0.2121 0.81005

Residuals 1.171 30

*GOf is the High level functional category. ExpQ is the expression category
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