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Abstract

Background: The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ1–42 are potential early diagnostic
markers for probable Alzheimer’s disease (AD). The influence of genetic variation on these CSF biomarkers has been
investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically
modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies.
The main objective of this study is to gain further biological insights via the integration of statistical gene
associations in AD with physical protein interaction networks.

Results: The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-
tau/Aβ1–42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs),
with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05
were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD
Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it
as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated
using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes,
including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production
(CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A).

Conclusions: This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework,
and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4
enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also
multiple genes enriching several KEGG pathways such as Alzheimer’s disease, colorectal cancer, gliomas, renal cell
carcinoma, Huntington’s disease, and others. This study demonstrated that integration of gene-level associations
with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction
among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease
and the most common form of dementia. Although its eti-
ology is not completely understood, a genetic component
of susceptibility to AD has been shown in the literature
[1–6]. Cerebrospinal fluid (CSF) studies [7–10] have also
been conducted in AD to identify differential biomarkers.
Given that one hallmark of AD pathology is a cerebral ac-
cumulation of amyloid-β 1–42 peptide (Aβ1–42) in amyl-
oid plaques, the Aβ1–42 level has been shown markedly
reduced in CSF. In addition, the total tau (t-tau) protein
level has been shown significantly elevated in the CSF of
AD patients. As a result, the CSF t-tau/Aβ1–42 ratio has
also been studied as a biomarker for differentiating AD
from normal older adults [5, 11–13].
With the recent advances in high-throughput genotyp-

ing technologies, Genome-Wide Association Studies
(GWAS) have been applied to the analysis of CSF bio-
markers (e.g., [13, 14]) to identify relevant genetic
markers, such as Single Nucleotide Polymorphisms
(SNPs). While most studies examined genetic associa-
tions with CSF biomarkers at the individual SNP or gene
level, mining higher level genetic associations using bio-
logical interaction networks is still an under-explored
topic for the CSF biomarker studies in AD. Recently,
many studies in other domains have demonstrated that
integrative analyses of GWAS data and protein-protein
interaction (PPI) networks can provide valuable bio-
logical insights. Some methods have been proposed to
identify subnetworks enriched by GWAS results [15–
19]. One tool is iPINBPA [16, 20–23], which is based on
the fact that the genes identified in GWAS are more
likely to physically interact as well as to belong to the
same or related pathways.
With these observations, in this work, we performed a

genome-wide network-based pathway analysis for CSF
studies in AD. We analyzed an AD cohort from Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI), used the
CSF biomarker t-tau/Aβ1–42 ratio as the test phenotype
or quantitative trait (QT), downloaded the PPI network
from the Human Protein Reference Database (HPRD)
(http://www.hprd.org/), and applied the iPINBPA ana-
lysis to the GWAS findings of the CSF t-tau/Aβ1–42 ra-
tio. Our goal was to search for subnetworks or network
modules enriched by the CSF GWAS findings, which
may offer valuable biological insights and suggest high
confidence candidates for subsequent analyses.

Methods
Figure 1 illustrates the work-flow of this study. The
genotyping and CSF data were downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. GWAS of the CSF QT was performed using
the PLINK software [24]. This resulted in 563,980 SNPs

with associated p-values, which were then assigned to
22,179 genes. The gene assignment and gene-based p-
values were calculated using the VEGAS2 software [25].
The nominally significant genes (i.e., gene-based p-
values ≤ 0.05) were mapped onto the HPRD PPI network
[26, 27] and analyzed using the iPINBPA method in
order to identify the enriched subnetworks. The Enrichr
pathway analysis tool [28] was applied to functionally
annotate the subnetwork.

Subjects
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). One goal of ADNI
has been to test whether serial magnetic resonance im-
aging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early AD. For
up-to-date information, see http://adni.loni.usc.edu/. Ap-
propriate Institutional Review Boards approval occurred
at each ADNI site and informed consent was obtained
from each participant or authorized representative.
In this study, our analyses were concentrated on 843

ADNI subjects whose genotyping data (after quality con-
trol described below) and the baseline CSF biomarker
data including t-tau and Aβ1–42 were both available. This
sample included 199 cognitively normal (CN) subjects,
85 subjects with significant memory concern (SMC), 239
subjects with early mild cognitive impairment (EMCI),
207 subjects with late mild cognitive impairment
(LMCI), and 113 subjects with Alzheimer’s disease (AD).
Table 1 shows the demographic and clinical characteris-
tics of these participants at the baseline, where the char-
acteristics were analyzed with the statistical software
IBM SPSS [29] Version 2 for differences across diagnos-
tic groups using one-way analysis of variance (ANOVA)
or Chi-square test.

CSF Biomarker Measurement as Quantitative Trait
The amyloid-β 1–42 peptide (Aβ1–42) and total tau
(t-tau) measured in the baseline CSF samples of the
participants were downloaded from the ADNI database.
The t-tau/Aβ1–42 ratio was computed and used as the
quantitative trait in the GWAS.

Genotyping Data and Quality Control
The genotyping data of the participants were collected
using either the Illumina 2.5 M array (a byproduct of the
ADNI whole genome sequencing sample) or the Illu-
mina OmniQuad array. For the present analyses, single
nucleotide polymorphism (SNP) markers that were
present on both arrays were included [6, 30, 31].
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Quality control (QC) was performed on the ADNI par-
ticipants using the PLINK v1.07 software [24] (http://
zzz.bwh.harvard.edu/plink/), following a similar proced-
ure described in Li et al. [32]. Briefly, SNPs not meeting
any of the following criteria were excluded: (1) SNPs
available on both 2.5 M array and OmniQuad array, (2)
call rate per SNP ≥ 95%; (3) minor allele frequency ≥ 5%
(n = 1,845,510 SNPs were excluded based on Criteria 1–
3); and (4) Hardy-Weinberg equilibrium test of p ≥ 10−6

(n = 198 SNPs were excluded) using control subjects

only. Participants were excluded from the analysis if
any of the following criteria were not satisfied: (1) call
rate per subject ≥ 95% (no participant was excluded),
(2) sex check (1 participant was excluded), (3) identity
check for related pairs (8 sibling pairs and 1 sibling
triple were identified with PI_HAT >0.5, 1 participant
from each family was randomly selected and included
in the study).
Population stratification analysis was performed using

EIGENSTRAT [33], and confirmed using STRUCTURE

Fig. 1 Flow chart. Step1: GWAS using Plink was performed on 843 ADNI participants. Step2: VEGAS2 was used to obtain gene-level p-values,
which were mapped onto the HPRD PPI network. Step3: Network-based analysis was performed by iPINBPA software 10 times, and 10 groups of
subnetworks were obtained. For the top subnetwork of each result, we computed a consensus module by intersecting this top subnetwork with
the most similar subnetworks obtained in all the other nine results. Step4: KEGG pathway enrichment analysis was performed for each consensus
module by Enrichr tool.
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[34]. It yielded 89 study participants who did not cluster
with the remaining subjects and with the CEU HapMap
samples who are primarily of European ancestry (non-
Hispanic Caucasians). These 89 participants were ex-
cluded from the analysis. After QC, 563,980 SNPs and
843 individuals remained available for the subsequent
GWAS, network and pathway analyses.

SNP-Level and Gene-Level GWAS Analyses
For GWAS, to examine the main effects, linear regres-
sion was implemented by PLINK to evaluate the associ-
ation between each SNP and the t-tau/Aβ1–42 ratio. An
additive genetic model was tested with covariates, in-
cluding age, gender, and diagnosis (through five binary
dummy variables indicating CN, SMC, EMCI, LMCI,
and AD). Then, the SNP-level p-values were obtained.
The VEGAS2 software [25] was used to assign 563,980

SNPs to 22,179 autosomal genes according to positions
on the UCSC Genome Browser (out of 26,292 in hg19),
and to compute gene-level p values. The software applies
simulations from the multivariate normal distribution to
employ information from a defined subset of markers
within a gene as well as take into account linkage dis-
equilibrium between the markers. To save running time,
we use a multi-stage approach to adaptively determine
the number of simulations per gene: (Stage 1) we run
103 simulations for all the genes; (Stage 2) we run 104

simulations only for genes with Stage 1 empirical p-
values ≤ 0.1; (Stage 3) we run 106 simulations only for
genes with Stage 2 empirical p-values ≤ 0.001. We inter-
pret an empirical p-value of 0 from 106 simulations as p
< 10−6. Given 22,179 genes included in this analysis, a
Bonferroni-corrected threshold is p < 2.25 × 10−6 (i.e.,
0.05/22,179), which can be exceeded by the theoretically
smallest empirical p-value shown above. A Manhattan

plot was generated using R (http://www.r-project.org) to
visualize the gene-level GWAS results for our work.

Network-level Analysis
The Human PPI data (n = 9,617) were downloaded from
the Human Protein Reference Database (HPRD, http://
www.hprd.org); gene-level p-values obtained from the
GWAS of the CSF t-tau/Aβ1–42 ratio were mapped to
the PPI network. The integrative protein interaction
network-based pathway analysis (iPINBPA) software [22]
was used to integrate GWAS findings with physical evi-
dence of interaction at the protein level, and to detect
new high-level associations (i.e., subnetworks of func-
tionally interacted genes) with the CSF biomarker.
Briefly, iPINBPA identifies enriched subnetworks using
the following three steps.
In Step 1, using the GWAS findings, the nominally

significant genes (i.e., p ≤ 0.05) are treated as seed genes,
and assigned with certain weights (e.g., in this work, 1
for seed genes, 0 for the rest). After that, a random walk
with restart strategy is employed to smooth these
weights over the entire network. Intuitively, the nodes in
the network are weighted based on their connectivity to
seed genes (i.e., guilt-by-association). Let nk be a node
on the PPI network mapped with gene-level p-value pi.
Let eij be the edge connecting ni and nj, and Wij be the
weight of eij. All the Wij’s form the adjacency matrix W.
Extending Köhler’s approach [35], iPINBPA weights the
edge eij as follows:

Wij ¼ 1−pið Þ þ 1−pj
� �� �

=2:

In addition, it normalizes the adjacency matrix W by
its columns. After each step of random walk, a score
vector is calculated as

Table 1 Selected demographic and clinical characteristics of 843ADNI participants

CN
(N = 199)

SMC
(N = 85)

EMCI
(N = 239)

LMCI
(N = 207)

AD
(N = 113)

P-value

Age (years) 74.4 (5.79) 72.0(5.48) 71.4(7.30) 72.4(7.62) 75.2 (8.19) p < 0.001

Women* 96(48%) 50(59%) 102(43%) 83(40%) 45(40%) 0.002*

Education (years) 16.2 (2.82) 16(2.79) 16.2(2.84) 16.4(2.53) 16.4(2.56) 0.764

APOE e4 allele present 47(24%) 31(36%) 99 (41%) 112(54%) 74 (65%) p < 0.001

CDR-SOB 0.04(0.14) 0.08(0.18) 1.27(0.77) 1.65(0.94) 4.53 (1.70) p < 0.001

Mini mental status examination 29.1(1.18) 29.0(1.2) 28.3(1.62) 27.5(1.75) 23.1 (2.05) p < 0.001

Logical memory immediate
recall

14.42(3.00) 14.44(3.34) 11.09(2.68) 7.18(3.06) 4.15 (2.70) p < 0.001

Logical memory delayed
recall

13.34(3.13) 13.29(3.31) 8.97(1.73) 3.94 (2.7) 1.52 (1.80) p < 0.001

t-tau/Aβ1-42Ratio
(i.e., QT for GWAS)

0.40 (0.27) 0.37(0.24) 0.50(0.45) 0.70(0.47) 0.98 (0.49) p < 0.001

AD Alzheimer’s disease, ADNI Alzheimer’s Disease Neuroimaging Initiative, CDR–SOB clinical dementia rating–sum of boxes, CN cognitively normal, SMC significant
memory concern, EMCI early mild cognitive impairment, LMCI late mild cognitive impairment. Number (%) or mean (s.d.) was shown in each entry. P-values were
assessed due to significant differences between diagnosis groups, which computed using one-way ANOVA (*except for gender using chi-square test)
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P tð Þ ¼ 1−rð ÞW � P t−1ð Þ þ rP 0ð Þ;
where P(t) is the score after walking t steps, and r is

the restart ratio. In this work, we assign 1 to all the seed
genes, and 0 to the rest. Upon the completion of the
random walk after T steps, the vector P(T) contains the
node weights, which reflect the topological connections
to the seed genes [36].
In Step 2, given a network A containing k nodes,

iPINBPA defines its score by combining the gene-level p-
values with node weights described above, using the
Liptak-Stouffer method. Specifically, the network score of
A is defined, via weighted Z transform test [37], as follows:

ZA¼
X

i∈A
P Tð ÞiziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i∈A
P Tð Þ2i

q .

A random sampling of gene sets of size k∈[1, 500] for
1000 times was applied in iPINBPA [36] to determine
the background distribution of the network score. Using
this distribution, the adjusted network score of A is de-
fined as:

SA ¼ ZA−μk
σk

,

where ZA is the network score, and μk and σk are re-
spectively the mean and the standard deviation of the
background distribution of the network scores at size k.
In Step 3, a greedy algorithm was developed to search

for modules with high network scores, i.e., those
enriched in genes with low p-values and high weights.
Details about the algorithm is available in Wang et al.
[22].
In this work, the parameters were set in iPINBPA as

follows: r = 0.5, T = 5, NetScore > 3.0, NetSize ≥ 5, and
MaxNetSize ≤ 300. Given the stochastic nature of the
iPINBPA algorithm, we ran iPINBPA ten times, respect-
ively by setting the random seed value from 1 to 10.
Consequently, we obtained ten groups of enriched sub-
networks (GNs) identified by iPINBPA. Below, we
couple a consensus module (CM) strategy with iPINBPA
(named as CM-iPINBPA) to generate consensus findings
from these analyses.
Given two subnetworks m and n, we use Dice’s coeffi-

cient DC(m,n) to measure their similarity:

DC m; nð Þ ¼ 2 m∩j nj
mj jþ nj j.

In this work, we only focused on analyzing the top
subnetwork (TN) in each iPINBPA run. Let TNa be the
top subnetwork identified in Run a ∈ {1, 2,…, 10}. We
first find SNb(TNa), which is the most similar subnet-
work to TNa in Run b ∈ {1, 2,…, 10}\{a}. Clearly we have

SNb TNað Þ ¼ argmaxsnDC TNa; snð Þ;
where sn is any subnetwork enriched in Run b. After

that, we define the consensus module (CM) based on
Run a as follows:

CMa = TNa ∩ (∩a ≠ b,b ∈ {1,2,…,10}SNb(TNa)).
Namely, CMa is the intersection of TNa and its most

similar subnetworks identified in all the other runs.

Network Module Visualization and Functional Analysis
Cytoscape 3.2 [38] was used to visualize the example identi-
fied network modules. The Enrichr [28] pathway analysis
tool (http://amp.pharm.mssm.edu/Enrichr/) and the Kyoto
Encyclopedia of Genes and Genomes database (KEGG;
http://www.genome.jp/kegg/) [39] was applied to functional
analysis of the identified network modules. Heat map was
plotted, using R 3.2.0 software, to demonstrate relations be-
tween consensus modules and relevant KEGG pathways.

Results
GWAS and gene-level analysis
The demographic and clinical characteristics for the 843
ADNI subjects in this study are presented in Table 1.
The summary statistics for all diagnostic groups (CN,
SMC, EMCI, LMCI, and AD) are given. Education level
(p = 0.764) was not significantly different across the five
diagnostic groups; however, gender demonstrated a sig-
nificant difference (p = 0.002). Furthermore, as expected,
age, APOE e4 status, clinical dementia rating–sum of
boxes (CDR-SOB), mini mental status examination
(MMSE), logical memory immediate recall, and logical
memory delayed recall exhibited significant differences
across the five groups (p < 0.001). Also as expected, the
phenotype t-tau/Aβ1–42 ratio significantly differed across
the diagnostic groups (p < 0.001).
The top SNP in the GWAS analysis was rs4420638

(chromosome 19, 14 kb away from the APOC1 gene, p =
2.576E-28), which was previously reported by Lars Ber-
tram et al. [40]. The SNP rs769449 within the APOE
gene on chromosome 19 was also significant with p =
4.98E-23, and was previously reported by Soerensen
et al. [41]. Similar to the results reported in our earlier
paper [13], The TOMM40 SNP rs2075650 (chromosome
19, p =4.23E-18, was associated with t-tau/Aβ1–42 ratio.
Under the hypothesis that genes, rather than SNPs, are

the functional units in biology [42], a gene-level associ-
ation analysis of the t-tau/Aβ1–42 ratio was performed
based on the SNP-level results by VEGAS2. Table 2 shows
the top 10 genes identified by VEGAS2. Figure 2 shows
the Manhattan plot of the gene-based GWAS results.

Network search for CMs
Consensus modules (CMs) were identified by CM-
iPINBPA network analysis strategy. Subnetwork search
was conducted on the GWAS findings using iPINBPA
ten times by varying the seed value of random number
generator, which ranged from 1 to 10. Table 3 summa-
rizes the results of ten iPINBPA runs. PRKCA and TP53
appeared to be the start nodes of the top subnetworks
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identified in multiple runs. The PRKCA gene was previ-
ously reported as being associated with an altered amyloid
precursor protein (APP) secretion in fibroblasts from AD
patients [43, 44]. Culmsee et al. demonstrated that TP53
was a novel gene as a biomarker of AD and was related to
neurodegenerative processes [45].
Table 4 shows the top subnetwork identified in each run,

its most similar subnetworks in other runs coupled with the
Dice’s coefficient value, and the corresponding CM. For ex-
ample, in Table 4, the Dice’s coefficient between TN1 and
SN1 (in GN2) is 0.96335. Thanks to the overlapping subnet-
works, only four unique CMs were identified (Table 4).
These four CMs are shown in Fig. 3, where the reddish
nodes represent the known AD genes from the KEGG AD
pathway (hsa05010). CM1 (SA= 10.15, p < 0.001) shown in
Fig. 3(a) contains totally 67 genes, including KEGG AD
genes GSK3B, MAPK1, PSEN2, CALM1, CALM2 and
CASP8. CM2 (SA = 10.39, p < 0.001) shown in Fig. 3(b) con-
tains totally 67 genes, including KEGG AD genes BACE1,
GSK3B, MAPK1, PSEN2, CALM1, CALM2 and CASP8.
CM3 (SA = 7.99, p < 0.001) shown in Fig. 3(c) contains 40
genes, including KEGG AD genes GSK3B, CALM1 and
CASP8. CM4 (SA= 10.46, p < 0.001) shown in Fig. 3(d) con-
tains 58 genes, including KEGG AD genes BACE1, GSK3B,
MAPK1, PSEN2, CALM1, CALM2 and CASP8.
In addition, the intersection of the four CMs was ex-

tracted and named as the common subnetwork. The
common subnetwork is shown in Fig. 5, and contains
total 29 genes, including 3 KEGG AD genes CALM1,
CASP8, and GSK3B, and 26 other genes.

Pathway analysis of consensus modules and the common
subnetwork
To test the hypothesis that CMs enriched by the GWAS
findings might be significantly overrepresented in AD

and other relevant pathways, the Enrichr method was
performed for pathway analysis. For the genes in each
CM, a pathway enrichment analysis was conducted, and
the nominally enriched pathways were identified with
adjusted p-value ≤ 0.05. Then, these identified pathways
of the four CMs were plotted as a heat map shown in
Fig. 4 to summarize the relationships between the path-
ways and CMs. Note that Fig. 4 lists only pathways
enriched by at least one CM. Table 5 shows top 20 path-
way enrichments analysis of the common subnetwork.

Discussion
Gene-level analysis
In the GWAS analysis, the gene-level p-values were de-
termined and shown in Fig. 2. The use of the CSF t-tau/
Aβ1–42 ratio as a quantitative trait (QT) in this study en-
abled us to examine the effect of genes previously
known to be associated with the QT as well as to iden-
tify novel genes. Table 2 lists the top ten genes obtained
by converting SNPs into gene-wise p-values. Given the
Bonferroni-corrected threshold of p < 2.25 × 10−6 (i.e.,
0.05/22,179), we found five significant genes. As ex-
pected, significant associations were identified between
loci on chromosome 19 and the CSF t-tau/Aβ1–42 ratio
(e.g., APOC1, APOE, PVRL2, TOMM40, p = 1 × 10−6, see
Fig. 2). Among these genes, apolipoprotein C1 (ApoC1)
encoded by the APOC1 gene is associated with amyloid
β plaques; the APOE and TOMM40 (rs769449) genes
code for proteins related to the clearance of Aβ and
mitochondrial functions [5, 13]; and the PVRL2 gene
was previously reported as related to risk factors that
contribute to AD pathogenesis [46]. PDK2 (p = 5 × 10−6)
shows a trend towards the significance, and the overex-
pression of this gene may be related to cancer and dia-
betes[47]. Additionally, CCL7 mRNA is highly increased

Table 2 The top 10 genes identified by VEGAS2

Chr Gene nSNPs Test Pvalue TopSNP TopSNP-Pvalue

19 APOC1 6 274.96 1.00E-06 rs4420638 2.58E-28

19 APOE 7 188.92 1.00E-06 rs769449 4.98E-23

19 PVRL2 19 228.01 1.00E-06 rs2075650 4.23E-18

19 TOMM40 11 363.85 1.00E-06 rs769449 4.98E-23

17 PDK2 11 103.37 5.00E-06 rs3809762 1.86E-06

17 ITGA3 15 111.81 7.40E-05 rs3809762 1.86E-06

19 CBLC 2 24.35 1.12E-04 rs2965121 1.45E-04

17 CCL7 5 28.84 2.38E-04 rs991804 2.28E-04

19 KLK7 12 56.02 2.76E-04 rs11084043 7.74E-05

1 PTGER3 97 400.30 3.07E-04 rs7540868 1.89E-04

Chr: Chromosome; Gene: Gene name; nSNPs: Number of SNPs in the input file
that map to the gene; Test: The sum of the individual chi-squared 1 degree of
freedom SNP-association test statistic; Pvalue: The gene-based p-value consid-
ering the full set of SNPs; TopSNP: The name of the most significant SNP
within the gene; TopSNP-Pvalue: The p-value for the most significant SNP with
the gene

Table 3 Results of 10 iPINBPA runs

SRN # of Subnetworks TN Size TNStartNode TN Score

1 1058 99 PRKCA 10.11

2 918 92 PRKCA 9.70

3 975 151 TP53 10.95

4 1100 133 - 10.52

5 977 108 PRKCA 9.85

6 936 135 - 10.64

7 1166 101 PRKCA 9.41

8 1050 147 - 11.27

9 972 67 TP53 8.04

10 955 146 - 11.25

SRN:The seed value used for an iPINBPA run
# of Subnetworks: The number of subnetworks identified in an iPINBPA run
TN Size: The number of genes in the top subnetwork identified in an
iPINBPA run
TN StartNode: The start node of the top subnetwork
TN Score: The score of the top subnetwork
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Table 4 The characteristics of the identified consensus modules in 10 iPINBPA runs

CM RunA Ta: the top subnetwork in RunA. Sb: the most similar subnetwork to Ta in RunB

RunB 1 2 3 4 5 6 7 8 9 10

1 1 Rank of Sb in RunB 1 1 4 3 1 6 1 3 8 4

DC(Ta, Sb) 1.00 0.96 0.88 0.88 0.96 0.96 0.99 0.82 0.81 0.96

1 2 Rank of Sb in RunB 1 1 4 3 1 6 1 3 8 4

DC(Ta, Sb) 0.96 1.00 0.85 0.85 0.92 1.00 0.95 0.78 0.84 0.92

2 3 Rank of Sb in RunB 3 2 1 2 3 2 3 2 1 5

DC(Ta, Sb) 0.78 0.77 1.00 0.93 0.83 0.91 0.81 0.97 0.61 0.83

3 4 Rank of Sb in RunB 2 3 2 1 2 1 2 1 13 1

DC(Ta, Sb) 0.85 0.82 0.97 1.00 0.89 0.99 0.86 0.95 0.67 0.95

1 5 Rank of Sb in RunB 1 1 4 3 1 6 1 3 8 4

DC(Ta, Sb) 0.96 0.92 0.93 0.93 1.00 0.92 0.97 0.86 0.77 1.00

3 6 Rank of Sb in RunB 2 3 2 1 2 1 2 1 13 1

DC(Ta, Sb) 0.84 0.82 0.98 0.99 0.88 1.00 0.86 0.96 0.66 0.96

1 7 Rank of Sb in RunB 1 1 4 3 1 6 1 3 8 4

DC(Ta, Sb) 0.99 0.95 0.89 0.89 0.97 0.95 1.00 0.83 0.80 0.97

3 8 Rank of Sb in RunB 2 3 2 1 2 1 2 1 13 1

DC(Ta, Sb) 0.80 0.78 0.98 0.95 0.84 0.96 0.81 1.00 0.63 1.00

4 9 Rank of Sb in RunB 3 2 1 2 3 8 3 2 1 5

DC(Ta, Sb) 0.82 0.83 0.61 0.68 0.77 0.73 0.79 0.64 1.00 0.77

3 10 Rank of Sb in RunB 2 3 2 1 2 1 2 1 13 1

DC(Ta, Sb) 0.80 0.78 0.98 0.95 0.85 0.96 0.82 1.00 0.63 1.00

CM consensus module id, DC Dice’s coefficient

Fig. 2 a Manhattan plot showing the gene-level p values in ADNI t-tau/Aβ1–42 ratio GWAS study. The blue line corresponds to p = 10−5; the red
line corresponds to p = 10−6. Bonferroni-corrected threshold is p < 2.25 × 10−6 (i.e., 0.05/22,179)
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by Aβ1–42 stimulation [48]. The CCL7 gene was previ-
ously reported as related to the chemotaxis of pro-
inflammatory cells to the inflamed location [49]. The
PTGER3 gene was previously reported as being related
to the inflammatory response [50].

Network search for CMs and functional validation
Although iPINBPA has been successfully applied in sev-
eral previous studies [16, 20–23], we observed that dif-
ferent subnetworks could be obtained by using different
random seed values. To overcome this limitation, we
proposed to examine the consensus modules discovered
by multiple iPINBPA analyses. In other words, we fo-
cused on examining the shared subnetworks among
multiple iPINBPA runs, which turned out to be more
stable patterns. A two-stage strategy was employed. First,
ten groups of subnetworks were generated by running

iPINBPA ten times with varying random seed values ran-
ging from 1 to 10. After comparing these ten sets of re-
sults, we identified ten CMs, one from each run (defined
as the intersection of the top subnetwork from the
current run and the most similar subnetworks from all
the other runs). As a result, there are four unique CMs
based on ten identified ones.
The genes in the CMs might not show a direct statis-

tical significance but could interact with some genes
identified in our GWAS. These genes can demonstrate
indirect association with the studied QT, and may po-
tentially provide valuable biological interpretation. For
example, Consensus Module 1 contains the protein
gamma-aminobutyric acid (GABA) A receptor
(GABRB1) gene. GABRB1 codes for the β1 subunit of
gamma-aminobutyric acid A (GABAA) receptors [1].
The GABRB1 gene has been demonstrated to be

Fig. 3 Consensus modules identified by 10 runs of iPINBPA. a Consensus Module1; b Consensus Module 2; (c) Consensus Module 3; (d)
Consensus Module 4. The reddish color indicates genes belonging to the KEGG Alzheimer’s Pathway. The adjusted network scores (i.e., SA) of
these four modules are 10.15, 10.39, 7.99, and 10.46, respectively. Therefore, all the modules are significant (p < 0.001)
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involved in the thalamus structure and its interactive ef-
fects on intelligence [51]. The GABRB1 gene had also
been associated with many neuropsychological diseases,
such as schizophrenia, major depression, bipolar dis-
order, and Alzheimer’s disease [52].
In this study, we hypothesize that trait prioritized CM

with high replication might have strong functional asso-
ciations with t-tau/Aβ1–42 ratio. We gathered these iden-
tified pathways for 4 CMs to plot heatmap to explore
and refine the relationships between pathways and CMs
(Fig. 4). In Fig. 4, it was observed that four pathways, in-
cluding colorectal cancer, gliomas, renal cell carcinoma,
and Huntington’s disease, were commonly enriched in
all the consensus modules. The neurodegenerative
symptoms of neuron death affect many diseases, includ-
ing Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Below we briefly discuss a few additional pathways iden-
tified in Fig. 4. In AD, focal adhesion complexes regulat-
ing neuronal viability can be used in treatment to adjust
neuronal survival [53]. The adherens junction has been
demonstrated as maintaining blood–brain barrier integ-
rity, and the adherens junction pathways is highly associ-
ated with neurodegenerative diseases [54]. Apoptosis is
an important pathway in Alzheimer’s disease that is as-
sociated with neuronal loss [55]. The change in the
MAPK signaling pathway contributes to significant
change in neurotropin [56]. Some cancer-related

pathways were found, such as colorectal cancer, pancre-
atic cancer, prostate cancer, endometrial cancer, bladder
cancer, and so on. Some prior studies have been per-
formed to examine the relationship between cancer and
neurologic disease [57, 58].
With these observations, the genes in the CMs may

provide valuable information to suggest novel molecular
mechanisms for subsequent analyses. Compared with
the standard iPINBPA method, CM-iPINBPA network
analysis strategy for mining consensus models could
offer more stable results.

Common subnetwork and functional validation
The common subnetwork is the intersection of the four
identified common modules, and consists of 29 genes
(Fig. 5). Among these genes, the GSK3B, SUMO1,
AKAP5, CALM1 and DLG4 genes have been identified
to be involved in tau phosphorylation, and over-
phosphorylation of the tau protein can form the tangles
in the brain of AD patients [59–63]. Additionally, the
CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and
RHOA genes have been demonstrated to be involved in
amyloid beta peptide production [64–70]. The BCL3,
CFLAR, SMAD1, and HIF1A genes have been identified
to be associated with late-onset Alzheimer's disease. The
common subnetwork also contains the following genes
TP53, DDX5, NDN, MST1R, CCDC106, NMT2, RPA1,

Fig. 4 Functional annotation of the four identified consensus modules (CM1-CM4) using KEGG pathways. The four consensus modules were
treated as four gene sets, and went through pathway enrichment analysis based on the KEGG pathway database. The enrichment results at a
nominal statistical threshold of adjusted p-value < 0.05 are shown. -log10(p-value) values are color-mapped and displayed in the heat map. Heat
map blocks labeled with “x” reach the nominal significance level of adjusted p-value < 0.05. Only top enrichment findings are included in the heat
map, and so each row (pathway) has at least one “x” block
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Table 5 Top 20 pathway enrichments analysis of the common consensus subnetwork
Pathway Overlap P-value Adjusted P-value Z-score Combined Score Genes

glioma 4/62 7.19E-05 0.002277 −2.14 13.00 PDGFRB; PIK3R1;CALM1;TP53

apoptosis 4/81 1.94E-04 0.002277 −1.85 11.28 CASP8; CFLAR;PIK3R1;TP53

huntingtons disease 3/31 2.20E-04 0.002277 −1.77 10.77 CASP8;CALM1;TP53

colorectal cancer 4/84 2.22E-04 0.002277 −1.84 11.18 PDGFRB; GSK3B;PIK3R1;TP53

prostate cancer 4/86 2.42E-04 0.002277 −1.80 10.97 PDGFRB; GSK3B;PIK3R1;TP53

endometrial cancer 3/52 9.23E-04 0.007232 −1.65 8.13 GSK3B;PIK3R1;TP53

renal cell carcinoma 3/69 2.02E-03 0.01286 −1.61 6.99 GAB1;PIK3R1;HIF1A

melanoma 3/71 2.19E-03 0.01286 −1.49 6.50 PDGFRB;PIK3R1;TP53

erbb signaling pathway 3/85 3.59E-03 0.018769 −1.53 6.08 GSK3B;GAB1;PIK3R1

focal adhesion 4/192 4.51E-03 0.02118 −1.60 6.16 PDGFRB; GSK3B;PIK3R1;RHOA

neurodegenerative diseases 2/38 9.01E-03 0.038512 −0.87 2.83 NGFR;CASP8

non small cell lung cancer 2/53 1.66E-02 0.064347 −1.21 3.32 PIK3R1;TP53

basal cell carcinoma 2/55 1.78E-02 0.064347 −0.92 2.53 GSK3B;TP53

b cell receptor signaling pathway 2/62 2.22E-02 0.074377 −0.91 2.37 GSK3B;PIK3R1

phosphatidylinositol signaling system 2/72 2.91E-02 0.081711 −1.00 2.50 PIK3R1;CALM1

pancreatic cancer 2/73 2.98E-02 0.081711 −0.99 2.49 PIK3R1;TP53

chronic myeloid leukemia 2/75 3.13E-02 0.081711 −0.93 2.33 PIK3R1;TP53

adherens junction 2/75 3.13E-02 0.081711 −0.78 1.96 CSNK2A1;RHOA

regulation of actin cytoskeleton 3/201 3.54E-02 0.087678 −0.96 2.34 PDGFRB; PIK3R1;RHOA

small cell lung cancer 2/85 3.92E-02 0.092081 −0.73 1.74 PIK3R1;TP53

Pathway: The name of KEGG pathway
Overlap: The number of overlapping genes compared with the number of input genes
P-value: P-value was computed using the Fisher exact test
Adjusted P-value: Adjusted P-value was a corrected p-value to the Fisher exact test
Z-score: Computed by assessing the deviation from the expected rank
Combined score: Computed by taking the log of the p-value from the Fish exact test and multiplying that by the z-score of the deviation from the expected rank
Genes: The overlapping genes between the input and the pathway

Fig. 5 The common subnetwork. This subnetwork consists of only overlapping genes of all consensus modules. The reddish color indicates
genes belonging to the KEGG Alzheimer’s Pathway
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AKAP13, GAB1, PPM1A, SPTBN1 and MED6, which
interact with themselves and other genes. These findings
offer valuable biological insights and suggest promising
candidates for subsequent analyses.
Table 5 shows the top twenty pathways enriched by the

common subnetwork. Some significant pathways were ob-
served, such as glioma, apoptosis, Huntington’s disease,
renal cell carcinoma, melanoma, the erbb signaling path-
way, focal adhesion, neurodegenerative diseases, and so
on. Twelve genes (PDGFRB, PIK3R1, CALM1, CFLAR,
TP53, RHOA, CASP8, HIF1A, GSK3B, GAB1, NGFR and
CSNK2A1) were involved in the top twenty pathways. The
gene PDGFRB has been confirmed as causative of primary
familial brain calcifications (PFBC) [71]. The gene PIK3R1
has been shown to be involved in Alzheimer’s disease [72].
CALM1 encodes for tau protein and regulates the subcel-
lular localization and function of calmodulin in neurons
[73]. CFLAR suppresses death receptor-induced apoptosis
and TCR activation, which induces cell death by inhibiting
caspase-8 activation [74]. RHOA was implicated in Aβ
neurotoxicity, and the activation generates cytoskeletal
changes [75]. NGFR ligands play an important role in pre-
venting fundamental tau-related pathologic mechanisms
in Alzheimer’s disease [76]. These pathways appear rele-
vant given the results in prior studies. For other genes
identified in this pathway analysis, it warrants further in-
vestigation to demonstrate the role they play.

Limitations
Due to the limited number of subjects available to us, we
were only able to perform a discovery study in this work.
When more data become available in the future, replica-
tion studies in independent cohorts are required to evalu-
ate and validate the identified network modules in our
study. In addition, in this work, we reported the results
using the default parameter setting provided by the soft-
ware tool and according to Lili et al. [22], except the ran-
dom seed value. We ran iPINBPA multiple times by using
different random seed values and then extracting the con-
sensus patterns to stabilize the results. As to other param-
eters, we also briefly tested each of those by varying its
value. For most of these parameters, we obtained very
similar results. The most sensitive parameter is the restart
ratio used in the step called “random walk with restart”
for prioritizing phenotype-associated genes. It is excepted
that different restart ratios will assign different weights to
network nodes and subsequently produce different scores
for network components. The determination of the opti-
mal restart ratio warrants a separate and focused investi-
gation and is an interesting future direction.

Conclusions
Network-based methods form a new generation of en-
richment analysis strategy, and they can overcome the

limitation of traditional enrichment analysis where only
a fixed set of pre-defined pathways are examined. In this
study, a genome-wide network-based pathway analysis of
the CSF biomarker of the t-tau/Aβ1–42 ratio was per-
formed, using a sample of 843 subjects from the ADNI
database. To our knowledge, this is the first genome-
wide network-based pathway study on the CSF bio-
marker t-tau/Aβ1–42 ratio in Alzheimer’s disease. Due to
the stochastic nature of the iPINBPA method, we
employed a consensus module (CM) strategy to run
iPINBPA multiple times and aimed to identify CMs from
these different runs. We identified 4 CMs. These CMs
contain not only genes from KEGG AD pathways, in-
cluding BACE1, GSK3B, MAPK1, PSEN2, CALM1,
CALM2, CASP8, and SK3B; but also interesting genes
with relevant biological functions such as GABRB1,
MMP2, CDK17, and IGFBP3. In sum, besides confirming
previous findings (e.g., APOE, TOMM40, APOC1), this
study has also suggested new susceptible genes, CMs
and pathways underlying Alzheimer’s disease.
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