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Abstract

Background: Genetic investigations, boosted by modern sequencing techniques, allow dissecting the genetic
component of different phenotypic traits. These efforts result in the compilation of lists of genes related to diseases
and show that an increasing number of diseases is associated with multiple genes. Investigating functional relations
among genes associated with the same disease contributes to highlighting molecular mechanisms of the
pathogenesis.

Results: We present eDGAR, a database collecting and organizing the data on gene/disease associations as derived
from OMIM, Humsavar and ClinVar. For each disease-associated gene, eDGAR collects information on its annotation.
Specifically, for lists of genes, eDGAR provides information on: i) interactions retrieved from PDB, BIOGRID and
STRING; ii) co-occurrence in stable and functional structural complexes; iii) shared Gene Ontology annotations; iv)
shared KEGG and REACTOME pathways; v) enriched functional annotations computed with NET-GE; vi) regulatory
interactions derived from TRRUST; vii) localization on chromosomes and/or co-localisation in neighboring loci. The
present release of eDGAR includes 2672 diseases, related to 3658 different genes, for a total number of 5729
gene-disease associations. 71% of the genes are linked to 621 multigenic diseases and eDGAR highlights their
common GO terms, KEGG/REACTOME pathways, physical and regulatory interactions. eDGAR includes a network
based enrichment method for detecting statistically significant functional terms associated to groups of genes.

Conclusions: eDGAR offers a resource to analyze disease-gene associations. In multigenic diseases genes can share
physical interactions and/or co-occurrence in the same functional processes. eDGAR is freely available at: edgar.
biocomp.unibo.it
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Background
The advent of fast and relatively costless techniques for
genome screening boosts the research of genetic deter-
minants of human phenotypes, with a specific focus on
diseases [1]. By this, lists of genes involved in several
diseases/phenotypes are available. One of the most
comprehensive database of curated associations between
human Mendelian disorders and genes is OMIM [2],
collecting 4510 phenotypes with known molecular basis

(release of May 2016). Updated resources of associations
between variations and diseases are stored in the NCBI-
curated ClinVar [3], the UniProt curated Humsavar list
[4], and the commercial version of HGMD [5]. Integra-
tive datasets, such as DisGeNet [6] and MalaCards [7]
collect lists of gene-disease associations from different
sources. MalaCards includes text mining of the
scientific literature, gene annotations in terms of shared
GO terms and associated pathways. DisGeNet integrates
data of disease-associated genes and their variants.
Furthermore, a database collecting data on digenic dis-
eases (related to concomitant defects in pairs of genes)
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is available (DIDA, [8]) and reports the relationships
between pairs of genes involved in 44 diseases.
As data accumulate, it emerges that an increasing

number of diseases is associated with several genes.
Independent or concomitant alterations in sequence or
in expression of sets of genes are associated with the
insurgence of genetically heterogeneous and polygenic
diseases, respectively [9, 10]. The scenario is even more
complicated when different environmental and life-style
related factors have strong influence on the insurgence
and severity of the pathology [11]. The complex nature of
the association between genes and diseases is one of the
major challenges of Precision Medicine programs [12].
Dissecting the molecular mechanisms at the basis of the

association between genotype and phenotype requires a
deep investigation of the features shared among genes (or
proteins) co-involved in the same disease. Indeed, by
analyzing molecular features and functional interactions,
important biological processes and pathways implicated in
the disease can emerge and other genes possibly involved
in interaction networks can be discovered [13, 14].
This work describes eDGAR, a database of gene-disease

associations, supplemented with the annotations of inter-
genic relationships in heterogeneous and polygenic dis-
eases. We merged, without redundancy, data from OMIM
[2], ClinVar [3], and Humsavar [4]. Disease nomenclature
derives from OMIM. OMIM phenotype entries are classi-
fied according to the OMIM Phenotypic Series, which
cluster different entries related to identical or highly simi-
lar diseases associated with different genes. As compared
to the above mentioned databases, our focus is on specific
structural and functional annotations of the genes. For
each gene, the database reports the cytogenetic location,
links to the Ensembl [15], SwissProt [4] and PDB entries
[16], Gene Ontology (GO) [17] annotations and to the
KEGG and REACTOME pathways, when available. For
sets of genes involved in the same disease, the database
collects from publicly available databases different types of
relationships: physical interactions, co-occurrence in pro-
tein complexes, regulatory interactions, shared functions
and pathways, and co-localization in neighboring cytogen-
etic loci. A network - based approach (NET-GE [18, 19])
provides statistical enrichment to functional terms.
Information is organized in a relational database and an
interface allows customized data search and retrieval.
The database is freely available at edgar.biocomp.unibo.it.

Construction and content
Data sources of associations between genes and diseases
In order to collect a comprehensive resource of associa-
tions among genes and diseases we integrated data from
OMIM (May 2016 release) [2], ClinVar (May 2016 re-
lease) [3] and Humsavar (June 2016 release) [4]. The pri-
mary accessions for genes are HGNC codes [20], while

OMIM identifiers are adopted to identify phenotypes.
2839 OMIM phenotype codes corresponding to identical
or similar diseases, characterized by genetic heterogen-
eity, have been clustered into 357 phenotypic series, as
defined by OMIM. Synonymic or alternative gene names
were reduced to the HGNC gene primary codes, as
reported in HGNC (June 2016 release).
On the overall, 5337, 4358 and 3365 gene-disease

associations were collected from OMIM, ClinVar and
Humsavar, respectively, by retaining only associations
with unambiguous identification codes for both genes
and diseases. After removing redundancy, the final data-
set contains 5729 gene-disease associations, involving
3658 genes associated with 2672 diseases. These 2672
disease IDs correspond to 2315 OMIM IDs for pheno-
types and 357 phenotypic series, or to 5154 when the
357 phenotypic series are brought back in 2839 OMIM
IDs for phenotypes.

Gene annotation
All genes have been associated with the corresponding
Ensembl codes (June 2016 version) [15] with BioMart
[21]. Cytogenetic locations on the GrCh38 version of the
human genome were therefrom derived. Out of 3658, 30
genes encode for microRNAs and tRNAs. For the 3628
protein coding genes, links to the SwissProt and PDB
databases were also retrieved: all genes are linked to at
least one SwissProt entry (for a total of 3718 entries)
and 1682 genes are linked to at least one PDB entry (for
a total of 14,578 PDB entries).
Functional annotation based on Gene Ontology (GO)

terms was retrieved from GOOSE, the Online SQL En-
vironment for GO terms implemented in the AmiGO2
portal [22]. All three GO sub-ontologies (Molecular
Function: MF; Biological Process: BP; Cellular Compo-
nent: CC) were considered. Given a GO term, the ances-
tor terms in the directed acyclic graph of GO (version
2.4) were retrieved by considering the relations “is a
subtype of” and “part of”. The information content (IC)
was computed for each GO term, adopting standard
methods [23], with the following equation:

IC ¼ −log2
NGO

Nroot

� �
ð1Þ

where NGO is the number of human genes endowed with
the particular GO term and Nroot is the number of
human genes annotated with all the terms of the consid-
ered subontology, as derived from GOOSE [22]. IC
lower limit is zero; high IC values indicate that a small
number of genes is annotated with a particular GO term
in the human genome and therefore the annotation is
highly informative.
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Associations with KEGG (version 77.0) [24] and
REACTOME (version 53) [25] pathways were extracted
from SwissProt.

Relationships among genes involved in the same disease
eDGAR integrates several information in order to
annotate the possible relationships among protein coding
genes related to the same polygenic or heterogeneous
disease. The following features are considered:

� Protein-protein interactions, as derived from the
multimeric structures deposited at the PDB (February
2016 release) [16], from STRING (version 10.0) [26]
and from the experimental data available in BIOGRID
(version 3.4) [27]. From the human STRING network,
we retained only high confidence links (score ≥ 0.7)
with annotated “action”. Physical and genetic
interactions of BIOGRID are reported separately. For
all the considered human interactomes, eDGAR
reports both direct and indirect interactions involving
one intermediate gene. In addition, we supplemented
data on interactions with selected annotations from
manually curated features from SwissProt, including
links to the PDB and the literature.

� Interactions in stable and functional complexes
reported in the following resources: CORUM, listing
2837 mammalian complexes involving 3198 protein
chains (16% of the human protein-coding genes) [28],
the soluble complex census, listing 622 complexes
involving 3006 protein chains [29]. This last resource
is referred in the following as CENSUS.

� Functional GO terms and KEGG/REACTOME
pathways shared by at least two genes.

� Functional GO terms and KEGG/REACTOME
pathways retrieved with NET-GE [18, 19], a network
based tool that performs the statistically-validated
enrichment analysis of sets of human genes by exploit-
ing the human STRING interactome; a significance of
5% was considered when retrieving statistically
enriched terms on the basis of the Bonferroni-
corrected p-values computed with NET-GE;

� Regulatory interactions derived fromTRRUST [30], a
curated database of interactions among 748 human
transcription factors (TF) and 1975 non-TF targets.
Given a set of genes associated with the same disease,
eDGAR reports the presence of TF/target pairs and of
groups of genes co-regulated by the same TF (belong-
ing or not to the set);

� Co-localization in neighboring loci on the same
chromosome: we highlighted genes located in the
same cytogenetic band or in the tandem repeat
regions listed in the DGD database [31]. DGD
collects 945 groups consisting of 3543 genes in

humans, likely deriving from duplications of
ancestor genes.

Database structure and visualization
The database is implemented with PostgreSQL [32], an
open source relational database system. Data stored in
the database are retrieved using custom Python
programs, while the output of the analysis is visualized
in HTML pages using modern technologies like
JavaScript. In particular, networks are encoded in JSON
format and visualized using the JavaScript library D3.js
[33]. We adopted a well known plug-in for jQuery called
DataTables [34] for table visualizations, allowing the user
to sort tables by columns and text-search inside each table.

Results and discussion
Statistics of the database content
The present release of eDGAR collects 5729 associations
between 2672 diseases and 3658 different genes. Figure 1a
plots the distribution of the number of genes associated
with the same disease, which ranges from one (in 2051
monogenic diseases) to 69 (in the case of the “Retinitis
pigmentosa” phenotypic series, OMIM: PS268000). The
621 diseases associated with multiple genes comprise both
heterogeneous and polygenic diseases. On the overall, they
account for 3678 associations with 2600 genes, 2576 of
which code for proteins.
The database also shows a high level of pleiotropy (asso-

ciation of a single gene to several diseases) as shown in
Fig. 1b. The most pleiotropic gene is FGFR3 that codes for
the fibroblast growth factor receptor 3 and is associated
with 16 different diseases.

Statistics of gene annotation
Table 1 lists major annotations of the 3658 genes related
to diseases. All but 30 genes are coding for proteins re-
ported in SwissProt; for 46.4% of them, structural infor-
mation is available in PDB. Membrane proteins,
transcription factors and enzymes account for 52%, 7%
and 31%, respectively. Almost all the protein-coding genes
are functionally annotated: the fraction of genes endowed
with GO terms ranges from 94.2% to 98.6%, depending on
the sub-ontology (Molecular Function (MF), Biological
Process (BP) and Cellular Component (CC)). A smaller
percentage of genes are associated with KEGG and
REACTOME pathways (56.7% and 62.8%, respectively).
When considering human interactomes, 91.3% and

9.7% of the genes are present in BIOGRID with physical
and genetic interactions, respectively; for 82.5% of the
genes, STRING reports high confidence interactions
(score ≥ 0.7). Some 20% of the genes encode for protein
chains involved in functional complexes, as described in
the CORUM and CENSUS collections. TRRUST lists
some 1036 genes as part of the human regulatory
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network, of which 253 code for TFs and 783 are non-TF
targets.
The level of annotation of the 2576 protein coding

genes involved in heterogeneous or polygenic diseases is
similar to that of all the genes collected in eDGAR.

Relations among genes associated with the same disease
eDGAR lists the relations among different genes associ-
ated with the same multigenic disease (statistics is in
Table 2). 21.9% of diseases involve at least one pair of
genes located in the same cytogenetic band and in 8.2%
of the cases, genes are tandem repeats originated by
duplications. These genes are likely to undergo the same
regulation mechanisms and to be coexpressed [33].
Many diseases involve at least one pair of genes

directly linked in interactomes: 40.3% and 46.9%, consid-
ering BIOGRID or STRING networks, respectively. The
rates increase to 66.1% and 65.4% when considering also
indirect interactions involving one intermediate gene not
associated with the disease. 6.3% of diseases involve pairs
of genes in a Transcription Factor (TF)/target relation-
ship and 44% involve genes co-regulated by the same TF
(considering also TFs not directly associated with the
disease). The large majority of diseases (from 94.4% to
97.3%, depending on the sub-ontology) is associated with

at least one pair of genes sharing GO terms. More than
90% of all the possible pairs of genes involved in the
same disease have common BP and CC terms; the per-
centage is somehow smaller (76%) for MF sub-ontology.
The total number of GO annotations shared by pairs of
genes for BP, MF and CC is 72,787 (unique terms: 4582),
13,113 (unique terms: 915) and 16,298 (unique terms:
656), respectively. Overall, these data confirm the notion
that genes associated with the same disease share some
level of functional similarity, a view previously suggested
for a small number of multigenic diseases [14]. However,
being GO terms organized in a directed acyclic graph
for each root, the information conveyed by the shared
annotations can be very different, going from very
general to very specific terms. The information content
(IC, see Eq. 1) is routinely associated with GO terms in
order to evaluate their specificity with respect of the
available annotation of all human genes. The IC values
of our dataset range from 0 (corresponding to the root
GO term) to 10 (corresponding to the most specific
terms). The average IC values for MF, BP and CC shared
terms are 5.8 ± 1.7, 5.9 ± 1.7, and 5.8 ± 1.9, respectively.
For each disease, the specificity of the annotation is eval-
uated by extracting the best IC values among the GO
terms shared by pairs of co-associated genes (Fig. 2a).

Fig. 1 Distribution of gene-disease associations. The Y-axis scale is logarithmic. a Number (#) of genes associated with diseases. 2672 diseases are
distributed with respect to the number of associated genes. 2051 diseases are monogenic; 621 diseases are associated with multiple genes (from
2 to 69). b Number (#) of diseases associated to genes. 3658 genes are distributed with respect to the number of associated diseases. 2544 genes
are associated with a single disease; 1114 genes are associated with multiple diseases (from 2 to 16)
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Table 2 Features shared by genes involved in the same heterogeneous or polygenic diseases

# diseases # pairwise relations # protein coding genes

Total number 621 25,100 2576

With pairs of genes:

In same cytogenetic band 136 (21.9%) 326 (1.3%) 335 (13.0%)

In tandem repeat 51 (8.2%) 58 (0.2%) 92 (3.6%)

In TF/target pairs 39 (6.3%) 81 (0.3%) 94 (3.6%)

Co-regulated by the same TF (not involved in the disease) 273 (44.0%) 2308 (9.2%) 626 (24.3%)

Sharing MF GO 586 (94.4%) 19,075 (76.0%) 2369 (92.0%)

Sharing BP GO 597 (96.1%) 22,948 (91.4%) 2502 (97.1%)

Sharing CC GO 604 (97.3%) 23,645 (94.2%) 2519 (97.8%)

Sharing KEGG pathway 349 (56.2%) 3129 (12.5%) 1074 (41.7%)

Sharing REACTOME pathway 474 (76.3%) 9806 (39.1%) 1554 (60.3%)

Interacting in PDB 96 (15.5%) 207 (0.8%) 199 (7.7%)

In the same CORUM complex 86 (13.8%) 469 (1.9%) 225 (8.7%)

In the same CENSUS complex 45 (7.2%) 166 (0.7%) 119 (4.6%)

Directly linked in STRING 291 (46.9%) 1535 (6.1%) 932 (36.2%)

Indirectly linked in STRING 115 (18.5%) 4355 (17.4%) 1346 (52.3%)

Directly linked in BIOGRID (physical interaction) 250 (40.3%) 944 (3.8%) 799 (31.0%)

Indirectly linked in BIOGRID (physical interaction) 160 (25.8%) 5228 (20.8%) 1607 (62.4%)

Directly linked in BIOGRID (genetic interaction) 9 (1.4%) 13 (0.1%) 19 (0.7%)

Indirectly linked in BIOGRID (genetic interaction) 25 (4.0%) 45 (0.2%) 62 (2.4%)

Table 1 Gene annotation in eDGAR

All diseases Diseases associated with multiple genes

# genesa # associated diseasesb # genesa # associated diseasesb

Total number 3658 2672 2600 621

Protein coding genes 3628 (100%) 2655 (100%) 2576 (100%) 619 (100%)

with PDB entry 1682 (46.4%) 1625 (61.2%) 1176 (45.7%) 512 (82.7%)

Membrane proteins 1891 (52.1%) 1644 (61.9%) 1364 (53.0%) 517 (83.5%)

Enzymes (with E.C number) 1112 (30.7%) 1045 (39.4%) 688 (26.7%) 363 (58.6%)

Reported in TRRUST (as TF) 253 (7.0%) 358 (13.5%) 179 (6.9%) 157 (25.4%)

Reported in TRRUST (as target) 783 (21.6%) 969 (36.5%) 570 (22.1%) 405 (65.4%)

Annotated with GO MF 3419 (94.2%) 2575 (97.0%) 2419 (93.9%) 617 (99.7%)

Annotated with GO BP 3538 (97.5%) 2619 (98.6%) 2514 (97.6%) 618 (99.8%)

Annotated with GO CC 3576 (98.6%) 2644 (99.6%) 2533 (98.3%) 618 (99.8%)

Associated with KEGG pathways 2057 (56.7%) 1868 (70.4%) 1430 (55.5%) 549 (88.7%)

Associated with REACTOME 2278 (62.8%) 2007 (75.6%) 1595 (61.9%) 563 (91.0%)

With physical BIOGRID interactions 3307 (91.3%) 2502 (94.2%) 2346 (91.2%) 609 (98.4%)

With genetic BIOGRID interactions 351 (9.7%) 472 (17.8%) 259 (10.1%) 247 (39.9%)

With STRING interactions 2992 (82.5%) 2341 (88.2%) 2146 (83.3%) 609 (98.4%)

Part of CORUM complexes 714 (19.7%) 706 (26.6%) 558 (21.7%) 340 (54.9%)

Part of CENSUS complexes 696 (19.2%) 689 (26.0%) 501 (19.4%) 296 (47.8%)

In tandem repeats 381 (10.5%) 448 (16.9%) 280 (10.9%) 234 (37.8%)
aPercentages are computed with respect to the number of protein coding genes
bPercentages are computed with respect to the number of diseases associated with protein coding genes
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For all the sub-ontologies, the best IC values are very
spread, and it is evident that on average the most spe-
cific terms (highest IC values) belong to the BP sub-
ontology: genes pairs sharing BP, MF and CC terms with
IC ≥ 5 are present in 72%, 49% and 46% of the diseases,
respectively (see Fig. 2a). When a different distribution
based on a median is adopted, the pattern is very similar
(Additional file 1: Fig. S1A). Genes involved in the same
disease share also KEGG and REACTOME pathways
(56.2% and 76.3%, respectively (Table 2)).

NET-GE enrichment
In order to better highlight functions shared by groups
of genes associated with the same disease, we adopt
NET-GE [18, 19], our recently developed network based
tool for functional enrichment. For each functional sets
of GO terms and/or KEGG or REACTOME pathways,
NET-GE builds a network containing all the human
genes annotated with the terms (seeds) and including all
the connecting genes (the reference human interactome
is derived from STRING). Input genes are mapped into
the pre-computed NET-GE networks and enrichment
analysis is performed. Outputs are Bonferroni-corrected

p-values, measuring the overrepresentation of each term
in the input set. Due to its network-based nature, NET-
GE can enrich terms not present in the list of annota-
tions of the input set. Table 3 lists the results of NET-
GE on the groups of genes associated with the same dis-
ease, considering a 5% significance. For the majority of
diseases, NET-GE enriches GO terms of the three sub-
ontologies and pathways of KEGG and REACTOME. BP
is the sub-ontology type most frequently enriched. The
total number of GO annotations enriched for heteroge-
neous and polygenic diseases is 17,029, 4851 and 3910
(Table 3, rightmost column), with average IC values
6.1 ± 1.8, 7.1 ± 2, and 6.4 ± 2 for BP, MF and CC

Fig. 2 Distribution of best IC values of GO terms for genes involved in multigenic diseases. a GO terms shared by genes; b GO terms after
enrichment with NET-GE. For each multigenic disease, IC values of gene-associated GO terms (of the three different roots) are evaluated (Eq. 1). In
the figure, the highest IC for each disease is shown. The frequency is computed with respect to the total number of multigenic diseases (621).
When IC = 0, genes associated with multigenic disease do not share or enrich GO terms (panel a and b respectively)

Table 3 NET-GE functional enrichment of groups of genes
involved in the same disease

# diseases # annotations

KEGG pathways 412 (66.3%) 2753

REACTOME pathways 488 (78.6%) 4130

GO MF terms 530 (85.3%) 4851

GO BP terms 551 (88.7%) 17,029

GO CC terms 477 (76.8%) 3910
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respectively (Fig. 2b, reporting the distribution of the
best IC values among the terms enriched for each dis-
ease; for a different distribution based on IC median
values, see Additional file 1: Figure S1B).

The user interface
eDGAR is publicly available as a web server at edgar.-
biocomp.unibo.it with browsing and search options.
Browsing is performed with the “Main Table” page
that contains all the collected associations between
genes and diseases, along with the indication of
source databases.
The Search engine allows to access the database with

different identifiers: HGNC symbols and Ensembl identi-
fiers for genes, UniProt accession for proteins, OMIM
identifiers or disease names for phenotypes and pheno-
typic series. The user may also search with a set of genes
and retrieve shared annotation features.
Two types of pages can be visualized: i) gene specific

pages, reporting the associations to diseases and the
available gene annotations; ii) disease specific pages,
reporting the associations with genes and, in case of het-
erogeneous and polygenic diseases, the list of relation-
ships linking the different genes, organized into different
tables. Interactions from STRING, PDB, BIOGRID,
CORUM, CENSUS can also be visualized by means of
graphs, reporting direct and indirect interactions. The
graphs show the gene associated with the disease as blue
nodes and other genes in interactions as pale blue
nodes; the direct interactions are visualized as green
edges and the indirect interactions as thin black edges
(see Fig. 3). Clicking on a node, the user is redirected
to the correspondent gene page.

A case study: Hypoparathyroidism
Hypoparathyroidism (OMIM 146200) is an endocrine
deficiency disease characterized by low serum calcium
levels, elevated serum phosphorus levels and absent or
low levels of parathyroid hormone (PTH) in blood [35].
The metabolism of the patient may be altered: the
vitamin D supply is inadequate and the magnesium
metabolism is irregular. In some clinical panel, hypocal-
cemia can lead to dramatic effects such as tetany,
seizures, altered mental status, refractory congestive
heart failure, or stridor.
In eDGAR the familial isolated hypoparathyroidism

(OMIM 146200) is associated with three different genes:
GCM2 and PTH (both reported in OMIM, ClinVar and
Humsavar) and CASR (reported only in ClinVar). CASR
is an extracellular calcium-sensing receptor whose activ-
ity is mediated by G-proteins, PTH is the parathyroid
hormone, whose function is to increase calcium level
both by promoting the solution of bone salts and by
preventing their renal excretion, and GCM2 (Glial cell

missing homolog 2) is a probable transcriptional
regulator, considering the SwissProt annotation. The
“Transcription Factor (TF) annotation from TRRUST”
table in eDGAR reports that GMC2 is a TF that regu-
lates the expression of both PTH and CASR. Moreover,
when considering “Interactions from STRING” table,
PTH and CASR are in direct interaction, labelled as
“binding” and “expression”. The shared BP GO terms
with the highest IC values are “response to vitamin
D” and “response to fibroblast growth factor”, both
involving CASR and PTH. The response to vitamin
D, whose metabolism is often altered in hypoparathyr-
oidism, and a strict interplay between fibroblast
growth factors and parathyroid hormone have been
previously reported [36–38]. PTH and CASR are also
involved in the same REACTOME pathways related
to GPCR ligand binding and signaling. No shared
KEGG term is found.
NET-GE enrichment for BP for the three genes

include new terms endowed with high IC values, like
“regulation of amino acid transport”, “negative regulation
of muscle contraction”. Some of these new annotations
are related to the severe symptoms of hypothyroidisms,
namely tetany and seizure. NET-GE allows retrieving
enriched KEGG pathways, such as “Circadian entrainment
(hsa04713)”, “Inflammatory mediator regulation of TRP
channels (hsa04750)”, “Gap junction (hsa04540)” and
“Insulin secretion (hsa04911)”. None of the three
genes is directly involved in the four pathways; PTH
and CASR are part of the networks defined by NET-
GE exploiting the STRING network. Interestingly,
these new annotations highlight previously reported
impairments of both circadian rhythms impairment
and insulin secretion associated with hypoparathyroid-
ism [39, 40].
Figure 3 reports a summary of the information pro-

vided by eDGAR for hypothyroidism (OMIM 146200),
showing how it allows to collect the different types of
relations among the involved genes in a unique page
integrating data from many resources.

Conclusions
eDGAR is a resource for the study of the associations
between genes and diseases. It collects 2672 diseases,
associated with 3658 different genes, for a total num-
ber of 5729 gene-disease associations. The novelty of
eDGAR is the integration of different sources of gene
annotation and in particular, for the 621 heteroge-
neous/polygenic diseases, eDGAR offers the possibility
of analyzing functional and structural relations among
co-involved genes. We provide direct interactions
between pairs of genes (reported in STRING or BIO-
GRID) for 291 diseases and indirect interactions for
some other 250 diseases. For 273 diseases, at least
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one pair of genes is under regulatory interaction of
the same TF, while 39 disease are associated with
genes being a TF/target couple. For 612 diseases, at
least one pair of genes share GO terms and/or

KEGG/REACTOME pathways. In particular, genes in-
volved in the same disease most frequently share
terms of the BP sub-ontology. This is confirmed also
when analyzing the statistically significant functional

Fig. 3 eDGAR page for hypoparathyroidism (OMIM 146200). In the figure, each gene is highlighted with a different color; the Transcription Factor
annotation and the known interactions are reported, together with the simple graph describing them. A summary of the KEGG pathways
enriched with NET-GE and the shared GO terms for BP is also provided
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terms enriched with NET-GE for 606 diseases. The
relations among genes involved in the same disease
are often complex and different pairs of genes are
linked in different ways. eDGAR is a resource for
better tackling the complexity of gene interactions at
the basis of multigenic diseases. The database will be
updated following the major releases of the different
underlying data resources at least once a year.

Additional file

Additional file 1: Figure S1. Distribution of median IC values of GO
terms for genes involved in multigenic diseases. A: GO terms shared by
genes; B: GO terms enriched with NET-GE. For each multigenic disease,
IC value of gene-associated GO terms (of the three different roots) are
evaluated (Eq. 1). In the figure the median IC for each disease is shown.
The frequency is computed with respect to the total number of
multigenic diseases (621). When IC = 0, genes associated with multigenic
disease do not share or enrich GO terms (panel A and B respectively).
(PNG 393 kb)

Acknowledgements
Not applicable.

Funding
Publication costs for this article were provided by PRIN 2010-2011 project
20108XYHJS (to P.L.M.) (Italian MIUR); COST BMBS Action TD1101 and Action
BM1405 (European Union RTD Framework Program, to R.C); PON projects
PON01_02249 and PAN Lab PONa3_00166 (Italian Miur to R.C. and P.L.M.);
FARB UNIBO 2012 (to R.C.).

Availability of data and materials
The dataset generated during the current study is available and downloadable
at edgar.biocomp.unibo.it.

Authors’ contributions
RC, PLM, and GB conceived and designed the work and wrote the paper. GB
collected and curated data. SB ran the NET-GE predictions. GB, GP, and CS
implemented the web server. PLM, GB and RC analysed and interpreted data
on disease related variations. All authors critically revised and approved the
manuscript.

Ethics approval and consent to participate
The authors declare that they used only public data.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Biocomputing Group, BiGeA, University of Bologna, Bologna, Italy.
2Interdepartmental Center «Giorgio Prodi» for Cancer Research, University of
Bologna, Bologna, Italy.

Published: 10 August 2017

References
1. Kann MG. Advances in translational bioinformatics: computational

approaches for the hunting of disease genes. Brief Bioinform.
2010;11(1):96–110.

2. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.Org:
online Mendelian inheritance in man (OMIM®), an online catalog of human
genes and genetic disorders. Nucleic Acids Res. 2015;43(Database issue):
D789–98.

3. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart
J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R,
Villamarin-Salomon R, Rubinstein W, Maglott DR. ClinVar: public archive
of interpretations of clinically relevant variants. Nucleic Acids Res.
2016;44(D1):D862–8.

4. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res. 2015;43(Database issue):D204–12.

5. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN. The Human
Gene Mutation Database (HGMD) and its exploitation in the fields of
personalized genomics and molecular evolution. Curr Protoc Bioinformatics.
2012;39:1.13:1.13.1–1.13.20.

6. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J,
Centeno E, García-García J, Sanz F, Furlong LI. DisGeNET: a comprehensive
platform integrating information on human disease-associated genes and
variants. Nucl Acids Res. 2016;45(D1):D833–9.

7. Rappaport N, Twik M, Plaschkes I, Nudel R, Stein TI, Levitt J, Gershoni M,
Morrey CP, Safran M. Lancet D; MalaCards: an amalgamated human disease
compendium with diverse clinical and genetic annotation and structured
search. Nucl Acids Res. 2016;45(D1):D877–87.

8. Gazzo AM, Daneels D, Cilia E, Bonduelle M, Abramowicz M, Van Dooren S,
Smits G, Lenaerts T. DIDA: a curated and annotated digenic diseases
database. Nucleic Acids Res. 2016;44(D1):D900–7.

9. McClellan J, King MC. Genetic heterogeneity in human disease. Cell.
2010;141(2):210–7.

10. Weeks DE, Lathrop GM. Polygenic disease: methods for mapping complex
disease traits. Trends Genet. 1995;11(12):513–9.

11. Fu W, O'Connor TD, Akey JM. Genetic architecture of quantitative traits and
complex diseases. Curr Opin Genet Dev. 2013;23(6):678–83.

12. Cardon LR, Harris T. Precision medicine, genomics and drug discovery.
Hum Mol Genet. 2016;25(R2):R166–72.

13. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human
disease network. Proc Natl Acad Sci U S A. 2007;104(21):8685–90.

14. Oti M, Brunner H. The modular nature of genetic diseases. Clin Genet.
2007;71:1–11.

15. Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, Fernandez Banet J,
Billis K, García Girón C, Hourlier T, Howe K, Kähäri A, Kokocinski F, Martin FJ,
Murphy DN, Nag R, Ruffier M, Schuster M, Tang YA, Vogel JH, White S,
Zadissa A, Flicek P, Searle SM. The Ensembl gene annotation system.
Database (Oxford). 2016; pii: baw093.

16. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN. Bourne PE the protein data bank. Nucleic Acids Res.
2000;28:235–42.

17. The Gene Ontology Consortium.. Expansion of the Gene Ontology
knowledgebase and resources. Nucleic Acids Res. 2016. pii: gkw1108.

18. Di Lena P, Martelli PL, Fariselli P, Casadio R. NET-GE: a novel NETwork-based
Gene Enrichment for detecting biological processes associated to
Mendelian diseases. BMC Genomics. 2015;16(Suppl 8):S6.

19. Bovo S, Di Lena P, Martelli PL, Fariselli P, Casadio R. NET-GE: a web-
server for NETwork-based human gene enrichment. Bioinformatics.
2016;32(22):3489–91.

20. Yates B, Braschi B, Gray KA, Seal RL, Tweedie S, Bruford EA. Genenames.org:
the HGNC and VGNC resources in 2017. Nucleic Acids Res. 2016.
pii: gkw1033.

21. Kasprzyk A. BioMart: driving a paradigm change in biological data
management. Database (Oxford). 2011:bar049.

22. Munoz-Torres M, Carbon S. Get GO! Retrieving GO data using AmiGO,
QuickGO, API, files, and tools. Methods Mol Biol. 2017;1446:149–60.

23. Shannon CE. A mathematical theory of communication. Bell Syst Techn J.
1948;27:379–423.

24. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res.
2016;44(D1):D457–62.

25. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R,
Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M,
Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L,
Hermjakob H, D'Eustachio P. The Reactome pathway knowledgebase.
Nucleic Acids Res. 2016;44(D1):D481–7.

26. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von
Mering C. STRING v10: protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 33 of 64

dx.doi.org/10.1186/s12864-017-3911-3
http://edgar.biocomp.unibo.it
http://genenames.org


27. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen
D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L,
Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS,
Dolinski K, Tyers M. The BioGRID interaction database: 2015 update. Nucleic
Acids Res. 2015;43(Database issue):D470–8.

28. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G,
Frishman G, Montrone C, Mewes HW. CORUM: the comprehensive resource
of mammalian protein complexes—2009. Nucleic Acids Res.
2010;38(Database issue):D497–501.

29. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI,
Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar
VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A,
Marcotte EM, Emili A. A census of human soluble protein complexes.
Cell. 2012;150(5):1068–81.

30. Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, Kim H, Cho A, Kim E, Lee T,
Kim H, Kim K, Yang S, Bae D, Yun A, Kim S, Kim CY, Cho HJ, Kang B, Shin S,
Lee I. TRRUST: a reference database of human transcriptional regulatory
interactions. Sci Rep. 2015;5:11432.

31. Ouedraogo M, Bettembourg C, Bretaudeau A, Sallou O, Diot C, Demeure O,
Lecerf F. The duplicated genes database: identification and functional
annotation of co-localised duplicated genes across genomes. PLoS One.
2012;7(11):e50653.

32. PostgreSQL. https://www.postgresql.org/. Accessed 1 December 2016.
33. Data-Driven. Documents. https://d3js.org/. Accessed 1 December 2016.
34. DataTables. https://datatables.net/. Accessed 1 December 2016.
35. Bilezikian J, Khan A, Potts J, et al. Hypoparathyroidism in the adult:

epidemiology, diagnosis, pathophysiology, target organ involvement,
treatment, and challenges for future research. J Bone Miner Res.
2011;26(10):2317–37.

36. Lai Y, Wang H, Xia X, Wang Z, Fan C, Wang H, Zhang H, Ding S, Teng W,
Shan Z. Serum fibroblast growth factor 19 is decreased in patients with
overt hypothyroidism and subclinical hypothyroidism. Medicine (Baltimore).
2016;95(39):e5001.

37. Domouzoglou EM, Fisher FM, Astapova I, Fox EC, Kharitonenkov A, Flier JS,
Hollenberg AN, Maratos-Flier E. Fibroblast growth factor 21 and thyroid
hormone show mutual regulatory dependency but have independent
actions in vivo. Endocrinology. 2014;155(5):2031–40.

38. Lee Y, Park YJ, Ahn HY, Lim JA, Park KU, Choi SH, Park DJ, Oh BC, Jang HC,
Yi KH. Plasma FGF21 levels are increased in patients with hypothyroidism
independently of lipid profile. Endocr J. 2013;60(8):977–83.

39. Bauer MS, Soloway A, Dratman MB, Kreider M. Effects of hypothyroidism on
rat circadian activity and temperature rhythms and their response to light.
Biol Psychiatry. 1992;32(5):411–25.

40. Yang N, Yao Z, Miao L, Liu J, Gao X, Fan H, Hu Y, Zhang H, Xu Y, Qu A,
Wang G. Novel clinical evidence of an association between Homocysteine
and insulin resistance in patients with hypothyroidism or subclinical
hypothyroidism. PLoS One. 2015;10(5):e0125922.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Genomics 2017, 18(Suppl 5):554 Page 34 of 64

https://www.postgresql.org/
https://d3js.org/
https://datatables.net

	Abstract
	Background
	Results
	Conclusions

	Background
	Construction and content
	Data sources of associations between genes and diseases
	Gene annotation
	Relationships among genes involved in the same disease
	Database structure and visualization

	Results and discussion
	Statistics of the database content
	Statistics of gene annotation
	Relations among genes associated with the same disease
	NET-GE enrichment
	The user interface
	A case study: Hypoparathyroidism

	Conclusions
	Additional file
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

