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Abstract

Background: Strict guidelines delimit the use of computational information in the clinical setting, due to the still
moderate accuracy of in silico tools. These guidelines indicate that several tools should always be used and that full
coincidence between them is required if we want to consider their results as supporting evidence in medical
decision processes. Application of this simple rule certainly decreases the error rate of in silico pathogenicity
assignments. However, when predictors disagree this rule results in the rejection of potentially valuable information
for a number of variants. In this work, we focus on these variants of the protein sequence and develop specific
predictors to help improve the success rate of their annotation.

Results: We have used a set of 59,442 protein sequence variants (15,723 pathological and 43,719 neutral) from 228
proteins to identify those cases for which pathogenicity predictors disagree. We have repeated this process for all
the possible combinations of five known methods (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2). For each
resulting subset we have trained a specific pathogenicity predictor. We find that these specific predictors are able
to discriminate between neutral and pathogenic variants, with a success rate different from random. They tend to
outperform the constitutive methods but this trend decreases as the performance of the constitutive predictor
improves (e.g. with PON-P2 and PolyPhen-2). We also find that specific methods outperform standard consensus
methods (Condel and CAROL).

Conclusion: Focusing development efforts on the case of variants for which known methods disagree we may
obtain pathogenicity predictors with improved performances. Although we have not yet reached the success rate
that allows the use of this computational evidence in a clinical setting, the simplicity of the approach indicates that
more advanced methods may reach this goal in a close future.
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Background
The application of NGS in the clinical setting is limited,
among other things, by our inability to accurately pin-
point the causative variant of a patient’s condition from
the set of variants identified in sequencing experiments
[1]. Frequently, this is due to a lack of information on
the pathogenicity of these variants. In this situation,
pathogenicity predictors, designed to estimate the dam-
age caused by sequence variants [2, 3], can provide valu-
able information. For variants resulting in amino acid
substitutions, these tools combine properties that meas-
ure different aspects of protein structure/function. For
example, some of the properties (like hydrophobicity or
volume differences) are related to changes in protein sta-
bility upon mutation, while others indicate whether the
functional site of the protein has been damaged [2].
Using this information, in silico predictors produce a
numerical score that is transformed into a binary predic-
tion (pathogenic/neutral) through the use of a decision
threshold. The accuracy of these predictions is around
80% [2, 3]. Although this value is not a fundamental
threshold limiting the usage of in silico tools in the clin-
ical, this kind of application was not initially advocated
[3–5]. However, this situation is changing due to three
facts. First, the drop in sequencing costs is leaving vari-
ant interpretation as one of the main bottlenecks in clin-
ical applications of NGS [1] thus creating an important
pressure for finding strategies that alleviate this problem.
Second, and further in this direction, clinical users in-
creasingly consider the possibility of using pathogenicity
predictions as supporting evidence that can be combined
with medical data to support diagnostic decisions [6–8].
This view has been facilitated by the clarification of the
probabilistic nature of computational evidence [9]. And,
third, the fact that the success rate of pathogenicity pre-
dictors remains around 80%, regardless of the technical
differences between them [2, 3], indicates that these
tools recognize a signal common to many pathogenic
variants but absent in neutral ones [2, 3].
In this scenario, where pathogenicity predictions can

be useful but are still imperfect, the idea of scoring vari-
ants with several predictors is gaining support in health-
care applications [3, 9, 10]. The underlying rationale is
that because different methods implement (partially)
complementary representations of the variant’s impact,
coincidence in their predictions would be reinforcing.
This idea is included in the guidelines for variant inter-
pretation of the American College of Medical Genetics
and Genomics (ACMG) and the Association for Molecu-
lar Pathology (AMP) [11]. There, the application of more
than one predictor is considered advantageous and, to
combine the resulting evidence, it is proposed that "If all
of the in silico programs tested agree on the prediction,
then this evidence can be counted as supporting. If in
silico predictions disagree, however, then this evidence
should not be used in classifying a variant". The value of
this type rule (to which we will refer to as the
coincidence rule) has been observed in different works
[12–14]. However, when pathogenicity predictions dis-
agree this rule will result in the rejection of computa-
tional evidence and, consequently, in a reduction of the
data available to make medical decisions. Not only this,
this effect will affect an increasing number of variants if
we combine more predictors in a quest for higher reli-
ability. In this work, we address this problem and study
whether we can develop specific, competitive pathogen-
icity predictors for those variants for which known
methods give contradictory results. To this end, we have
developed a series of neural network-based predictors
using a dataset of pathogenic and neutral variants for
which five known predictors (SIFT, PolyPhen-2, CADD,
PON-P2 and MutationTaster2) disagreed in their results
(Additional file 1: Figure S1; this set will be called PRDIS).
To build our tools we have explored different options
(Additional file 2: Figure S2), including the use of two
neural networks (NN) -a model with no hidden layer and
one with a single hidden layer and two nodes, and
different combinations of input attributes (using predic-
tion scores and molecular/evolutionary properties). Note:
since in this work we will frequently compare different
sets of predictors, to avoid confusion we will refer to SIFT,
PolyPhen-2, CADD, PON-P2 and MutationTaster2 as
reference tools/predictors/methods, and to Condel and
CAROL as consensus tools/predictors/methods.
The results obtained show that there is a high number

of variants, between 10% and 45% of the cases studied,
for which contradictory predictions are obtained. For
these variants we find that we can build specific patho-
genicity predictors with non-random success rates. In
fact, the performance of these specifically trained tools
generally improves on that of the reference tools used
(SIFT, PolyPhen-2, CADD, PON-P2 and MutationTa-
ster2) and on that of consensus pathogenicity predictors
(Condel and CAROL). Finally, we provide a global view
of what prediction performance can be reached when
combining in a hybrid method the coincidence (or
ACMG/AMP) rule and the predictors for PRDIS.

Methods
Note. We will use the terms ‘specific’ or ‘PRDIS specific’
predictors for those predictors obtained using variants
from PRDIS only.

General protocol for building the PRDIS specific predictors
The goal of this work is to study whether we can obtain
better pathogenicity predictions by developing methods
specific for subsets of the variant. More precisely, in this
work we have used the coincidence rule to partition our
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set of variants (Additional file 1: Figure S1) and develop
specific predictors for PRDIS (Additional file 2: Figure
S2), the subset of variants for which the reference pre-
dictors disagree. We have studied this problem for all
possible combinations of five reference predictors
(Additional file 2: Figure S2): SIFT, PolyPhen-2, PON-P2,
CADD and MutationTaster2. For each of these combina-
tions, we will obtain a PRDIS and this set will be used for
training a neural network predictor following a standard
protocol that has been described in our previous work
[2, 15, 16]. For each PRDIS, this protocol is divided into
three steps: (i) characterization of variants with several
properties, (ii) build a neural network model for variant
prediction and (iii) estimate its performance. Below
we describe these steps, although more information can
be found in our previous work [2, 15, 16].

Variant datasets
The development of the pathogenicity predictors PRDIS
required, in a first step, to build an initial set of patho-
logical and neutral variants; in a second step, this set of
variants is processed to give the PRDIS sets that will be
used to derive the predictors tested in this work. Below,
we devote a specific section to each of these two steps.

The initial variant dataset
This dataset, constituted by pathological and neutral var-
iants, was obtained following commonly used proce-
dures [2, 15, 16]. Pathological variants were retrieved
from UniProt [17] and corresponded to sequence vari-
ants labeled as “Disease” in Humsavar (version 06-JUL-
2016). However, not all of them were included in our
initial dataset; we removed those variants from proteins
contributing less than 30 independent variants to
Humsavar. For example, if for a protein there were only
two known variants in Humsavar, none of them was in-
cluded in our initial dataset. On the contrary, if for a
protein there were 31 variants listed in Humsavar, all of
them were included in our initial dataset. The reason for
this filter is to avoid the large imbalances between the
number of pathological and neutral variants in the data-
set, caused by proteins contributing few pathological but
many neutral variants. The threshold (thres) value of 30
pathological variants per protein was chosen after ex-
ploring the dependence of the ratio of neutral to patho-
logical variants on different thres values: 12.5 (thres = 0),
6.3 (thres = 5), 4.8 (thres = 10), 2.8 (thres = 30) and 2.0
(thres = 50). On the basis of our previous work (Fig. 4 in
[15]), where we found that for ratios above 5 the sample
imbalance becomes increasingly difficult to correct, we
chose a conservative threshold (thres = 30) for this work.
Higher values were discarded because the number of
proteins dropped substantially, e.g. for thres = 50, only
130 proteins contributed variants to the dataset,
compared to 228 for thres = 30. At the end of the
process, we obtained 15,723 pathogenic variants, distrib-
uted over a total of 228 proteins.
For neutral variants, we used the homology-based

model described in our previous work [2, 15, 16], where
variants are obtained from a multiple sequence align-
ment (MSA) for each protein family. More precisely,
they correspond to those sequence deviations from the
human representative observed in close homologs (se-
quences from other species > = 95% identical to the hu-
man one) [18]. The technical steps are well described in
Riera et al. [15]. Here, we briefly summarize them. First,
for each of the 228 proteins we retrieved their sequence
from UniProt and used it to query UniRef100 (06-JUL-
2016) [19], running a PsiBlast [20] query (e-value 0.001,
two iterations). From this output, we eliminated those
sequences less than 40% identical to the human protein.
Second, the remaining sequences were aligned with
Muscle [21]. And third, we collected all the deviations
from the human sequence found in homologs > = 95%
sequence identity. These deviations constituted the set
of neutral variants for this protein. Following this proto-
col for the 228 proteins, we obtained a total of 43,651
neutral variants. Together with the patological cases, we
obtained a set of 59,442 variants spread over 228 pro-
teins, that we called VS228.
An annotated list of the variants in VS228, plus the

pathogenicity predictions for the tools used in this work
are provided as Additional file 3 (pathological variants)
and Additional file 4 (neutral variants).
To check the reach of the conclusions in this work for

proteins not represented in VS228, we employed those
variants discarded when building VS228 because their
proteins did not have 30 or more cases. The new dataset,
which was not utilized during the training of our predic-
tors, was constituted by a total of 322,270 variants
(29,259 pathological and 293,011 neutral) spread over
2168 proteins. This independent, validation dataset was
called VS2168. Note that in this set pathogenic variants,
apart from UniProt [17], were also obtained from
HGMD Professional [22], to which we have recently
bought a subscription.
The PRDIS variant datasets
As explained at the start of the Materials and Methods,
we tried different versions of the coincidence rule, each
corresponding to one of the combinations of five refer-
ence methods (SIFT, PolyPhen-2, PON-P2, CADD and
MutationTaster2). Application of this rule to VS228
(Additional file 1: Figure S1) was used to produce a
given PRDIS. Repeated application of all possible versions
of the rule results in all the PRDIS used in this work
(Additional file 2: Figure S2).
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Equivalent PRDIS datasets were also obtained from
VS2168. They were used to test if the conclusions
reached with VS228 also hold for proteins (and their var-
iants) not included in the development of our
predictors.

Characterization of variants in terms of discriminant
features
We tried two different sets of features to characterize
variants for building our specific methods (Additional
file 2: Figure S2). In one we only used the scores of the
reference predictors employed to include the variant in
the PRDIS (Additional files 1, 2: Figures S1, S2). For
example, when the PRDIS was built using SIFT and
PON-P2, we used the SIFT and PON-P2 scores as input
for our predictor; when the PRDIS was built using
PolyPhen-2, CADD and PON-P2, then our input was
constituted by the scores of these three methods; etc. In
the second set, we enriched the previous scores with
three additional properties: the element of the Blosum62
matrix [23] corresponding to the amino acid replace-
ment and two properties related to the sequence conser-
vation pattern at the variant locus. The first was
Shannon’s entropy; it is equal to -Σipi.log(pi), where the
index i runs over all the amino acids at the variant’s
MSA column. The second property was the value of the
position-specific scoring matrix [15, 24] for the native
amino acid, pssmnat, which is equal to log(fnat,i/fnat,MSA),
where fnat,i and fnat,MSA are the frequencies of the native
amino acid at the variant locus i and in the whole align-
ment, respectively. Both Shannon’s entropy and the
position-specific scoring matrix element were computed
from the MSA of the protein family.

Building the specific predictors
All our predictors were built with WEKA (v3.6.8) [25]. We
tried two neural network models. One was the simplest
neural network possible: a single-layer perceptron (WEKA
defaults: L = 0.3, M = 0.2, N = 500, V = 0, S = 0, E = 20),
with no hidden layers [26]. This model was chosen because
we have used it with good results in our previous work [15,
16]. The second model was a slightly more complex neural
network with one hidden layer having two nodes (WEKA
parameters: L = 0.3, M = 0.2, N = 500, V = 0, S = 0, E = 20,
H = 2). We used SMOTE [27] to correct for the imbalance
between pathological and neutral variants in the training
sets (not in the test/validation sets).
For each PRDIS, the whole procedure described in this

section was applied to the two possible sets of features
here described.

Performance assessment
Performance estimates are obtained following a standard
5-fold cross-validation procedure, such as that described
in our previous work. The success rate of the predictors
was measured using six parameters [15, 16, 28, 29]: sen-
sitivity, specificity, accuracy, positive predictive and
negative predictive values, and Matthew’s correlation co-
efficient (MCC). They are computed as shown below.
.- Sensitivity:

TP
TP þ FN

.- Specificity:

TN
TN þ FP

.- Accuracy:

TP þ TN
TP þ FP þ TN þ FN

.- Positive predictive value (PPV):

TP
TP þ FP

.- Negative predictive value (NPV):

TN
TN þ FN

.- Matthews Correlation Coefficient:

TP �TN−FP �FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ� TN þ FPð Þ� TP þ FPð Þ� TN þ FNð Þp

In all the previous equations: TP and FN are the num-
bers of correctly and incorrectly identified pathological
variants, respectively; TN and FP are the numbers of
correctly and incorrectly identified neutral variants,
respectively.
The values of these parameters are provided in

Additional files 5, 6: Tables S1, S2 (including also the
corresponding TN, TP, FN, FP) for VS228; Additional
file 7: Table S3, for VS2168. For simplicity, our analyses
focus on the values of the MCC, but comparable results
are obtained using accuracy (Additional files 8, 9, 10:
Figures S3, S4, S5).

External predictors
Application of the coincidence rule requires a minimum
of two pathogenicity predictors. In our case we tried all
possible combinations of the following five tools:
PolyPhen-2 [30], SIFT [31], PON-P2 [32], MutationTa-
ster2 [33] and CADD [34]. We chose them because their
results are provided by software suites broadly used in the
annotation of sequencing results in the clinical setting:
SIFT, PolyPhen-2, CADD and MutationTaster2 are in
ANNOVAR [35]; SIFT, PolyPhen-2 (after submission) and
MutationTaster are in Alamut (http://www.interactive-

http://www.interactive-biosoftware.com/doc/alamut-visual/2.9/missense-pred.html
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biosoftware.com/doc/alamut-visual/2.9/missense-
pred.html), SIFT and PolyPhen are included in Illumina’s
Variant Studio software (http://support.illumina.com/
downloads/variantstudio_userguide.html). PON-P2 is not
included in none of them, but it was added because of its
top-ranking performance relative to other predictors [15].
PolyPhen-2 (v2.2.2) was run locally with default parame-

ters. SIFT and PON-P2 were run online (at http://sift.jcvi.org
and http://structure.bmc.lu.se/PON-P2/, respectively). Muta-
tionTaster2 (http://www.mutationtaster.org) and CADD
(http://cadd.gs.washington.edu) predictions were obtained
using ANNOVAR [35]. The coverage of MutationTaster2,
nor CADD tends to be lower than that of other methods
because these two programs do not give predictions for
amino acid substitutions resulting from more than one
nucleotide change.
We also compared the performance of our method with

that of two well-established consensus methods Condel
[36] and CAROL [37]. We chose them because they build
their consensus utilizing a minimum number of tools:
Condel combines FATHMM [38] and MutationAssessor
[39]; CAROL combines PolyPhen and SIFT. This makes
them a good baseline for the performance of our ap-
proaches, which in their simpler form also combine two
reference predictors. In the case of CONDEL the predic-
tions were retrieved from the file ‘fannsdb.tsv.gz’, available
for download at the website http://bg.upf.edu/fannsdb/.
For CAROL run locally the R version of the program,
downloaded from its website at the Sanger Institute
(http://www.sanger.ac.uk/science/tools/carol).
Results
Our goal is to test whether pathogenicity predictors
with improved performance can be obtained for vari-
ants for which known methods do not agree in their
predictions (these variants will be considered as
pathogenic or neutral, depending on the method).
The next two sections correspond to the two main
steps followed to address this problem: (i) application
of different versions of the coincidence rule for build-
ing the variant dataset; and (ii) development of the
predictors. In a third and final section we describe
what would be the overall state of the prediction
problem, when considering together the cases that
follow and the cases that break the coincidence rule.
NOTE. The results of this work apply to any single

amino acid replacement, irrespective of whether it is the
result of a single nucleotide change or not. These results
remain essentially the same, except from minor varia-
tions that do not affect our conclusions, when we re-
strict our analyses to those variants resulting from a
single nucleotide replacement only (Additional files 11,
12, 13, 14: Figures S6, S7, S8, S9).
Applying the coincidence rule to build the variant dataset
To obtain the variant dataset for deriving our predictors we
followed a simple protocol (Additional file 1: Figure S1) in
which we first retrieved a total of 59,442 variants (15,723
pathogenic and 43,719 neutral variants, see Methods)
distributed over a total of 228 proteins. Then, a set of
known pathogenicity predictors was applied to these
variants, keeping only those for which the predictors
disagreed: these constituted our variant dataset, which we
called PRDIS. Looking at this protocol, we see that each
combination of pathogenicity predictors will give a different
dataset. In this work, we have tried all possible com-
binations of five reference methods: SIFT, PolyPhen-2,
CADD, PON-P2 and MutationTaster2. For example,
for the case of two predictors, we produced a variant
dataset for each of the following options: SIFT-PON-2,
SIFT-PolyPhen-2, SIFT-CADD, SIFT-MutationTaster2,
PON-P2-CADD, PON-P2-PolyPhen-2, etc. This resulted
in a total of 26 PRDIS datasets.
The first thing we observe during this process is that

part of the 59,442 initial variants are discarded because
predictions are not provided by all the methods for all
variants (Fig. 1a; Additional file 5: Table S1). For
example, there are only 57,349 (96% of the total of vari-
ants) instances for which the two predictors in the SIFT-
PolyPhen (HDIV version) combination give an output;
this number drops to 32,741 (55% of the total of vari-
ants) for the SIFT-MutationTaster2. These numbers
reflect the original coverage of the reference methods.
For example, SIFT, PolyPhen-2 (HDIV version) and
MutationTaster2 generate results for 97%, 99% and 55%
of the initial variants, respectively. It is then to be
expected that the SIFT-PolyPhen-2 (HDIV version)
combination gives more predictions than the SIFT-
MutationTaster2 one. We also notice (Fig. 1b;
Additional file 6: Table S2) that for those variants that pass
the first step, there is an important percentage of cases for
which predictors disagree, varying, for example, between
10% and 35% for the combinations of two predictors.
For the remaining PRDIS datasets, the total number
of mutations is large enough to suport the develop-
ment of pathogenicity predictors; e.g. the combination
of SIFT, PolyPhen (HDIV version), PON-P2, CADD
and MutationTaster2 gives a PRDIS set with 5815
variants. As a reference, protein-specific predictors
have been developed with variant datasets with 50/50
neutral/pathogenic instances [15].
We checked the success rate of the coincidence rule for

the variants for which the combined predictors agreed
(Additional file 1: Figure S1). We found that using this
rule always gives better results than using the predictors
alone (Fig. 2a): it has the ability to select the subset of pre-
dictions, from a given method, that are more accurately
predicted. For example, in the case of PolyPhen-2 (HDIV

http://www.interactive-biosoftware.com/doc/alamut-visual/2.9/missense-pred.html
http://www.interactive-biosoftware.com/doc/alamut-visual/2.9/missense-pred.html
http://support.illumina.com/downloads/variantstudio_userguide.html
http://support.illumina.com/downloads/variantstudio_userguide.html
http://sift.jcvi.org
http://structure.bmc.lu.se/PON-P2
http://www.mutationtaster.org
http://cadd.gs.washington.edu
http://bg.upf.edu/fannsdb
http://www.sanger.ac.uk/science/tools/carol


Fig. 1 Statistics for the variant datasets in this study. a Percentage of cases that entered the study. The X-axis corresponds to the number of reference
methods combined; each point corresponds to a specific combination of reference predictors (a slight offset is used for clarity purposes). b Composition
of the PRDIS sets built from the combination of two reference predictors only. Each of the lines (percentage of agreements and disagreements to the left
and right, respectively) corresponds to a point in (B), at x = 2
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version) the individual MCC is 0.57, while that of the
SIFT-PolyPhen-2 (HDIV version) is 0.70. For PON-P2 the
individual MCC is 0.70, while that of its combination with
MutationTaster2 is 0.79. We also see that increasing the
number of methods results in better success rates,
although the trend is asymptotic (Fig. 2b).

Building specific tools for the variants with discordant
predictions (PRDIS)
This section is divided into four subsections. In the first
one (“Obtaining predictors...”), we show that we can ob-
tain non-random predictors for variants in PRDIS. The
remaining three subsections (“Can specific predictors
outperform reference...”; “Can specific predictors outper-
form simple...”; “Testing the reach...”) are devoted to
compare the performance of these specific predictors
Fig. 2 Success rate of predictions obtained following the coincidence rule.
accepted as supporting evidence in clinical settings only when the pathog
the success rate of this rule depends on the chosen in silico predictors. a V
method. Each violin plot corresponds to all possible combinations of refere
example, the first plot to the left represents all combinations of five referen
that include MutationTaster2. The thick lines at the bottom of each violin p
b Dependence of MCC values on the number of predictors used to implem
with that of (i) reference tools (PolyPhen-2, SIFT, PON-
P2, CADD and MutationTaster2), (ii) with that of con-
sensus tools (Condel and CAROL), and (iii) extending
the main conclusion to proteins outside VS228.

Obtaining specific predictors for PRDIS
For each PRDIS dataset we derived a set of four specific
predictors (Additional file 2: Figure S2). They corres-
pond to the different combinations of the following
options: two possible inputs and two models of different
complexity. The two inputs were: (i) a simple one,
having only the prediction scores from the reference
methods; and (ii) and extended version of the simple
input augmented with three additional properties
(Blosum62 matrix elements, Shannon’s entropy and the
position-specific scoring matrix elements). The two
In the coincidence rule (see main text) computational information is
enicity predictions of different methods agree. Here we describe how
iolin plots for the Matthews Correlation Coefficients (MCC) grouped by
nce predictors that include the method shown at the bottom. For
ce predictors (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2)
lot represent the individual performance of the reference predictors.
ent the coincidence rule
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complexity levels for the models were: a neural network
with no hidden layers and one with one hidden layer
and two nodes. The performance figures are the average
of 10 replicas of the 5-fold cross validation process, to
smooth out fluctuations.
Our results show (Fig. 3) that the vast majority of the

specific predictors have performances above those of a
random method. That is, there is a signal in PRDIS
allowing the discrimination between pathogenic and
neutral mutations; this signal can be recognized with the
variant features employed in this work.
We also observe bimodality in the MCC distributions

(Fig. 3a and c); the peaks at high and low MCC values
predominantly correspond to methods using the ex-
tended and the reduced inputs, respectively. This is in
agreement with our previous experience where the use
of biochemical/biophysical features allowed us to resolve
a contradiction between SIFT and PolyPhen-2 predic-
tions for variant F367 V in FOXP3 [40].
These results remain essentially unchanged whether

we use the simple (Fig. 3a and b) or the complex neural
network model (Fig. 3c and b).
Fig. 3 Performance of the PRDIS specific predictors. a and c. Frequency distribu
(a) data for simple neural networks; (c) data for neural networks with one hidde
a random predictor. We see that specific predictors are systematically better tha
biophysical properties (Blosum62 elements, Shannon’s entropy and Positi
improve the performance of the specific predictors. Points above the dot
the performance of a specific predictor. We see that this is essentially alw
hidden layer neural networks, respectively
Can specific predictors outperform reference (SIFT,
PolyPhen-2, PON-P2, CADD, MutationTaster2) methods?
In Fig. 4, for each reference predictor (SIFT, PON-P2, etc)
we plot both its performance (MCC) distribution (black
boxplot) and that of the specific predictors that include its
score among their input attributes (color violin plot). The
first thing we notice is that here the performance of the
reference predictors is lower than for the case of variants
with concordant predictions (Fig. 2a). The same happens
when we consider specific tools instead. For these, the
upper-bounds of the MCC distributions are between 0.6
and 0.7 (Fig. 4b), while for the consistency rule MCCs
values can reach 0.9 (Fig. 2b). With the lower-bounds we
see a similar effect. For example, for specific predictors in-
volving MutationTaster2 and CADD the lower-bounds are
around 0.2; for applications of the consistency rule involv-
ing these two predictors, the values are above 0.6. Overall,
this indicates that the problem of discriminating between
neutral and pathogenic variants is harder for PRDIS than
for non-PRDIS variants.
We also observe how the performances (MCC) of the ref-

erence and specific predictors are related. In particular, we
tion of MCC values for all the specific predictors generated in this work:
n layer and two nodes. Shown with a dashed line is 0, the MCC value for
n the random predictor. b and d. Contribution of the three biochemical/
on specific scoring matrix elements; see Materials and Methods) to
ted line correspond to cases where use of these properties improves
ays the case. b and d correspond to the simpler and to the one



Fig. 4 The contribution of reference methods to PRDIS specific predictors. In (a) we compare the performance of PRDIS specific methods, represented
with violin plots with that of the reference methods (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2), represented with black boxplots. We see
that specific methods are frequently better than reference methods, but there is an increasing overlap between both approaches as the performance
of the reference method grows (e.g. in the cases of PON-P2 or PolyPhen-2). b Performance depends on the number of reference predictors combined:
the more we use, the more likely we are to obtain higher performances
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see that when the success rate of the reference predictor is
high, the same happens with that of the derived specific
predictors. For PON-P2, the method with the highest suc-
cess rates in this work, specific’s MCCs concentrate near
0.65; for the next performer, PolyPhen-2 (HDIV version),
specific’s MCCs show a shift towards lower values; and so
on. We also find that as the individual performances of the
reference methods drop (when the black boxplots move to-
wards 0 in Fig. 4a) the difference between specific and ref-
erence predictors grows. In summary, the better the
performance of the reference method is, the more it resem-
bles that of its related specific predictors.
We have seen that prediction of PRDIS variants is a

hard problem and that specific tools provide a promising
approach to its solution. In this context, a natural ques-
tion is: has the performance of specific tools in PRDIS
variants (Additional file 6: Table S2) reached that of ref-
erence methods in average variants (Additional file 5:
Table S1)? Our results indicate that, in general, this is
not yet the case. The differences between reference
methods do not generally alter this conclusion; there is,
however, some variability that depends on the parame-
ters considered. More precisely, for MCC we see that
SIFT is above 39 out of 57 (68%) specific predictors,
PolyPhen-2 (HDIV version) is above 75%, CADD is
above 88%, and PON-P2 is above 100%. If we turn to
variant-specific parameters, like sensitivity (pathogenic)
and specificity (neutral) we find that for sensitivity, all
reference methods are above all specific predictors, ex-
cept for SIFT, which is above 72% of them. For specifi-
city, the situation is somewhat reversed. The specificity
of MutationTaster2 for the average variant, 0.47, is below
that of all specific tools in PRDIS variants; in our data-
set, this method shows a prediction bias towards patho-
genicity. This bias is also present in the other reference
methods, which show specificities below their sensitiv-
ities. However, the difference with specific methods be-
comes gradually smaller, from PolyPhen-2 (HDIV
version), which is above 14%, to PON-P2, which is above
56%. The other variant-related parameters (PPV and
NPV) are also of interest; however, they have a high de-
pendency on the sample composition that makes diffi-
cult the comparison. Having said that, for PPV we see
that reference methods, when applied to the average
variant, outperform specific methods, when applied to
PRDIS variants, in different degrees: MutationTaster2 is
above 39%, PolyPhen-2 (HDIV version) is above 70%, SIFT
is above 77%, CADD is above 86%, and PON-P2 is above
100%. Given that the sample effect is unclear in this case,
we also give (Additional file 15: Figure S10) the comparison
of PPV values when applying to PRDIS variants both refer-
ence and specific methods. We find that the latter clearly
outperforms the former. On the basis of both results we be-
lieve that for PPV there is a complementary situation where
both approaches mutually outperform each other; however,
we cannot go any further, given the sample differences. In
summary, the overall view is that the performance of
specific methods in the hard problem of PRDIS variants
has not yet reached that of reference methods in the prob-
lem of average variants. Consequently, the success rates of
specific methods are still below the levels above which
bioinformatics evidence is considered as supporting
evidence in the clinical setting [11].
It must be noted that the size of the PRDIS sets varies

gradually, increasing as we add more predictors (Fig. 5).

Can specific predictors outperform simple consensus
(Condel, CAROL) methods?
As we have seen before, our specific predictors are
obtained using as input the score of reference predictors



Fig. 5 Coverage of the specific predictors. The number of variants
used to obtain specific predictors grows as we increase the number of
standard methods used to build the PRDIS set. This is to be expected,
since the more methods we use, the easier it is to find a discordance
between predictions

Fig. 6 Comparison between the performance of PRDIS specific
and conventional consensus predictors. We represent the MCC
of PRDIS specific predictors (Y-axis) against that of conventional
consensus methods (Condel and CAROL; X-axis). Points above
the diagonal indicate that the former tend to outperform the latter,
for PRDIS variants. We see that this is generally the case, although with
a trend in the performance of CAROL predictions to reach the level of
specific methods
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(enriched, in some cases, with other features). In this
sense they are similar to consensus methods [12, 13, 37,
41], which also use the output of known predictors as
their input. Here we compare PRDIS specific predictors
with Condel and CAROL. These two methods constitute
an interesting reference since, in spite of their good per-
formance, they are technically simple: they utilize a
minimum number of known predictors to build their
consensus, (MutationAssessor, FATHMM) for Condel
and (PolyPhen, SIFT) for CAROL.
We see (Fig. 6) that PRDIS specific predictors outper-

form always Condel and almost always CAROL. This in-
dicates that using PRDIS data for developing specific
predictors is a good option relative to the technically
simple (but powerful) predictors such as Condel and
CAROL.

Testing the reach of the specific approach
The specific approach presented here is based on
identifying the variants that do not follow the coinci-
dence rule and train predictors specific for them. In
Results section "Can specific predictors outperform
reference (SIFT, PolyPhen-2, PON-P2, CADD, Muta-
tionTaster2) methods?" we have seen (Fig. 4), using a
standard cross-validation scheme, that this approach
generally outperforms reference predictors (PolyPhen-2,
SIFT, etc.) for variants in VS228. To test if this conclu-
sion also holds for proteins not represented in VS228,
we applied our specific models to PRDIS sets obtained
from VS2168. It is important to note that VS228 and
VS2168 contain variants from different proteins. That is,
proteins contribute variants either to one set or the
other, but not to both.
In Fig. 7, which is analogous to Fig. 4, for each refer-
ence predictor (SIFT, PON-P2, etc.) we plot both its per-
formance distribution (black boxplot) and that of the
specific predictors that include its score among their in-
put attributes (color violin plot). We see that, apart from
an overall trend towards lower success rates, the results
are comparable to those obtained for VS228: specific
predictors tend to outperform reference predictors and,
as the performance of the latter improves, the difference
between approaches decreases.
Given that the overall success rates for VS2168 have

decreased, these results do not affect the previous obser-
vation according to which the performance of reference
methods applied to the average variant is higher than
that of specific predictors applied to PRDIS variants.

How good is the combination of the coincidence rule and
PRDIS specific predictors?
Combined use of the coincidence rule and PRDIS spe-
cific predictors results in a hybrid method that can pro-
duce predictions for the major part of the variant dataset
(Additional file 16: Figure S11). There is one hybrid
method for each combination of reference predictors;
for example, when our reference methods are SIFT and
PolyPhen-2, we will have one associated coincidence rule
and one PRDIS specific predictor. We see (Fig. 8) that,
when applying the hybrid approach to the original data-
set of variants, most of the hybrid methods have perfor-
mances higher than those of the reference methods



Fig. 7 The relationship between PRDIS specific predictors and
reference methods for proteins in VS2168 dataset. In this figure we
compare the performance of PRDIS specific methods when applied
to the variants in VS2168. None of the proteins represented in this
set contributes a variant to VS228, which is the dataset used to train
the specific predictors and obtain a cross-validated estimate of their
performance (Fig. 4). The MCCs of the specific methods are represented
with violin plots and those of the reference methods (SIFT, PolyPhen-2,
PON-P2, CADD and MutationTaster2) are represented with black
boxplots. We see that, in spite an overall decrease in performance for all
tools displayed, specific methods are frequently better than reference
methods, but there is an increasing overlap between both approaches
as the performance of the reference method grows (e.g. in the cases of
PON-P2 or PolyPhen-2). This result confirms the conclusion obtained with
the VS228 set (Fig. 4)

Fig. 8 Performance of the hybrid predictor. For each possible hybrid
predictor in this work, we computed its MCC. In the figure we show
the frequency histogram of these values. With dashed lines we show
the prediction of the different reference methods, estimated on the
original set of 59,442 variants. We see that hybrid methods tend to
outperform reference methods, although this depends on the latter.
For example, PON-P2 alone is better than many of the hybrids
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(estimated on the same dataset). For example, Mutation-
Taster2 is outperformed by all hybrid methods while, at
the other end of the scale, PON-P2 outperforms 50% of
the hybrid methods. This is not related to coverage (per-
centage of variants predicted), since both MutationTa-
ster2 and PON-P2 have very similar values, 55% and
51%, respectively. Detailed performance results are pro-
vided in Additional file 17: Table S4.

Discussion
In the last years the use of computational evidence for
the identification of pathogenic sequence variants in the
clinical setting is being gradually reconsidered [6–8].
However, given their still limited accuracy, the unre-
stricted use of pathogenicity predictors is not advised
[42]. This idea has taken a more precise shape in the
ACMG/AMP guidelines for variant interpretation [11],
where computational results are considered as support-
ing evidence only when the tools used to generate them
agree (what we call consistency rule in this work).
Otherwise, computational data are rejected. Seeking
agreement between methods is a natural approach to en-
hance our prediction ability and is particularly valuable
when several (partial) solutions to the same problem are
available [43]. For the case of pathogenicity predictions
this approach has also been tried. For example, using a
small set proteins Chan et al. [44] find that taking the
consensus of four prediction tools (naive use of Blo-
sum62, SIFT, PolyPhen and A-GVGD) results in an in-
creased predictive value, although at the price of a
substantial reduction in the number of predictions. In
general, it is accepted that this approach may produce
detectable improvements over the use of single methods
[10, 12, 13, 44], although combining tools may have its
problems [12]. In our case, we observe that simple appli-
cation of the consistency rule to our variant dataset
(Additional file 1: Figure S1) also results in high success
rates (Fig. 2b), better than those of the reference
methods employed to implement the rule. However,
there is a percentage of cases -considered to be hard to
predict by Capriotti et al. [13], for which reference pre-
dictors disagree and consequently computational evi-
dence should be discarded in a medical environment
[11]. These cases represent about 10% to 45% of the
total number of variants (Additional file 5: Table S1) and
their prediction constitutes the main goal of our work.
In particular, we have explored whether by focusing our
efforts on these cases we can derive specific predictors
outperforming known methods. We have tested this idea
on VS228, a set of 59,442 variants spread over 228 pro-
teins of medical interest. To this end we have trained a
series of neural network predictors (Additional file 2:
Figure S2), trying two different inputs and two different
complexity levels, and estimated their performance using
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a 5-fold cross-validation procedure. Our results indicate
that indeed using this specific approach gives tools with
increased success rates, which are better than those of
the reference (Fig. 4; SIFT, PolyPhen-2, PON-P2, CADD
and MutationTaster2) and consensus (Fig. 6; Condel,
CAROL) methods considered.
We also observe that the overall performance of PRDIS

specific tools (Fig. 4a) is still below that obtained for vari-
ants for which predictors agree in their predictions (Fig.
2a). This reflects the gap described by Capriotti et al., [13]
between easier and harder cases. However, the simplicity
of our models suggests that there is still room for the
development of models that can close this gap. And, even
at this early stage, specific tools can already be useful. For
example, let us consider the following variants: Y482C, in
ATP-binding cassette sub-family A member 1, which
causes High-density lipoprotein deficiency; Y72C, in
Hypoxanthine-guanine phosphoribosyltransferase, which
causes hyperuricaemia and chronic tophaceous gout, and
W453R, in Cytochrome b-245 heavy chain, which causes
X-linked Chronic Granulomatous disease. The three
variants are correctly predicted by SIFT, PON-P2, CADD
and MutationTaster2, but are missed by PolyPhen-2
(HDIV version). Our specific method that uses the five
scores as input features correctly identifies the variants as
pathogenic (scores: 0.67, 0.62 and 0.57; all above 0.5). In
addition, if our tool also includes the three biological
features as part of the input, the reliability of the predic-
tions is higher (scores: 0.82, 0.92 and 0.77; all above 0.5).
Apart from showing the potential of the PRDIS specific
predictors, this example can be used to understand why
sometimes predictions by PolyPhen-2 are in contradiction
with those from the other methods. A detailed analysis of
PolyPhen-2’s MSAs shows that, for the three variants
considered, the pathogenic amino acid appears once in
the column of the mutated amino acid, in a non-human
species: for Y482C the cysteine is present in S. harrisii, for
Y72C the cysteine is present in P. tricornutum, and in
W453R the tryptophan appears in R. norvegicus. Since the
score of PolyPhen-2 takes into account this fact, this could
explain the deviating prediction. We reran PolyPhen-2
after eliminating the affected sequences from the MSAs
and the three variants were now correctly predicted as
pathological, in accordance with the other reference
methods. We had previously found a similar situation in a
FOXP3 variant, when integrating PolyPhen-2, SIFT and
structural evidence [40].
We have extended the validity of our principal conclu-

sion applying our trained predictors to the 322,270
variants in VS2168, which are distributed over 2168
proteins not represented in VS228. Our results (Fig. 7)
indicate that, in spite an overall decrease in success rate,
the main conclusion of this work holds: specific predic-
tors tend to outperform reference methods.
Partitioning the variant space and focusing on the
hardest problems
Methodologically, the approach presented is based on
the idea of partitioning the dataset of variants according
to a given criterion and then derive a specific predictor
for some, or for all, of the resulting subsets. The under-
lying rationale is that the partitioning step may give im-
proved prediction tools either because the resulting
subsets are more homogeneous or because it allows us
to put our efforts on tackling the more difficult parts of
the prediction problem. The development of protein-
specific predictors [15] corresponds to the first situation:
every subset is constituted by variants from a single pro-
tein. The specific predictors show good performances
relative to non-specific methods (e.g. PolyPhen-2,
CADD, etc) although not always (in many cases PON-P2
outperforms the protein-specific methods). This may be
due to different factors, for example the new prediction
problem defined by the data in the protein-specific sub-
set may require also an adaptation of the model, e.g. in-
cluding specific terms for the protein. This is for
example what has been recently done by [45] for
KinMutRF, their pathogenicity predictor for kinases; in
this tool the authors employ kinase-specific features in
their input, such as specific Gene Ontology terms. Our
work corresponds to the second case, in which partition-
ing through application of the coincidence rule separates
variants “easy” to predict from those that are harder to
predict, which are those for which known methods dis-
agree (PRDIS in our case). This difficulty gap has been
already mentioned by Capriotti et al. [13] who describe
how their consensus predictor Meta-SNP performs
much better for those cases for which their four consti-
tuting predictors PANTHER, PhD-SNP, SIFT and SNAP
agreed in their verdict than for those where they dis-
agreed. Here we have shown that developing specific
predictors for this hard case benefits our performance
for PRDIS and improves overall prediction performance
(Fig. 8). It is worth noting, however, that improvement
size varies depending on the performance of the refer-
ence predictors, a trend already observed in the case of
protein-specific predictors. That is, when the perform-
ance of the reference predictor is high (e.g. like in the
case of PON-P2), it is more difficult to obtain outper-
forming specific predictors (Fig. 4).

Conclusions
In the clinical setting, the use of computational evidence
on variant pathogenicity is restricted to those cases
where there is a full coincidence between in silico tools
(see ACMG/AMP guidelines [11]). This coincidence rule
results in a loss of information for a percentage of vari-
ants that varies between 10% and 35%, when combining
two predictors. In this work, we have focused on the
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development of specific tools for these variants and on
testing whether we can obtain better success rates than
known methods. We find that this is indeed the case, al-
though some existing methods (PON-P2 and PolyPhen-2)
already give a competitive performance (with varying cov-
erages) that is more difficult to improve.
Additional files

Additional file 1: Figure S1. Obtention of the variant datasets. The
figure shows how we obtained the subsets of variants for which
pathogenicity predictors disagreed (PRDIS, within the red contour) and
agreed (within the blue contour), respectively. For a certain percentage
of cases, some predictors would not give a prediction for the variables
(indicated as “No output for predictor(s)”). The original set of protein
sequence variants was obtained from (see Materials and Methods): (i)
UniProt database, for pathogenic variants; (ii) a homology-based model,
for neutral variants. (PNG 673 kb)

Additional file 2: Figure S2. Obtention of specific predictors for PRDIS
variants. For each combination of the five reference methods used in this work
(SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2) we obtained PRDIS, the
subset of those variants for which the reference predictors disagreed. Then, for
each of these PRDIS sets, we produced four different predictors, which differed
either in the neural network model or in the neural network input. For the
neural network model we tried two options: (i) no hidden layers (NN: 0); and
(ii) one hidden with two nodes (NN: 2). For the neural network inputs, we tried
two options: (i) the scores of the reference predictors; and (ii) the scores of the
reference predictors enriched with three biological features (Blosum62 matrix
elements, Shannon’s entropy, Position-specific scoring matrix elements; see
Materials and Methods). Boxed in red is the case where PRDIS was obtained
using SIFT and PolyPhen-2 as reference methods. (PNG 666 kb)

Additional file 3: Pathogenic variants. Each line corresponds to a
variant, providing: the amino acid replacement and its location in the
protein sequence, the UniProt code for the protein, the values of the
contribution of the three biochemical/biophysical properties (Blosum62
elements, position specific scoring matrix elements and Shannon’s
entropy) followed by the output of the pathogenicity predictions for the
reference methods used in this work (for PolyPhen-2 we give the output
of its two versions –HDIV and HVAR- although in this work we only used
HDIV predictions), and ‘?’ is given when no output was provided by the
method. The last column gives the dataset where the variant belongs,
either VS228 or VS2168. (CSV 1616 kb)

Additional file 4: Neutral variants. Each line corresponds to a variant,
providing: the amino acid replacement and its location in the protein
sequence, the UniProt code for the protein, the values of the
contribution of the three biochemical/biophysical properties (Blosum62
elements, position specific scoring matrix elements and Shannon’s
entropy) followed by the output of the pathogenicity predictions for the
reference methods used in this work (for PolyPhen-2 we give the output
of its two versions –HDIV and HVAR- although in this work we only used
HDIV predictions), and ‘?’ is given when no output was provided by the
method. The last column gives the dataset where the variant belongs,
either VS228 or VS2168. (ZIP 5531 kb)

Additional file 5: Table S1. Success rate of the coincidence rule, for the all
the different combinations of reference predictors (SIFT, PolyPhen-2, PON-P2,
CADD and MutationTaster2). The performance measures are the six standard
measures (MCC, accuracy, sensitivity, specificity, PPV and NPV) described in the
Materials and Methods section. We give: the raw TP, TN, FP and FN values; the
coverage relative to the original dataset of 59,442 variants (VS228) and the
number of cases where the predictors coincide. (PDF 28 kb)

Additional file 6: Table S2. Prediction performance for the PRDIS
specific predictors in this work for VS228; each corresponds to a different
combination of the reference predictors (SIFT, PolyPhen-2, PON-P2, CADD
and MutationTaster2). The performance measures are the six standard
measures (MCC, accuracy, sensitivity, specificity, PPV and NPV) described in
the Materials and Methods section. We also give: the total number and the
percentage of cases, and the raw TP, TN, FP and FN values. (PDF 26 kb)

Additional file 7: Table S3. Prediction performance for the PRDIS
specific predictors in this work for VS2168 dataset; each corresponds to a
different combination of the reference predictors (SIFT, PolyPhen-2, PON-P2,
CADD and MutationTaster2). The performance measures are the six standard
measures (MCC, accuracy, sensitivity, specificity, PPV and NPV) described in
the Materials and Methods section. We also give: the total number and the
percentage of cases, and the raw TP, TN, FP and FN values. (PDF 26 kb)

Additional file 8: Figure S3. In the coincidence rule (see main text)
computational information is accepted as supporting evidence in clinical
settings only when the pathogenicity predictions of different methods agree.
Here we describe how the success rate of this rule depends on the chosen in
silico predictors. (A) Violin plots for the Accuracy grouped by method. Each
violin plot corresponds to all possible combinations of reference
predictors that include the method shown at the bottom. For
example, the first plot to the left represents all combinations of five
reference predictors (SIFT, PolyPhen-2, PON-P2, CADD and Mutation Taster2)
that include MutationTaster2. (B) Dependence of Accuracy values on the
number of predictors used to implement the coincidence rule. (PNG 135 kb)

Additional file 9: Figure S4. (A) and (C). Frequency distribution of
accuracy values for all the specific predictors generated in this work: (A)
data for simple neural networks; (C) data for neural networks with one
hidden layer and two nodes. Shown with a dashed line is 0.5, the
accuracy value for a random predictor. We see that specific predictors are
systematically better than the random predictor. (B) and (D). Contribution
of the three biochemical/biophysical properties (Blosum62 elements,
Shannon’s entropy and Position specific scoring matrix elements; see
Materials and Methods) to improve the performance of the specific
predictors. Points above the dotted line correspond to cases where use
of these properties improves the performance of a specific predictor.
We see that this is essentially always the case. (B) and (D) correspond
to the simpler and to the one hidden layer neural networks, respectively.
(PNG 194 kb)

Additional file 10: Figure S5. In (A) we compare the performance of
PRDIS specific methods, represented with violin plots with that of the
reference methods (SIFT, PolyPhen-2, PON-P2, CADD and Mutation
Taster2), represented with black boxplots. We see that specific methods
are frequently better than reference methods, but there is an increasing
overlap between both approaches as the performance of the reference
method grows (e.g. in the cases of PON-P2 or PolyPhen-2). (B) Performance
depends on the number of reference predictors used: the more predictors
are used, the more likely to obtain higher performances. (PNG 219 kb)

Additional file 11: Figure S6. The results in this figure are computed
for the subset of amino acid variants resulting from single nucleotide
replacements only. (A) Percentage of cases that entered the study. The
X-axis corresponds to the number of reference methods combined; each
point corresponds to a specific combination of reference predictors
(a slight offset is used for clarity purposes). (B) Composition of the PRDIS
sets built from the combination of two reference predictors only. Each of
the lines (percentage of agreements and disagreements to the left and
right, respectively) corresponds to a point in (B), at x = 2. (PNG 115 kb)

Additional file 12: Figure S7. The results in this figure are computed for
the subset of amino acid variants resulting from single nucleotide
replacements only. In the coincidence rule (see main text) computational
information is accepted as supporting evidence in clinical settings only when
the pathogenicity predictions of different methods agree. Here we describe
how the success rate of this rule depends on the chosen in silico predictors.
(A) Violin plots for the Matthews Correlation Coefficients (MCC) grouped by
method. Each violin plot corresponds to all possible combinations of
reference predictors that include the method shown at the bottom.
For example, the first plot to the left represents all combinations of five
reference predictors (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2)
that include MutationTaster2. (B) Dependence of MCC values on the num-
ber of predictors used to implement the coincidence rule. (PNG 113 kb)

Additional file 13: Figure S8. The results in this figure are computed
for the subset of amino acid variants resulting from single nucleotide
replacements only. (A) and (C). Frequency distribution of MCC values for
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all the specific predictors generated in this work: (A) data for simple
neural networks; (C) data for neural networks with one hidden layer and
two nodes. Shown with a dashed line is 0, the MCC value for a random
predictor. We see that specific predictors are systematically better than
the random predictor. (B) and (D). Contribution of the three biochemical/
biophysical properties (Blosum62 elements, Shannon’s entropy and
Position specific scoring matrix elements; see Materials and Methods) to
improve the performance of the specific predictors. Points above the
dotted line correspond to cases where use of these properties improves
the performance of a specific predictor. We see that this is essentially
always the case. (B) and (D) correspond to the simpler and to the one
hidden layer neural networks, respectively. (PNG 172 kb)

Additional file 14: Figure S9. The results in this figure are computed
for the subset of amino acid variants resulting from single nucleotide
replacements only. In (A) we compare the performance of PRDIS specific
methods, represented with violin plots with that of the reference
methods (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2), repre-
sented with black boxplots. We see that specific methods are frequently
better than reference methods, but there is an increasing overlap be-
tween both approaches as the performance of the reference method
grows (e.g. in the cases of PON-P2 or PolyPhen-2). (B) Performance de-
pends on the number of reference predictors combined: the more we
use, the more likely we are to obtain higher performances. (PNG 258 kb)

Additional file 15: Figure S10. Comparison between PPV values for
PRDIS specific and reference predictors. The figure shows that
combination of reference methods (specific predictors) gives better PPV
than reference methods alone: for only seven cases the reference
approach outperformed the specific approach. (PNG 68 kb)

Additional file 16: Figure S11. A hybrid predictor. A hybrid method is
implicitly defined if the coincidence rule is used as a pre-classification
step. In this method, the variants for which standard methods agree will
be assigned this coinciding prediction; for PRDIS variants, a prediction will
be obtained from the PRDIS specific method. The final performance of
this hybrid method is obtained by combining that of the two cases.
(PNG 607 kb)

Additional file 17: Table S4. Prediction performance for the hybrid
predictor. We give the raw TP, TN, FP and FN values and the values of
the six standard measures (MCC, accuracy, sensitivity, specificity, PPV and
NPV) described in the Materials and Methods section. (PDF 24 kb)
Abbreviations
MCC: Matthews Correlation Coefficient; PPV and NPV: positive and negative
predictive values.; PRDIS: set of variants for which predictions from known
methods disagree; TN and FP: number of correctly and incorrectly identified
neutral variants; TP and FN: number of correctly and incorrectly identified
pathological variants, respectively
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