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Abstract

Background: In biomedical research, gene expression profiling studies have been extensively conducted. The
analysis of gene expression data has led to a deeper understanding of human genetics as well as practically useful
models. Clustering analysis has been a critical component of gene expression data analysis and can reveal the
(previously unknown) interconnections among genes. With the high dimensionality of gene expression data, many of
the existing clustering methods and results are not as satisfactory. Intuitively, this is caused by “a lack of information”.
In recent profiling studies, a prominent trend is to collect data on gene expressions as well as their regulators (copy
number alteration, microRNA, methylation, etc.) on the same subjects, making it possible to borrow information from
other types of omics measurements in gene expression analysis.

Methods: In this study, an ANCut approach is developed, which is built on the regularized estimation and NCut
techniques. An effective R code that implements this approach is developed.

Results: Simulation shows that the proposed approach outperforms direct competitors. The analysis of TCGA (The
Cancer Genome Atlas) data further demonstrates its satisfactory performance.

Conclusions: We propose a more effective clustering analysis of gene expression data, with the assistance of
information from regulators. It provides a new venue for analyzing gene expression data based on the assisted
analysis strategy.
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Background
In biomedical research, profiling studies have been exten-
sively conducted. Information so collected has led to a
better understanding of human genetics as well as prac-
tically useful models. In genetic research, gene expres-
sion data have been playing an essential role in the
past decades. Compared to DNA and epigenetic changes,
gene expressions are “closer” to phenotypes. With rela-
tively mature techniques, they are also easy to measure
at a genome-wide scale. Extensive methodological studies
have been conducted on how to more effectively analyze
gene expression data.
In the analysis of gene expression data, clustering has

been playing an essential role. In some studies, clustering
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has been used to suggest/identify unknown functions of
genes, with genes in the same cluster likely having related
biological functions [1, 2]. In some other studies, cluster-
ing has been used as a way of reducing dimensionality.
For example, some studies have suggested that conduct-
ing principal component analysis (and other analysis) on
genes within the same clusters to reduce dimensionality is
more sensible than doing that on all genes [3, 4]. In the lit-
erature, a large number of clustering methods have been
developed and applied to gene expression data. Exam-
ples include the K-means, hierarchical clustering, agglom-
erative clustering, graph-based clustering, model-based
sparse clustering, and others. For reviews and comprehen-
sive discussions, we refer to [5, 6]. Although having certain
technical differences, most of these methods share the
common strategy of reducing “distance” within clusters
while maximizing “distance” across clusters.
Despite great successes, it has also been suggested that

clustering analysis of gene expression data still very often
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generates unsatisfactory results [7]. Gene expression stud-
ies usually have a limited sample size but a moderate to
large number of genes. Intuitively, there is a lack of “suf-
ficient information”. Multiple strategies have been devel-
oped to increase information. One strategy is to increase
sample size via pooled analysis [8], which demands addi-
tional samples. There are also studies that use additional,
especially biological, information [9]. In this study, we
develop a different strategy which takes advantage of
additional omics measurements on the same samples.
Gene expression levels are regulated by multiple mech-
anisms, including copy number alteration, microRNA,
methylation, and others. Intuitively, such regulators con-
tain additional information on gene expressions. In recent
biomedical research, a prominent trend is to conduct
“multidimensional” profiling and collect data on gene
expressions as well as their regulators on the same sam-
ples, making it possible to “borrow information” from
other types of omics measurements for gene expression
data analysis.
In this study, our goal is to conduct more effective

clustering analysis of gene expression data. With the assis-
tance of information from regulators. A novel clustering
approach is developed to achieve this goal. The basic strat-
egy is similar to that of minimizing distance within clus-
ters and maximizing distance between clusters, and so the
proposed approach has a solid statistical ground. Advanc-
ing from the existing methods, information of regulators
is utilized in clustering gene expression data. More accu-
rate clustering can be achieved by usingmore information.
This is especially desirable with the decreasing cost of
profiling but increasing cost of sample collection. This
study differs from most of the existing ones that conduct
the integrated analysis of multidimensional omics data.
Studies such as [10, 11] aim at building more accurate
disease outcome models by integrating gene expression
and regulator data. Studies such as [12] aim at identi-
fying “hot spots” of the chromosome that host multiple
types of omics changes. In contrast, our goal is to con-
duct clustering, which is a more fundamental goal of gene
expression data analysis. This study is warranted with an
important analysis goal and an innovative and effective
new method.
In what follows, we first describe the data structure. For

the simplicity of notation, we use copy number alteration
(CNA) as a representative of gene expression (GE) regu-
lators. The proposed method will be directly applicable to
other types of regulators. We then describe the proposed
method, computational algorithm, and software develop-
ment. Simulation and the analysis of TCGA (The Cancer
Genome Atlas) data are conducted to gauge performance
of the proposed approach relative to the alternatives. It is
noted that although developed for GE data, the proposed
approach can have broader applications.

Methods
Consider a dataset with n iid samples. For the ith sam-
ple, assume that measurements are available on p GEs,
denoted as Yi = (Yi1,Yi2, · · · ,Yip)′. In addition, assume
that measurements are also available on q CNAs, denoted
as Xi = (Xi1,Xi2, · · · ,Xiq)′. For another type of regula-
tor (for example, microRNA), the proposed approach is
directly applicable. If there are two or more types of reg-
ulators, following [13], we can stack them together and
create a “mega” vector of regulators. Our strategy is to
use information in Xi’s to assist the clustering of Yi’s.
In the next subsection, we first describe our strategy for
modeling the regulation between GEs and regulators. The
assisted clustering method will then be developed.

Modeling the GE-CNA regulation
Following the literature [14, 15], we describe the GE-CNA
regulation using regression. Specifically, consider

Yi = βXi + εi,

where β is the matrix of unknown regression coefficients,
and εi is the vector of “random errors”. In the literature,
there are multiple ways of modeling the GE-CNA regula-
tion. The regression approach has been adopted in quite
a few recent studies and shown to have advantages over
many alternatives for example the correlation-based. It is
especially suitable for analysis with a large number of GEs
and CNAs.
The regulation relationship is reflected in β , with

a nonzero component corresponding to a regulation
between a GE and a CNA and the magnitude describing
the strength of regulation. For estimating β , we consider
the penalized estimate

β̂ = argmin
β

{||Y − βX||22 + λ
(
(1 − α)||β||22 + α||β||1

)}
,

(1)

where Y and X are matrices consisting of Yi’s and Xi’s,
and λ > 0 and 0 ≤ α ≤ 1 are data-dependent tun-
ing parameters. The penalization approach is adopted to
accommodate the high data dimensionality and for selec-
tion: for a specific gene, its expression level is expected to
be affected by only a few CNAs, and a CNA is expected to
affect the expression levels of only a few GEs, which poses
a variable selection problem. The elastic net (Enet) penalty
is adopted for its simplicity and to accommodate (possibly
high) correlations among CNAs [16]. Similar estimation
approaches have been adopted in the literature [17]. In
data analysis, this estimation is effectively realized using
the R package glmnet. The two tuning parameters λ and
α are selected using V-fold cross validation (V=5 in our
numerical study).
With the estimate β̂ , denote the “predicted” GE values as

Ŷ = β̂X, which describe the component of GEs regulated
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by the regulators. Accordingly, Y c = Y \ Ŷ contains the
levels of GEs regulated by other regulators (that are not
included in X), affected by other mechanisms, as well as
“random variations”. This decomposition strategy for GEs
has been recently developed in the literature [18] under
other contexts and shown to provide important additional
insights into GEs (beyond treating GEs as a whole). More
discussions are also provided in the next section.

Assisted clustering
For GEs, consider the weight matrix W = (wjl)p×p,
where the non-negative element wjl measures the similar-
ity between genes j and l. For a pair of the original GE
measurements (as included in Y ), we define wjl equal to
the inverse of their Euclidean distance. Note that there are
multiple ways of defining the similarity. This definition is
adopted because of its simplicity. It shares a similar spirit
with the popular K-means approach. Further, we define
Ŵ , which is obtained in a similar way as W but using Ŷ ,
the regulated component of GEs.
Denote A1, . . . ,AK as a partition of {1, . . . , p} which

leads to K disjoint clusters. For Ak , denote Ac
k as its

complement. We propose the ANCut (Assisted NCut)
measure as

ANCut(A1, . . . ,AK ) =
K∑

k=1

cut
(
Ak ,Ac

k ;W
)

cutvol
(
Ak ; Ŵ

) , (2)

where

cut
(
Ak ,Ac

k ;W
) =

∑

j∈Ak ,l∈Ac
k

wjl, (3)

and

cutvol
(
Ak ; Ŵ

) =
∑

j,l∈Ak

ŵjl. (4)

With a fixed K, the optimal clustering minimizes the
ANCut measure.
Rationale The proposed approach has been moti-

vated by the following considerations. It is built on the
NCut technique, which is originally developed in imaging
and other scientific fields [19] and more recently applied
to genetic and other data types [20, 21]. The NCut
technique may have multiple advantages over the alter-
natives. Specifically, the “cutting” step is relatively inde-
pendent of the similarity/distance construction. Without
making restrictive assumptions on the similarity measure
and underlying data distributions and models, it enjoys
very broad applicability. In addition, both the numera-
tor and denominator have lucid interpretations, with the
numerator measuring the across-cluster similarity and
the denominator measuring the within-cluster similarity.
More discussions on the NCut technique are provided in
Additional file 1.

The most significant advancement from the existing
approaches is that the numerator and denominator in (2)
are defined using two different sets of similarity measures.
The levels of GEs can be affected bymultiple mechanisms.
(a) One is regulating by the regulators measured in X. (b)
Many (or most) existing studies are not “exhaustive” and
do notmeasure all regulators. Thus, possibly there are reg-
ulators not included in X. (c) There are mechanisms other
than regulation that may also affect GE levels. For exam-
ple, the expression level of a gene can be affected by other
genes, for example through RNA interference (which is
also known as co-suppression or post-transcriptional gene
silencing). Also, one gene can code for a transcription fac-
tor, and it can bind to the promoter region of another gene,
which consequently affects its expression level. Following
the literature [13, 18], in our analysis, we decompose GE
levels into two components: the first is (a), and the second
is (b)+(c).
Published studies [22, 23] under other contexts have

shown that jointly considering the two components of GEs
can lead to more sensible analysis results than consid-
ering them as a whole. Motivated by such observations,
our strategy is to minimize the NCut measures for both
components of GEs. Since the overall GE levels are equal
to the sum of the two components, loosely speaking,
using W (which measures the sum) and Ŵ is equivalent
to using the two individual components. Our numeri-
cal analysis also confirms this intuition (results omitted).
With this strategy, a seemingly more “straightforward”

and “symmetric” objective function is
K∑

k=1

cut
(
Ak ,Ac

k ;W
)

cutvol
(
Ak ;Ŵ

) +
K∑

k=1

cut
(
Ak ,Ac

k ;Ŵ
)

cutvol(Ak ;W )
. Our exploration suggests that this objec-

tive function is computationally more expensive but leads
to similar results as the one in (2).
A toy exampleTo demonstrate the operating character-

istics of the proposed method, we consider a toy example
with 10 GEs and 10 CNAs. Data generation is the same
as described in detail in the next section, except with a
lower dimensionality. The true data structure is shown in
the left panel of Fig. 1. There are a total of two equal-sized
GE clusters, represented by different colors. The degree of
similarity between two GEs (and CNAs) is represented by
the thickness of lines. For the simulated dataset presented
in Fig. 1, the proposed analysis is able to fully recover
the true data structure with the penalized estimation and
the true clustering structure with the ANCut approach.
As an alternative, we also consider the popular K-means
approach. We observe that the K-means approach com-
pletely fails for this dataset. It identifies two clusters one
with nine GEs and the other with one GE. We have also
experimented with some other alternatives and observe
similar failing performance.
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Fig. 1 Toy example. A toy example with two clusters represented using different colors. Circles and squares represent GEs and CNAs, respectively.
The thickness of lines represents the degree of similarity. Left: true structure as well as that recovered by the proposed approach. Right: K-means

Computation
For optimizing the objective function defined in (2), we
adopt the simulated annealing (SA) technique [24]. Use
t as the index of iteration. At iteration t, denote A(t) ={
A(t)
1 , . . . ,A(t)

K

}
as the partition (clustering result) and

ANCut(t) as the value of the objective function. Fur-
ther denote B as the maximum number of iterations. The
value of B is not important, as long as it is large enough.
Define the temperature function as T(t) = Llog(t + 1).
In our numerical study, we set L = 1000, which gener-
ates satisfactory results. In practice, to be prudent, other
L values may also need to be examined. Extensive discus-
sions on tuning parameter selectionwith the SA technique
are available in the literature. The proposed algorithm
proceeds as follows.
Step 1 Randomly initialize A(0) =

{
A(0)
1 , . . . ,A(0)

K

}
. In

our numerical study, different initial values lead to almost
identical results.
Step 2 Set t = t + 1. For k = 1, . . . ,K , compute pi as

the number of (j, l) pairs with j, l ∈ A(t−1)
k . Draw k(−) and

k(+) from {1, . . . ,K} with probabilities proportional and
inversely proportional to pi, respectively.
Step 3 Draw i randomly from A(t)

k(−)
. Set A(t)

k(+)
=

A(t−1)
k(+)

∪ {i} and A(t)
k(−)

= A(t−1)
k(−)

\ {i}. For j �= k(+), k(−),
A(t)
j := A(t−1)

j .
Step 4 If ANCut(t) ≤ ANCut(t − 1), keep A(t)

as it is. If not, keep A(t) as it is with probability

exp
(

− ANCut(t)−ANCut(t−1)
T(t)

)
, and otherwise A(t) =

A(t−1).
Step 5 Repeat Steps 2-4 until t = B.
Extensive research on the SA technique is available in

the literature [24]. In Step 2, the proposed probabili-
ties prefer adding a new member to a small cluster and

deleting a member from a large cluster. Thus, the “prior”
is that clusters have similar sizes. Note that this strategy
may be somewhat subjective and can be adjusted accord-
ing to the specific scientific context. Convergence of the
SA algorithm to the global optimizer has been established
in the literature [24]. It is achieved in all of our numerical
examples.
The proposed analysis, which consists of penalized esti-

mation and ANCut, is computationally affordable. The
two steps have computational complexity O(npq) and
O(Bp), respectively. For a simulated dataset with p = q =
200 and n = 50, we consider 100 tuning parameter val-
ues in penalized estimation and B = 10, 000 in ANCut.
The proposed analysis takes about 30 s on a laptop with
standard configurations.
Software To facilitate data analysis, we develop

an R package NCutYX and make it publicly avail-
able at https://github.com/shuanggema. If the R
library devtools is installed, then the NCutYX
package can be easily installed using dev-
tools::install_github(“shuanggema/NCutYX”). The
proposed approach is implemented using the function
ANCut, which proceeds as follows: clust←ANCut(Y, X,
K = 2, B = 3000, L = 1000, alpha = 0.5, nlambdas = 100,
ncv = 5, dist = “euclidean”) In the above command, Y is
the data matrix of GEs, X is the data matrix of regulators,
K is the number of clusters, B is the number of SA itera-
tions, L is the temperature coefficient, alpha is α in the
Enet penalty (note that in this sample command, we fix α

as its default value. It is easy to data-dependently select
α), nlambdas is the number of λ values in Enet, ncv is the
number of cross-validations, and dist specifies that the
Euclidean distance is used in defining the dissimilarity.
The resulting object clust is a list where the first entry
(clust[[1]]) is a vector of SA sequence, the second entry
(clust[[2]]) includes the clustering results, and the third
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entry (clust[[3]]) contains the optimal λ value. Written
in a friendly way, the package can be easily adopted and
modified.

Results
Simulation
Use the same notations as in the last section. In sim-
ulation, GEs and CNAs are linked with the regression
model Y = βX + ε. Each element of the matrix ε,
denoted by εi,j, is iid from a normal distribution with
mean=0 and sd=2. For each subject, the CNA values are
generated from a multivariate normal distribution with
marginal means 0 and variance-covariance matrix �. �

has a block-diagonal structure with two blocks, each of
which has size q/2. In each block, the diagonal elements
are equal to 1, and all off-diagonal elements are equal to
ρ. In TCGA (which is analyzed in the next section) and
other datasets, it has been observed that the processed
CNA data have unimodal distributions close to normal
(although the raw data may have different distributional
characteristics). Two equal-sized CNA clusters are gen-
erated, with those in the same cluster correlated and dif-
ferent clusters uncorrelated. For the regression coefficient
matrix, consider

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

β11 β12 · · · β1 q/2 0 0 · · · 0
β21 β22 · · · β2 q/2 0 0 · · · 0
...

. . .
...

...
...

...
...

βp/2 1 βp/2 q/2 · · · βp/2 q/2 0 0 · · · 0
0 0 · · · 0 βp/2+1 q/2+1 βp/2+1 q/2+2 · · · βp/2+1 q

0 0 · · · 0 βp/2+2 q/2+1 βp/2+2 q/2+2 · · · βp/2+2 q

...
. . .

...
...

...
...

...
0 0 · · · 0 βp q/2+1 βp q/2+2 · · · βp q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

For each column, with the sparsity consideration, we set
q0 coefficients to be nonzero and the rest zero. We con-
sider two sparsity levels with q0= 3 and 6. Two different
coefficient settings are considered. The first (C1) has the
nonzero coefficients randomly generated from Uniform
[ h/2, h], where the parameter h determines the strength of
regulation. The second (C2) has the nonzero coefficients
randomly generated from Uniform [−0.15, 0.25], which
describes the scenario where CNAs have both positive and
negative regulations on GEs and the amount of positive
and negative regulation is not equal. Under this data gen-
erating structure, there are two clusters of CNAs/GEs, and
GEs in the first (second) cluster are regulated by CNAs in
the first (second) cluster. Beyond sparsity, this setting also
describes the “localization” of regulations.
Under this simulation setting, the component of GE

that is regulated by regulators, i.e., effect “(a)” in the
“Assisted clustering” section, is βX. For the other compo-
nent of GE, i.e., effects “(b)+(c)”, is randomly generated.
There are at least two considerations for this. First, unlike

for the regulators’ effects, research on the second com-
ponent of GE is still much limited. It is not entirely clear
how to simulate effects “(b)+(c)”. More importantly, this
setting favors the alternative approaches (to be described
below). If the proposed approach has competitive perfor-
mance under this unfavorable setting, it is reasonable to
expect better results under favorable settings.
When evaluating performance of the proposed

approach, we consider both accuracy and stability.
With a set of clusters {A1, . . . ,AK }, an adjacency matrix
A = (ajl)p×p can be constructed, where the (j, l)th ele-
ment ajl = 1 if j, l ∈ Ak , k = 1, · · · ,K and 0 otherwise. Let
AT and Â be the adjacency matrices of the true and esti-
mated clusters, respectively. Then the accuracy measure
is defined as the diversity between AT and Â,

Maccuracy =
∑

j,l
(AT � Â)jl/p2, (5)

where � is the component-wise product. With N repli-
cates, denote Â(1), . . . , Â(N) as the adjacency matrices as
constructed above. We define the stability measure as

Mstability =
(
N
2

)−1 ∑

1≤N1<N2≤N

∑

j,l
|Â(N1)−Â(N2)|jl/p2

(6)

This definition shares a similar spirit with the U-statistic
stability measure [25]. For Maccuracy, a smaller value sug-
gests a higher accuracy; For Mstability, a smaller value
suggests more stable results.

A closer look at the proposed approach
Consider the setting with coefficient C1, with p = 100,
and q = p/2. In addition, set ρ = 0.10 and h = 0.10.
We first simulate one replicate and present the heatmaps
for the observed and predicted GE levels in Fig. 2. It
is observed that the heatmap using the predictive GEs
shows a clearer clustering structure. This provides an
intuitive justification for the proposed strategy of using
CNA information.
Consider the true clustering structure (A1,A2). Fur-

ther consider NCut(A1,A2) =
2∑

k=1

cut
(
Ak ,Ac

k ;W
)

cutvol(Ak ;W )
, which

is the objective function defined in (2) using the
observed GEs for both numerator and denominator, and
ANCut(A1,A2). With 100 simulated replicates, the mean
values are

Ncut(A1,A2) = 1.67 and ANcut(A1,A2) = 1.46.
(7)

This suggests that the proposed assisted analysis can
more strongly define the clustering structure.
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Fig. 2 Heatmap of simulated GEs. Heatmaps of GEs for one simulated replicate. Left: using the observed GE values. Right: using the predicted GE
values, where the two-cluster structure is more clearly seen

We further examine the potential gain by using informa-
tion of CNAs for clustering GEs. Specifically, beyond the
proposed ANCut, we also consider the popular K-means
approach. As the simulated GEs have normal distribu-
tions, K-means is favored. In addition, we also consider
the approach ANCutT , which is the proposed ANCut but
with β in the place of β̂ . Under this approach, we have
perfect information on the GE-CNA regulation. As shown
in Table 1, multiple scenarios on n, p, and h are consid-
ered. With 100 replicates, we compute the mean accuracy
measure Maccuracy. It is observed that if the regulation
is perfectly known, then using ANCut leads to perfect
identification of clusters. If the regulation needs to be esti-
mated, using the proposedANCut leads to accuracy better
than or similar to that of K-means. This further justifies
the value of using regulator information.

Comparisonwith the alternativemethods
To better gauge performance of the proposed method,
we compare with competing alternatives including K-
means and spectral clustering (Spec.) [26]. These two
alternatives are considered because of their popularity
and satisfactory performance observed in published stud-
ies [27–29]. We also consider NCut to better appreciate
the merit of assisted analysis. We comprehensively con-
sider multiple combinations of n, p, q, q0, h, and ρ values

for coefficient setting C1. We also examine multiple sce-
narios under coefficient setting C2 with various n, p, q, q0,
and ρ = 0.40. There are a total of 80 simulation settings.
Under each setting, we simulate 100 replicates. Sum-
mary statistics are presented in Tables 2, 3, 4, 5, and 6.
Performance of the proposed approach depends on the
strength of GE-CNA regulation, correlation of CNAs,
data dimensionality, sample size, and others, in a similar
way as observed for other clustering methods. Across the
whole range of simulation settings, the proposed method
is observed to have competitive performance, with supe-
rior accuracy and stability. For example, in Table 2 with
n = 200, p = 500, q = 500, and q0 = 6, the pro-
posed method has Maccuracy equal to 28.4%, compared to
42.4% (NCut), 41.8% (K-means), and 37.4% (Spec.). It also
has satisfactory performance in terms of stability. Under
this specific setting, the Mstability values are 17.6% (pro-
posed), 40.6% (NCut), 42.2% (K-means) and 34.5% (Spec.).
It is observed that performance of the proposed method
decays with the increase of dimensionality and correla-
tion among CNAs. This observation is reasonable as the
proposed method involves estimating the regulation rela-
tionship. The matrix β has a total of q × p parameters,
which can be very difficult to estimate with a moder-
ate sample size. This estimation gets challenged with an
increase in data dimensionality and correlation. When

Table 1 Simulation: meanMaccuracy measures over 100 replicates

n p h ANCutT ANCut K-means n p h ANCutT ANCut K-means

100 100 0.10 0% 17% 27.8% 100 100 0.20 0% 3.6% 2.5%
100 150 0.10 0% 6.5% 7.2% 100 150 0.20 0% 0.2% 0.1%
100 200 0.10 0% 1.9% 1.6% 100 200 0.20 0% 0.05% 0.01%

150 100 0.10 0% 11.5% 20.9% 150 100 0.20 0% 1.3% 1.1%
150 150 0.10 0% 3% 3.2% 150 150 0.20 0% 0.02% 0.02%
150 200 0.10 0% 0.4% 0.4% 150 200 0.20 0% 0.01% 0%

200 100 0.10 0% 8.3% 14.3% 200 100 0.20 0% 0.06% 0.08%
200 150 0.10 0% 1.6% 1.8% 200 150 0.20 0% 0.01% 0.01%
200 200 0.10 0% 0.02% 0.02% 200 200 0.20 0% 0% 0%
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Table 2 Simulation under coefficient setting C1 with h = 0.15 and ρ = 0.20: mean values based on 100 replicates

Parameters Maccuracy Mstability

n p q q0 ANCut NCut K-means Spec. ANCut NCut K-means Spec.

200 500 250 3 44.8% 49.8% 49.8% 49.7% 48% 48.3% 49.5% 42.5%
200 500 250 6 27.7% 41.8% 41.9% 36.8% 46.2% 47.1% 49.3% 33.8%
200 500 500 3 45% 49.7% 49.8% 49.7% 28.4% 44.3% 47.7% 42.8%
200 500 500 6 28.4% 42.4% 41.8% 37.4% 17.6% 40.6% 42.2% 34.5%

400 500 250 3 38.2% 49.5% 49.7% 49.5% 47.7% 45.2% 49.6% 43.5%
400 500 250 6 16.8% 25% 25.5% 23.9% 41.6% 40.7% 49% 24%
400 500 500 3 38.4% 40.4% 49.7% 49.5% 25.3% 30.1% 48.1% 43.3%
400 500 500 6 16.8% 23.7% 25.2% 24.5% 12.4% 25.7% 24.4% 24.3%

200 800 400 3 45.2% 49.8% 49.8% 49.7% 48.4% 46% 49.8% 43.3%
200 800 400 6 18.2% 33.3% 20.4% 33.9% 42.9% 33.7% 47.3% 30.1%
200 800 800 3 45.4% 49.7% 49.8% 49.7% 32.8% 48.2% 48.1% 42.4%
200 800 800 6 29.3% 36.5% 34.2% 33.7% 22.8% 36.6% 29.6% 30%

400 800 400 3 39.6% 49.7% 49.6% 48.8% 47.8% 48.1% 49.7% 44.1%
400 800 400 6 29.4% 22.6% 34.1% 20.3% 46.7% 23.1% 49.2% 20.3%
400 800 800 3 39.5% 49.8% 49.4% 48.7% 28.8% 48.9% 48.4% 44.2%
400 800 800 6 27.9% 22.6% 34.2% 21.1% 19.7% 19.4% 24.5% 18.3%

CNAs have both positive and negative regulation effects
on GEs, of which the results are provided in Table 6, the
proposed method also performs better than the alterna-
tives. For example, with n = 400, p = 500, q = 250, and
q0 = 6, the proposedmethod hasMaccuracy equal to 33.6%,
compared to 34.5% (NCut), 39.4% (K-means) and 40.4%
(Spec.). It also has satisfactory performance in terms of
stability. Under this specific setting, the Mstability values
are 15.2% (proposed), 19.3% (NCut), 17.3% (K-means) and
16.2% (Spec.).

When data are available on both GEs and regulators,
studies under other contexts [11, 30] have directly con-
ducted their joint analysis and observed improvement
(over analyzing GE only). Here we also briefly experi-
ment with such an approach. Specifically, in Table 3, we
also consider an approach that we call augmented K-
means (Aug-K). This approach is based on the K-means
and includes both GEs and CNAs in the clustering algo-
rithm. Specifically, K-means is adopted to analyze the
stacked data (Y ,X). To compare with other approaches,

Table 3 Simulation under coefficient setting C1 with h = 0.15 and ρ = 0.40: mean values based on 100 replicates

Parameters Maccuracy Mstability

n p q q0 ANCut NCut K-means Spec. Aug-K ANCut NCut K-means Spec. Aug-K

200 500 250 3 40.6% 49.1% 49.3% 48.3% 99.7% 47.6% 48.1% 49.5% 41.7% 1%
200 500 250 6 17.4% 20.8% 20.9% 20.6% 46.1% 42.3% 36.1% 47.4% 20.7% 21.6%
200 500 500 3 40.7% 49.6% 49.1% 48.5% 99.5% 29.4% 48.3% 47.2% 42.6% 1%
200 500 500 6 17.2% 20.3% 20.3% 20.6% 58.3% 12.5% 14.8% 15.8% 20.6% 22.3%

400 500 250 3 30% 48.1% 47.5% 43.1% 99.9% 46.7% 47.8% 49.6% 40.2% 0.1%
400 500 250 6 7.4% 19.6% 9% 9% 24.9% 33.6% 34.7% 39.4% 11.5% 20.8%
400 500 500 3 30.8% 48.5% 47.7% 43.6% 99.9% 20.9% 37.5% 47.4% 39.9% 0.5%
400 500 500 6 7.6% 9% 9.4% 9.4% 30.7% 6.9% 6.7% 7.7% 11.8% 23%

200 800 400 3 41% 49.7% 48.2% 45.8% 99.7% 47.9% 49.5% 49.5% 41.2% 0.4%
200 800 400 6 18.5% 20.9% 18.8% 18.7% 52% 43.2% 22.5% 44.7% 18.6% 20.7%
200 800 800 3 41.4% 49.3% 48.4% 45.8% 99.6% 32.6% 46.8% 47.1% 40.5% 1%
200 800 800 6 18.6% 18.4% 19% 18.6% 62% 13.4% 11.9% 16.4% 18.8% 20%

400 800 400 3 31.5% 49.7% 42% 37.1% 99.9% 47% 46.8% 49.6% 33.9% 0.1%
400 800 400 6 9.4% 6.9% 7.9% 8% 27.4% 35.2% 14.5% 35.6% 10.3% 18.7%
400 800 800 3 32.5% 49.4% 43% 39.1% 99.9% 11.7% 43.6% 7.7% 10.2% 0.1%
400 800 800 6 9.3% 7.6% 8% 8.2% 31.3% 10.9% 4.1% 6.6% 10.2% 9.1%
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Table 4 Simulation under coefficient setting C1 with h = 0.25 and ρ = 0.20: mean values based on 100 replicates

Parameters Maccuracy Mstability

n p q q0 ANCut NCut K-Means Spec. ANCut NCut K-Means Spec.

200 500 250 3 34% 47.5% 47.6% 45.1% 47.2% 45.4% 49.5% 40.3%
200 500 250 6 11.8% 13% 13.7% 13.6% 39.1% 14.1% 43% 15.6%
200 500 500 3 33.9% 47.5% 47.6% 44.9% 21.2% 38.5% 46.5% 39.9%
200 500 500 6 12.3% 14.2% 14.2% 14% 9.9% 11.8% 10.6% 15.2%

400 500 250 3 24% 38.5% 40.5% 34.6% 44.5% 37.4% 49.6% 32.3%
400 500 250 6 4.4% 4.6% 4.8% 4.8% 28% 15.3% 31.3% 7.1%
400 500 500 3 23.8% 37.8% 40.6% 34.7% 15.4% 30.3% 40.9% 32.3%
400 500 500 6 4.4% 4.7% 5% 5.1% 4.6% 12.1% 4.5% 7.3%

200 800 400 3 35% 45.7% 43.8% 39.6% 47.4% 43.4% 49.5% 34.8%
200 800 400 6 14.2% 12.9% 12.8% 12.8% 40.3% 43.1% 39.9% 14.5%
200 800 800 3 35.3% 45.6% 44.2% 40.3% 27% 43.1% 42.9% 35.3%
200 800 800 6 14.4% 13.8% 13.1% 12.8% 15% 12% 9.7% 14.3%

400 800 400 3 25.3% 44.4% 30.8% 29.3% 45.4% 43.1% 49.3% 26.1%
400 800 400 6 6.6% 3.6% 4.6% 4.3% 30.7% 14.9% 29.8% 6.5%
400 800 800 3 25.3% 32.1% 30.9% 29.4% 19.6% 21.1% 25.5% 26.2%
400 800 800 6 6.5% 3.9% 4.4% 4.6% 8.6% 8.4% 3.9% 6.5%

only the cluster memberships of GEs are tracked in the
final results. Simulation results in Table 3 suggests that,
unlike in regression analysis [17], directly integrating GEs
and regulators fails in clustering analysis. Specifically, it
tends to cluster different data types together, as opposed
to clustering connected GEs and CNAs together. It is
noted that this approach seems very stable. This is also
reasonable. It tends to cluster all GEs in one big cluster.
Thus, even though the results are wrong, they are very
stable.

Remarks
Beyond those described above, we have also experimented
with a few other settings and observed similar satis-
factory performance of the proposed approach. In the
above simulation, we have set K = 2. We have exam-
ined similar simulation settings with K = 3, . . . , 10
and made similar observations. We have compared with
the most popular alternatives, whose stable and sat-
isfactory performance has been well observed in the
literature. It is of interest to conduct more extensive

Table 5 Simulation under setting coefficient C1 with h = 0.25 and ρ = 0.40: mean values based on 100 replicates

Parameters Maccuracy Mstability

n p q q0 ANCut NCut K-means Spec. ANCut NCut K-means Spec.

200 500 250 3 24.8% 29.8% 32% 29.5% 45.1% 44.8% 49% 26.7%
200 500 250 6 4.5% 4.6% 5% 4.6% 29.6% 21.3% 30.1% 6.5%
200 500 500 3 25.6% 28.3% 31.8% 29.8% 15.9% 17.7% 27.5% 26.7%
200 500 500 6 4.4% 4.5% 5% 4.7% 4.2% 6.8% 4.8% 6.6%

400 500 250 3 14.3% 16.5% 18.3% 17.3% 38.9% 43.5% 46.5% 17.4%
400 500 250 6 1% 1.1% 1.1% 1.1% 16% 11.5% 16.8% 1.9%
400 500 500 3 14.9% 20.4% 18.7% 17.7% 10.6% 23.1% 14.2% 17.8%
400 500 500 6 1% 1.3% 1.3% 1% 1.1% 1.3% 1.8% 1.9%

200 800 400 3 25.8% 28.2% 27.1% 26.5% 45.7% 43.4% 47.8% 23.7%
200 800 400 6 7.3% 4.9% 4.3% 4% 30.6% 16.7% 28.9% 6.1%
200 800 800 3 26.2% 26.5% 27.7% 26.8% 20.3% 23% 19.6% 23.7%
200 800 800 6 7.1% 4.4% 4% 3.9% 25.4% 10.6% 20.1% 5.1%

400 800 400 3 16.1% 16.4% 15.9% 15.7% 40.5% 31.5% 42.6% 16%
400 800 400 6 4.6% 1.2% 1% 0.9% 19% 5% 15.4% 1.7%
400 800 800 3 16.2% 17.4% 15.9% 16% 14.7% 14.1% 11.2% 15.8%
400 800 800 6 3.6% 1% 0.9% 1% 5.8% 5.4% 0.9% 1.7%
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Table 6 Simulation under coefficient setting C2 with ρ = 0.40: mean values based on 100 replicates

Parameters Maccuracy Mstability

n p q q0 ANCut NCut K-means Spec. ANCut NCut K-means Spec.

200 500 250 3 49.9% 49.9% 50% 49.9% 31.2% 32.6% 47.9% 33.7%
200 500 250 6 41.6% 42.4% 48.5% 46.2% 24.1% 27.1% 46.3% 37.9%
200 500 500 3 49.2% 49.5% 50% 50% 31.2% 32.1% 47.9% 33.7%
200 500 500 6 41.9% 43.9% 48.7% 44.1% 24.3% 20.1% 46.6% 17.9%

400 500 250 3 46.3% 47.6% 49.9% 48.8% 28.9% 30.1% 47.9% 41.6%
400 500 250 6 33.6% 34.5% 39.4% 40.4% 15.2% 19.3% 17.9% 16.2%
400 500 500 3 46.2% 48% 49.8% 47.1% 28.3% 31.3% 47.9% 31.4%
400 500 500 6 34.2% 34% 35.3% 33.9% 16.5% 17.4% 19.6% 14.1%

200 800 400 3 48.6% 49.3% 49.9% 49.3% 32.8% 35.1% 47.6% 45.9%
200 800 400 6 42.3% 43.3% 46.3% 44.3% 29.3% 30.1% 41.8% 33.8%
200 800 800 3 48.6% 49% 49.9% 48.1% 32.5% 36.7% 47.9% 29.4%
200 800 800 6 42.1% 39.3% 46.5% 43.9% 29.4% 24.1% 42.8% 26.5%

400 800 400 3 46.5% 48.3% 49.8% 47.4% 33.3% 45.2% 48.5% 47.5%
400 800 400 6 37.5% 34.4% 40.2% 37.2% 23.6% 22.1% 27.9% 20.7%
400 800 800 3 46.9% 48.5% 49.7% 48.1% 31% 30% 48.1% 31.5%
400 800 800 6 37.7% 36.1% 40% 36.2% 24.4% 23.6% 27.2% 29.1%

comparisons with other (less popular) approaches in
future studies.

Data analysis
TCGA (https://tcga-data.nci.nih.gov/docs/publications/
tcga/?) is one of the most recent multidimensional studies
and has collected multiple types of omics measurements
on the same subjects for multiple cancer types. The data
have been recently collected and published and have a
high quality. We analyze data on cutaneous melanoma
(SKCM), which poses a serious public health concern. In
this study, we analyze the processed level 3 data, which
are downloaded from TCGA Provisional using the R
package CGDS. We focus on metastatic samples of the
Whites. Detailed information on data collection and pro-
cessing is available on the TCGA website and elsewhere.
Briefly, GE data were collected using the IlluminaHiseq
RNAseq V2 platform and have been lowess-normalized,
log-transformed, and median-centered. The robust Z-
scores represent the gene expression status (up or down
regulated) in tumor samples relative to normal tissues.
A total of 19,626 measurements are available on 371
samples. CNA measurements were obtained using the
Affymetrix Genome-wide Human SNP array 6.0 platform.
The loss and gain levels of copy number changes of tumors
compared to normal tissues are identified using segmen-
tation analysis and expressed in the log2 transformed
form. A total of 21,699 measurements are available on 366
samples. GE and CNA data are merged using sample ID,
resulting in a total of 366 samples. There are a few miss-
ing measurements, which are filled in using imputation.
Performance of the proposed approach (and alternatives)

decays when the ratio of the number of unknown param-
eters and sample size increases. We first conduct a simple
prescreening via marginal analysis based on overall sur-
vival (an important clinical outcome) and select the top
1000 most significant genes. We then use GOTerm Finder
[31, 32] and search for the GO (Gene Ontology) biologi-
cal processes. 382 out of the 1000 genes have well defined
GO terms and are selected for downstream analysis.
Unlike in simulation, the number of clusters is

unknown. Determining the optimal number of clusters is
a challenging problem. In our data analysis, we adopt the
GAP approach [33], which has been coupled with mul-
tiple clustering methods and extensively adopted in data
analysis. With the GAP approach, K = 4 clusters are
constructed with the 382 GEs. For K-means, for compa-
rability, we also set K = 4. The spectral clustering is not
considered because of its inferior performance in simula-
tion. With ANCut, the cluster sizes are 110, 105, 97, and
70, respectively. With K-means, the cluster sizes are 27,
350, 1, and 4, respectively. The K-means results are less
desirable with the dominating majority of genes in a single
cluster. The other alternatives also have similar unsatisfac-
tory results. Detailed clustering results are available from
the authors.
The 382 genes have a total of 104 GO biological pro-

cesses. More closely examining these processes suggests
that the majority are related to “regulation”. We further
separate the 104 processes into four categories: positive
regulation, negative regulation, regulation (without a well
defined “direction”), and other. In Fig. 3, we compute the
proportions of genes in the four clusters that have the four
categories of processes. For ANCut, differences across the

https://tcga-data.nci.nih.gov/docs/publications/tcga/?
https://tcga-data.nci.nih.gov/docs/publications/tcga/?
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four clusters are clearly seen. For example, cluster 4 has
a higher percentage of “regulation”, whereas cluster 1 has
a higher percentage of “other”. With the highly unbal-
anced clustering, the K-means results, also presented in
Fig. 3, are less interesting. For all of the 104 processes, we
present their distributions in the four clusters in Fig. 4.
Each bar represents one process, and different colors in
the bar denote different proportions of genes in the clus-
ters. Due to space limitation, the processes’ names are
not shown. In general, the distributions of processes are
quite different across clusters, which suggests the effec-
tiveness of the proposed clustering. We further examine
the tenmost representative processes in detail. The results
are presented in Fig. 5. It is shown that, for example,
cluster 4 has a much higher percentage of “immune sys-
tem process” than the other three clusters, while cluster 3
has a higher percentage of “localization in cell” than the
others. Further examining the genes suggests that those
annotated to the same processes are highly likely to be
clustered together. For example, 90%, 88%, and 88% of the
genes annotated to the processes “response to type I inter-
feron”, “type I interferon signaling pathway”, and “cellular
response to type I interferon” belong to cluster 4. With K-
means, as the majority of genes are in a single cluster, such
analysis is not conducted. The sensible biological findings
provide support to the validity of the proposed cluster-
ing. Another finding from data analysis is that the results
(distributions of biological processes) do depend on the
number of clusters. The results with K = 3 are presented
in Figure A1 (Additional file 1). This finding is reasonable
and has also been observed with other clustering methods
in the literature.

Discussion
Clustering is an important step of gene expression data
analysis. Beyond having independent value, it has also
served as the foundation ofmany other analyses. Although
a large number of methods have been developed in the
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Fig. 4 All GO processes. Analysis of TCGA data using ANCut:
proportions of genes with a certain GO process in the four clusters

literature, since the practical results are often unsatis-
factory, there is still a great demand for more effective
methods. In the analysis of genetic data, a major problem
is the “lack of information”. To tackle this problem, we have
proposed conducting assisted analysis by borrowing infor-
mation from the regulators of GEs. The proposed method
is built on the NCut technique, which hasmultiple notable
advantages but still limited applications in genetic data
analysis. The proposed ANCut has been partly motivated
by the recent “decomposing gene expressions” strategy
and is the first to do so in clustering analysis. It has
an intuitive formulation and can be effectively realized
using an SA algorithm. In simulation, it outperforms
the direct competitors with better accuracy and stabil-
ity. We acknowledge that there are many other possible
simulation settings and potentially applicable alternatives.
The considered simulation settings have comprehensively
covered multiple values of dimensionality, sample size,
correlation, regulation strength, and others. The adopted

Fig. 3 Functional modes. Analysis of TCGA data using ANCut (left) and K-means (right): the functional modes of the clusters
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Fig. 5 Selected GO processes. Analysis of TCGA data using ANCut: proportions of genes with a certain GO process in the four clusters

alternatives are possibly the most popular in data analy-
sis and thus warrant direct comparison. In the analysis of
TCGA data, the ANCut analysis results are more desir-
able. It is noted that the SA algorithm encourages but not
forces clusters with comparable sizes. Examining the GO
terms suggests that the clustering results can be biologi-
cally sensible.
This study inevitably has multiple limitations, including

a lack of theoretical investigation, still limited simula-
tions, and a lack of functional analysis of the data analysis
results. More extensive analysis, numerical studies and
comparisons will be conducted in the future. We note
that the strategy of using regulator information to assist
GE clustering is not limited to the NCut technique. In
Additional file 1, we briefly discuss the possibility of try-
ing such a strategy with K-means. We focus on the ANCut
in this study and defer systematic development of the
assisted clustering analysis to future research.

Conclusions
In this study, a new assisted analysis strategy is devel-
oped for clustering gene expression data. Advancing from
the existing methods that focus on gene expression data
only, information of regulators is utilized in clustering
gene expressions. The proposed method carries a wealth
of information and can reveal more accurate cluster-
ing. Experiment results on simulation and two TCGA
datasets show the competitive performance of the pro-
posed method with respect to the alternatives. This study
provides a new venue for analyzing gene expression data.
It is noted that although our analysis focuses on cluster-
ing of GEs, the proposed method is potentially applicable
to other types of genetic measurements, such as proteins
with their regulators.

Additional file

Additional file 1: This file contains additional discussions and numerical
results. (PDF 122 kb)
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