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Abstract

Background: Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying
the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against
disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an
empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples
available, a model driven approach was the only option. In the meanwhile, several thousand samples have been
made available to us, providing an opportunity to investigate serotype classification by machine learning methods,
which could complement the Bayesian model.

Results: We compare the performance of the original Bayesian model with two machine learning algorithms:
Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby
a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are
available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine
learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible
combinations. Most of the available training data comprises samples with only a single serotype. To overcome the
lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by
combining raw data from single serotype arrays.

Conclusions: With the enhanced training set the machine learning algorithms out perform the original Bayesian
model. However, for serotypes currently lacking sufficient training data the best performing implementation was a
combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective
method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle
biological insights, which we illustrate with an example.

Keywords: Streptococcus pneumoniae, Serotyping, Bayesian, Machine learning, Gradient Boosting Machine, Random
Forest

Background
We investigate different approaches to analysing the raw
data from a custom genomic microarray that has been
designed for molecular serotyping Streptococcus pneumo-
niae [1, 2]. Streptococcus pneumoniae is an important
human pathogen and a major cause of infant mortality.
There are over ninety known serotypes of the bacterium
and there is a requirement to monitor the population
dynamics of the different S. pneumoniae serotypes world-
wide. A custom molecular serotyping array [3] was devel-
oped to fulfil the need for an accurate and objective
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serotyping method which could easily detect multiple
serotypes in a sample. The method gave the best per-
formance of any serotyping method in the independent
Pneucarriage Project [2].
Genomic microarrays are a method for detecting

the presence or absence of multiple genes within
a sample simultaneously, through specific binding to
an array of high-density probes. A microarray con-
structed with probes for genes specific to different
strains of an organism can detect the presence of a
particular strain of the organism in a clinical sam-
ple according to which of the probes have an elevated
signal.
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The custom BμGS SP-CPS molecular serotyping
microarray [3] contains probes for over four hundred
S. pneumoniae capsular polysaccharide synthesis (cps)
genes. Each serotype is known to contain a small subset
of these cps genes, ranging from 1 to 22 genes. However,
there is considerable overlap between the subsets with no
serotype having a set of genes unique to itself. In fact a
few serotypes have identical, or near identical, subsets of
cps genes, so in order to distinguish these serotypes the
array contains further discriminative probes. An analysis
method to produce a call as to which serotypes are present
in a sample has to process these two types of probe and
also allow for cross-hybridisation to probes and cope with
the inevitable experimental noise. An empirical Bayesian
model was an obvious choice of method, given this need
to integrate data types with prior knowledge.
The model we developed [1] has proved to be very

effective given the limited amount of sample data avail-
able at the time. There is however far more sample data
now available, which has made possible the application
of machine learning classifiers. The Bayesian modelling
approach requires decisions on what prior knowledge
should be included in the model; prior knowledge which
may be subjective and incomplete. The main advantage
of machine learning methods over a Bayesian model is
that the important discriminative features are learnt auto-
matically by the algorithm from a, usually large, number
of training samples. The discriminative features that the
algorithm learns may also reveal interesting biological
insights previously hidden in the data. The main prob-
lems that may be encountered in a machine learning
approach is insufficient training data to capture all the
idiosyncrasies that may be encountered in test data, and
overfitting of the training data.
There are now a considerable number of training sam-

ples available that contain single serotypes. However, an
important requirement for any Streptococcus pneumoniae
serotyping method is the ability to detect multiple
serotypes in a sample. The main difficulty of applying
machine learning to this particular problem is insufficient
samples available containing all possible combinations
of mixtures of serotypes. We overcame this limitation
by implementing an two-step iterative approach which
involves the construction of artificial training data.
The two machine learning methods investigated here

are RandomForests (RF) andGradient BoostingMachines
(GBM). Random Forests is an ensemble learning method
that uses decision trees to classify the data. Tomitigate the
tendency to overfit, many decision trees are fitted to the
data and themode of the predicted classes taken. Gradient
Boosting Machines (GBMs) is also an ensemble learning
method and in the current application, also uses decision
trees. Unlike Random Forests, GBMs use boosting, that is,
the ensemble of trees are fit in sequence and at each step

the tree is fitted not to the data but to the residual error
from the fit of the ensemble so far.
The purpose of the study was to evaluate the analy-

sis of the molecular serotyping microarray by machine
learning methods, firstly as a classifier but also as a bio-
logical research tool. A further purpose of this study is
to propose some generic strategies for the application of
machine learning methods, for example, how to combine
a statistical model with a machine learning classifier, or
how to compensate for the lack of training data due to a
combinatorial explosion of classification options.

Methods
Streptococcus pneumoniaemolecular serotyping
microarray
The custom genomic microarray [3] contains several
thousand oligonucleotide probes designed to detect a
number of different entities (also see [1] for more details):

1. Probes, referred to here as CPS probes, for 441
capsular polysaccharide synthesis cps genes. On
average there are 10 probes per gene. These probes
are the primary source of information on the
serotypes in the sample. Figure 1 shows
schematically the relationship between a serotype,
cps genes and the CPS probes on the array.

2. Probes, referred to here as STID probes, designed to
identify serotypes that are too closely related to be
resolved by the cps genes alone.

3. Probes on the microarray for the entire genome of
Streptococcus pneumoniae from two sequenced
strains of the bacterium, 6824 probes in total and
referred to here as the genome probes. In the context
of the current study these probes are used only to
provide a reference level with which to normalise the
arrays for the machine learning algorithms and in the
derivation of priors for the Bayesian model.

Figure 2 shows CPS probe data from a typical microar-
ray testing a sample containing one serotype (17F).
Figure 2a displays the raw probe intensities. In Fig. 2b
the probes have been grouped according to their target
genes and displayed as a boxplot of log intensities. Only
the top 75 genes, out of a total of 441 genes, with the high-
est median probe log intensity are plotted for clarity. In
Fig. 2c a t-test has been performed for the probes of each
gene; testing whether the mean of the probes is signifi-
cantly greater than the mean of all the other probes. The
figure displays the p-values from the t-tests for the top 75
genes.
Each serotype of S. pneumoniae contains a small sub-

set of the 441 cps genes. The number of cps genes present
in a serotype varies from 1 to 22, with an average of 13.
There is considerable overlap in the gene complements
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Fig. 1 Diagram of the data structure. Schematic showing the relationship between a serotype, cps genes (those present in the serotype, coloured
red, those absent coloured yellow) and the CPS probes on the array

of serotypes, with no serotype having a unique set of cps
genes. In Fig. 2b the cps genes of the serotype found in
the sample being tested by this microarray are marked
in black. It can be seen that some cps genes that do not
occur in this serotype also have elevated intensities. This
is due to cross-hybridization of probes. This occurs when
it has not been possible to design probes entirely specific

to a particular gene, so probes for one gene bind to some
extent to the DNA from a different gene.
It is not uncommon for naso-pharyngeal samples to

contain more than one serotype of Streptococcus pneumo-
niae. Figure 3 shows a boxplot of the CPS probe intensities
from one microarray testing a sample that was found to
contain three serotypes, 23F, 14 and 15C, in proportions

Fig. 2 Array data from typical single serotype sample (serotype 17F). a CPS probe intensities (normalised). b Boxplot of probe intensities grouped by
cps genes (only top 75 genes (out of 441 genes), with the highest median probe log intensity plotted for clarity). Those cps genes which occur in
serotype 17F are shaded black. c p-values from t-tests of each of these 75 cps genes’ probes against all other probes should go here
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Fig. 3 Array data from a typical sample containing a mixture of serotypes. The sample contains serotypes 23F, 14 and 15C in proportions 69, 23
and 8%

69, 23 and 8%. Only the cps genes found in the three
serotypes are shown in the figure for clarity. It can be seen
that some of the cps genes are found in more than one of
the serotypes contained in this sample, and one gene is
found in all three.
Whilst the CPS probes are the primary measurements

on the array for determining serotype content, eighteen
sets of closely related serotypes have identical, or nearly
identical, sets of cps genes, so cannot be distinguished
by these probes alone. In order to differentiate between
these closely related serotypes, the microarray contains
extra probes, here referred to as STIDs. STID probes for
a pair of serotypes come in pairs, with one probe for one
serotype and a paired probe for the corresponding region
of the genome of the second serotype. To test which of the
two serotypes is present the difference in the fluorescent
intensities of the paired probes is used. On average there
will be around 65 pairs of STID probes for a pair of
serotypes.
The arrays also suffer inevitably from different types

of experimental noise. The fluorescent intensity sig-
nals can be affected by a variety of random fac-
tors which are difficult to control: from variation in
the DNA extraction to variation in the binding of
the DNA to its oligonucleotide probe due to diver-
gent sequence. As mentioned above a probe’s inten-
sity may be affected by cross-hybridisation; binding to
DNA from a different gene. However in addition, the
Streptococcus pneumoniae sample can be contaminated
by DNA from the host and from other commensal
or pathogenic organisms. This could also bind to
some extent to a probe, affecting the probe’s measured
intensity.

Datasets
The dataset used in this work is an amalgamation of data
from 60 different studies comprising more than four thou-
sand samples. Every sample has initially been analysed by
an empirical Bayesian Model and the result checked for
errors by a single expert.
A sample may contain between 1 and 5 serotypes.

Figure 4 shows a histogram of the frequency of occur-
rence in the dataset of samples containing different num-
bers of serotypes. The dataset was split into two, those
arrays containing single serotypes and those arrays con-
taining mixtures of serotypes. The single serotype arrays
are used for training so were further filtered according
to the quality-control information available. If the array
had been flagged as suffering from low intensity, satura-
tion, spatial problems or splashover it was removed. The
dataset of samples containing mixtures of serotypes was
not filtered by quality control information. This resulted
in 3721 single serotype arrays and 926 mixture arrays.
In the dataset of single serotype arrays the frequency of

occurrence of serotypes is very variable, there are many
examples of some serotypes, whilst very few of some oth-
ers. The histogram in Fig. 5 shows the number of single
serotype arrays available for each serotype. Only 73 of the
91 known serotypes do feature in the single serotype array
data, 18 rare serotypes have no examples at all. Hence we
termed the overall dataset D.73. Given that the amount
of training data can be critical for the performance of
machine learning algorithms we started with a subset of
serotypes that had at least 20 arrays in the single serotype
dataset. This comprised a subset of 36 of the most fre-
quent serotypes, and a total of 3486 single serotype arrays.
We filtered the dataset of arrays containing mixtures of



Newton and Wernisch BMCGenomics  (2017) 18:606 Page 5 of 14

Fig. 4 Number of samples containing different numbers of serotypes.
Histogram showing the number of samples in the dataset containing
different numbers of serotypes

serotypes so that only these 36 serotypes featured in any
sample, giving a total of 693 arrays. We termed the dataset
of single serotype and mixture arrays that only included
these 36 most common serotypes D.36. Details of D.73
and D.36, the number of arrays present and the number
of serotypes featured in each, are tabulated in Table 1.The
data used in this work is available at http://sysbio.mrc-bsu.
cam.ac.uk/papers_supplementary.

Pre-processing
For the Bayesian model no pre-processing was applied,
since each array is analysed on its own without refer-
ence to other arrays. For the machine learning algorithms
the arrays were first normalised. To normalise an array
two reference levels were calculated; the median of the
CPS probes on the array (Xcps) and the median of the
genome probes (Xgen). All values x on the array were then
normalised by xnorm = (x − Xcps)/(Xgen − Xcps). The
normalised values were then logged. Initially the machine
learning algorithms were applied to these CPS probe val-
ues directly, but the large number of probes resulted in
relatively slow processing times. Therefore the CPS probe
values were summarised to give one value for each of the
441 cps genes. Different summary methods were experi-
mented with - mean, median, t-statistic and p-values. The
p-values were found to work consistently well so these
were adopted as the cps summarymeasure throughout the
study. For each cps gene the p-values were calculated by
testing whether the mean of the gene’s CPS probes was
greater than the mean of all other CPS probes. The STID
probes for a pair of serotypes are paired so the relevant
measure is the difference in value between each probe
pair. For each STID differentiated pair of serotypes there
are approximately 65 such difference values, which were
summarised by the p-value from testing whether their
mean was significantly greater than zero. The R statistical
environment [4] was used for all processing and analyses
in this study.

Empirical Bayesian model
The Empirical Bayesian statistical model for calculating
the probabilities of serotype combinations is described

Fig. 5 Number of single serotype arrays. Histogram showing the number of single serotype arrays in the D.73 dataset for each of the 73 serotypes
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Table 1 Details of datasets

Name Serotypes Single arrays Mixture arrays Total arrays

D.36 36 serotypes 3486 693 4179

D.73 73 serotypes 3721 926 4647

in detail in Newton et al. [1]. To summarise we first set
up likelihoods for gene binding depending on microarray
log intensities for cps genes. Then, likelihoods of serotype
combinations depending on gene binding and incorporat-
ing cross-hybridisation effects are derived. Further, likeli-
hoods for serotypes depending on log intensities of STID
probes are provided. Finally, all these likelihoods are put
together to give a likelihood of serotype combinations
depending on log intensities from CPS probes and STID
probes. Combined with a prior on serotype combinations
this allows us to infer a posterior probability for serotype
combinations, apart from a normalising constant. Some
of the hyperparameters of the model are estimated in an
empirical Bayes fashion from the microarray data. Since
there are exponentially many combinations of serotypes,
we use a heuristic to limit the number of combinations
to a subset of serotypes and serotype combinations with a
potential for high probabilities.

Machine learning
Overview
In the machine learning approach to classification the
algorithm is trained on one set of data, whose classes are
known. The model learnt by the training step is then used
to predict the classes of unknown data. In this applica-
tion the data are the untransformed cps gene and STID
p-values of the arrays and the classes are the serotypes on
the arrays.
Both training and test data are needed to assess the

performance of the machine learning algorithms. There-
fore we performed 20-fold cross-validation on the single
serotype array dataset; that is we divided the dataset
into 20 equal parts, trained on 19 of the 20 com-
bined and tested on the remaining part, repeating for
each of the 20 parts. For the mixture arrays we trained
on all the single serotype arrays and tested on the
mixture arrays.
A sufficient amount of training data is required; enough

training data to adequately represent the variability that
the algorithm will encounter when tasked to classify test
data. Whilst we had a considerable number of single
serotype arrays to make training a single serotype clas-
sifier a feasible proposition this was not the case for
mixture arrays. Being able to detect mixtures of serotypes
in samples is an essential requirement for any serotyping
method. Whilst the dataset D.36 (see Table 1) contained
693mixture arrays this is only a small fraction of the num-
ber of possible combinations of 36 serotypes even if we

restrict the maximum number of serotypes in a mixture
to a realistic figure of between 2 and 5. In addition, for
the serotype mixtures that we do have arrays for, there are
then only a small number of the possible proportions of
the mixtures represented. The solution we adopted is the
two-step iterative method described below.

Two-stepmethod
In the two-step method we train the machine learning
algorithm on a set of single serotype arrays (for test-
ing mixture arrays this would be all the single serotype
arrays, for testing single serotype arrays the 20-fold cross-
validation scheme was used). Then, to test an unknown
array, the first step is to use the classifier that has been
generated by the training to predict the single serotypes
on the unknown array. Then in the second step:

1. Choose the top K most probable predicted single
serotypes.

2. Form all 2K − 1 combinations (Kc) of these K
serotypes.

3. For each of these combinations:

• Calculate the proportions of the constituent
serotypes in the test array data from the medians
of the serotypes’ cps genes’ probe values.

• Construct M artificial mixture arrays by
combining randomly selected single serotype
arrays, corresponding to the constituent
serotypes, in the calculated proportions (setting
M to 200 was sufficient in practice). The
artificial mixture arrays were constructed by
combining the single serotype arrays at the
probe level. That is, in the artificial array a probe
value is the weighted mean of the corresponding
probe values in the single serotype arrays,
weighted by the proportions calculated in point
3. The probe values are then summarised as cps
gene p -values as described in the
‘Pre-processing’ section above.

4. Concatenate the M artificial arrays for the Kc
combinations to create a new training data set.

5. Train a new classifier on these artificial mixture
arrays.

6. Re-test the unknown array with the new classifier
and choose the most probable class, giving the
predicted serotype combination for the array.

Before choosing the top K most probable predicted
serotypes (point 1 above) the list of predicted serotypes
is edited for serotypes which are separated by STIDs; for
pairs of serotypes that are separated by STIDs the serotype
that has the lowest predicted probability is removed from
the list.
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In practice K, the number of most probable predicted
serotypes (point 1 above), was chosen dynamically. Firstly
the cps gene p-values where Bonferroni adjusted. Then
for each serotype in the list of predicted serotypes, the
percentage of that serotype’s cps genes that have adjusted
p-values less than 0.05 was calculated. The serotypes with
more that 50% of their cps genes significantly present were
chosen for the second step. In practice K was rarely more
than one more than the actual number of serotypes on
the array. A limit of K <= 6 was set to prevent excessive
processing times occurring.

Filtering cps gene calls
TheMachine learning algorithms in particular were found
to be overly sensitive so a final filtering step can be used
to remove False Positives from an algorithm’s call. The fil-
tering step is based on the percentage of a serotype’s cps
genes that are significantly present. For each array and
each method the serotypes in the call from that method
are examined in turn. The Bonferroni adjusted p-values
of the cps genes are used to assess whether each gene is
present or not. If a gene’s p-value is below a significance
level of 0.05 the gene is deemed to be present. If a serotype
has less than a pre-determined percentage of it unique cps
genes present then the serotype is removed from the call.
Note that only the cps genes that are unique to a serotype
are considered. In a call containing several serotypes, in
general some cps genes will be common to two or more
serotypes, whilst some will be unique to each individual
serotype; Fig. 3 illustrates the point. In this filtering step it
is the percentage of a serotype’s unique cps genes that are
significantly present which is calculated.
This form of filtering was also used for a second role,

that is, to divide the classified arrays into two categories
with different confidence of prediction. For a sample and
classification method, we inspected the serotype calls. For
each serotype in the call we recorded the percentage of the
serotype’s unique cps genes that were significantly present.
If all the serotypes in the call had more than a prede-
termined percentage threshold of cps genes present, then
that sample was placed in the high confidence group of
samples.

Evaluating results
The results for each method were compared to curated
results to give error rates for each method, applied to
each of the datasets. The error rates used were the per-
centage of arrays in the dataset which contained at least
one False Positive serotype call or False Negative call or
both. Credible intervals for the error rates were calculated
using the 0.025 and 0.95 quantiles of the beta distribution.
The curated results were based on the Bayesian Model
results, which were used as a guide by the expert who
inspected the arrays. Therefore there is the danger that the

comparison will be biased in favour of the BayesianModel
over the Machine learning algorithms. We were however
interested in ascertaining whether the Machine learning
algorithms perform better than the Bayesian model so
any bias will be acting to reduce rather than enhance the
outcome we were looking for.

Implementation
For the purpose of predicting sets of serotypes from p-
value vectors we turned to two representative and popular
Machine learning methods. The implementations of Ran-
dom Forests and Gradient Boosting Machines contained
in the machine learning platform H2O [5] were used,
through the R [4] interface to the H2O platform provided
by the R package ‘h2o’ [6].
The algorithms’ parameters were optimised using a grid

search. Performance of different parameter combinations
was assessed from the sum of two error rates. One was the
error rate from the confusion matrix generated by the sin-
gle serotype training data, that is, the performance of the
algorithm as a single class classifier. Secondly the resulting
classifier was applied to the mixture arrays. For each mix-
ture array the list of the top six most probable predicted
serotypes was examined to see if it contained all of the
serotypes actually occurring in the sample. If all the actual
serotypes were contained in the top six the test array was
passed as not being an error, but if this was not the case the
array was recorded as an error. The grid search minimised
these two error rates combined. The parameter values
used are shown in Table 2. The performance of the GBM
as a single class classifier was, for this data, rather insen-
sitive to parameter values, giving zero error rate using
the default parameters. This performance was the same
for any of the cross-validation subsets of the data as for
the whole dataset. The parameters needed to be altered
slightly from the default values in order to minimise the
second error rate. The optimum parameter adjustments
were the same if the classifier was trained on the whole
dataset or on one of the cross-validation subsets.
For the Random Forest as a single serotype classifier

the parameters needed to be changed from the default
settings. In particular, balancing the classes was impor-
tant for reducing the error rate. Perfect single serotype
classification was not achieved but the error rate was
around 0.1%. Again this did not vary whether applied to
a cross-validation subset or to the whole dataset. Fur-
ther adjustment of parameters was carried out to min-
imise the second error rate. The optimum parameter
adjustments were the same if the classifier was trained
on the whole dataset or on one of the cross-validation
subsets.
The main speed constraint in the code is the fact that

multiple t-tests are required. Four hundred forty one tests
are needed for each of the Kc x 200 arrays, where Kc could
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Table 2 Machine Learning parameter values (p = the number of
input variables)

Parameter name Step 1 training Step 2 training Package defaults

GBM

Ntrees 50 50 50

Learn_rate 0.1 0.1 0.1

Max_depth 25 5 5

Min_rows 100 10 10

Balance_classes FALSE FALSE FALSE

Random Forest

Ntrees 5000 100 50

Stopping_rounds 2000

Max_depth 100 20 20

Stopping_tolerance 1e-20

Mtries 100 200
√
p = 21

Balance_classes TRUE FALSE FALSE

be as high as 63. The time taken for these was minimised
using the parSapply routine from the R package doParallel
[7], to distribute the 441 calculations between computer
cores. The routine rowttests from the R package genefilter
[8], was used for the t-tests. This routine is implemented
in C for speed, and was edited to perform a t-test where
the two groups being tested have unequal variance. On
average one array takes less than one minute to analyse on
a 4-core 2 GHz machine. The R code used in this paper
is available from http://sysbio.mrc-bsu.cam.ac.uk/papers_
supplementary.

Artificial single serotype training arrays
The data currently available contains no examples of 18
particularly rare serotypes and few (less than 20) exam-
ples of 37 other serotypes. We investigated the possibility
of generating entirely artificial single serotype arrays to be
used for training a classifier for the rare serotypes. For
each of the single serotype arrays, we recorded the CPS
probe values for the cps genes known to occur in that
serotype, and the CPS probe values for all other cps genes

on the array. We concatenated these two sets of probe
values for all the arrays to produce two distributions - a
distribution of probes for genes present (the alternative
distribution) and a distribution of probes for genes absent
(the null distribution). To create an artificial array for a
particular serotype we took the known cps gene profile for
the serotype in question and sampled from the alternative
distribution to generate CPS probe values for those genes,
and sampled from the null distribution to generate CPS
probe values for all other genes. In this way we created 200
single serotype arrays for each serotype. In order to be able
to validate the performance we explored the idea using
the D.36 dataset. We used this artificial single serotype
dataset to train a classifier and predict the D.36 arrays
using the two-step process described above and compared
the results with those obtained using a classifier trained
on the actual D.36 single serotype arrays.

Results
Comparing methods
The error rates for the threemethods, the BayesianModel,
GBM and Random Forest, are shown in Table 3 for the
datasets D.36 and D.73 (see Table 1 for dataset details).
For the D.36 dataset the GBM performs much better than
the Bayesian Model for samples containing mixtures of
serotypes, with the Random Forest performance inter-
mediate between the two. For single serotype samples
however the performance of all three methods is approx-
imately the same, noting the credible intervals. The error
rate for the whole D.36 dataset, single and mixture arrays
combined, is slightly better for the GBM and roughly the
same for the Bayesian Model and Random Forest; since
there is a preponderance of single serotype arrays in the
dataset.
For the D.73 dataset, which includes serotypes with

little training data, the three methods give roughly the
same results for mixture arrays. The Bayesian Model,
unaffected by lack of training data, has the same error
rate as for D.36, but the machine learning error rates
are increased greatly, reflecting insufficient training data
for many serotypes in the dataset. For single serotype

Table 3 Percentage error rates for the Bayesian Model (BM), GBM and Random Forest (RF) for the datasets defined in Table 2; for
samples containing mixtures, samples containing single serotypes and all samples combined

Dataset BM GBM RF

D.36 Mixtures 18 (15.2 - 21.0) 5.6 (4.0 - 7.4) 10.0 (7.9 - 12.3)

Singles 8.1 (7.2 - 9.0) 8.3 (7.4 - 9.2) 9.8 (8.8 - 10.8)

Combined 9.7 (8.8 - 10.6) 7.9 (7.1 - 8.7) 9.8 (8.0 - 9.7)

D.73 Mixtures 21 (18.4 - 23.7) 19 (16.5 - 21.6) 21 (18.4 - 23.7)

Singles 8.2 (7.3 - 9.1) 22.0 (20.7 - 23.3) 20.0 (18.7 - 21.3)

Combined 10.8 (9.9 - 11.7) 21.4 (20.2 - 22.6) 20.2 (19.1 - 21.4)

Figures in brackets show the 95% credible interval

http://sysbio.mrc-bsu.cam.ac.uk/papers_supplementary
http://sysbio.mrc-bsu.cam.ac.uk/papers_supplementary
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arrays, again the Bayesian Model has a similar error rate
to D.36 but the two machine learning methods error rates
are much worse. This suggests that at least 20 training
examples are needed for successful machine learning of
serotyping data.
However, as described in the “Methods” section, a fur-

ther processing step can be applied to the results in order
to reduce the number of False Positives; filtering based on
the percentage of a serotype’s unique cps genes that are
significantly (p − values < 0.05) present. For each sample
and for each method, the serotypes in the method’s call
are examined to see what percentage of their cps genes are
significantly present. If fewer cps genes are significantly
present than a set percentage threshold then this serotype
is removed from the method’s call.
Figure 6 shows the effect of this filtering using thresh-

olds from 0 to 100% on the D.36 dataset. It can be seen
that this filtering can improve the error rates of all three
methods, as falsely positive serotypes are removed from
the calls, without a concomitant increase in false nega-
tives. The results from selecting a threshold of 50% are
shown in Table 4. Formixtures samples in the D.36 dataset
the error rates are not greatly changed, but for the single
serotype samples the error rates are reduced, in particu-
lar for the GBM with an error rate now of only 1.5%. For
the D.73 dataset, filtering gives improvements for all three
methods for mixture and single serotype samples, with
large improvements for the machine learning algorithms
on the single serotype arrays, since the errors seen in the

Fig. 6 Error rates after filtering calls based on the percentage of cps
genes present. The effect on error rates of filtering serotype calls
based on the percentage of a serotype’s cps genes that are
significantly present. Different thresholds of percentage of genes
present were used and plotted along the x-axis. Error bars are the
95% credible intervals. D.36 dataset

unfiltered results of Table 3 are mainly false positives that
are removed by the filtering.

Artificial single serotype training data
We investigated the possibility of generating entirely arti-
ficial single serotype arrays to be used for training a
classifier for the rare serotypes. In order to be able to vali-
date the approach we used the D.36 dataset. For simplicity
we removed all arrays containing serotypes with STIDS.
This left 28 serotypes and 3486 single serotype arrays and
339 mixture arrays. The results are shown in Table 5,
with the results from the Bayesian model and from the
GBM trained on actual single serotype arrays included for
comparison. Overall the approach does not perform well
with a 12.8% error rate for all arrays compared to 6.1%
for the Bayesian Model (with filtering included). For pre-
dicting mixture arrays the artificial training data approach
performs particularly badly (error rate of 45%). For pre-
dicting single serotype arrays, provided filtering is used,
the approach gives a slightly worse performance (8.4%)
than the Bayesian model (5.0%).

A practical implementation
The GBM gives a lower error rate than the Bayesian
Model, however a paucity of training data for some
serotypes in the D.73 dataset does increase the GBM
error rate. In addition 18 known serotypes which could be
encountered in clinical samples currently lack any train-
ing data at all. An attempt to create artificial training data
was unsuccessful, so until sufficient actual training data is
available for all serotypes the Bayesian model will have to
be used to analyse the arrays. The Bayesian model is unaf-
fected by lack of training data, giving similar error rates
for both the D.73 and the D.36 dataset.
We investigated whether the GBM could be used to

divide samples into two categories; a group of samples
which we have high confidence in the class assignments
(group C) and a second group of samples whose class
assignments are less confident (group NC). There will
clearly be a trade off, lowering the expected error rate that
would be acceptable in group C, will increase the number
of samples allocated to group NC.
We investigated two different methods for dividing the

dataset into the two groups. Firstly, for each sample, if
the serotype calls from the Bayesian model and from the
GBM were identical then the sample was placed in group
C, that is, the high confidence group. If the serotype calls
differed then the sample was placed in group NC. For
the D.36 dataset we found group C contained 84% of the
dataset with an error rate of just 0.37%. For the D.73
dataset group C contained 72% of the dataset with an
error rate of 0.69%. These results may be biased since they
include the Bayesianmodel results and, as explained in the
“Methods” section, the curated results used these as a
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Table 4 Percentage error rates for the Bayesian Model (BM), GBM and Random Forest (RF) after filtering calls on the percentage of a
serotype’s cps genes significantly present, using a 50% threshold; for samples containing mixtures, samples containing single serotypes
and all samples combined

Dataset BM GBM RF

D.36 Mixtures 15 (12.4-17.8) 5.9 (4.3-7.8) 9.1 (7.1-11.3)

Singles 4.8 (4.1-5.5) 1.5 (1.1-1.9) 3.3 (2.7-3.9)

Combined 6.5 (5.8-7.3) 2.2 (1.8-2.7) 4.3 (3.7-4.9)

D.73 Mixtures 19 (16.5-21.6) 12 (10.0-14.2) 16 (13.7-18.4)

Singles 5.6 (4.9-6.4) 5.0 (4.3-5.7) 7.1 (6.3-7.9)

Combined 8.3 (7.5-9.1) 6.4 (5.7-7.1) 8.9 (8.1-9.7)

Figures in brackets show 95% credible interval

guide. We therefore tried a second method for creating
two groups that does not use the Bayesian model results.
The second method for creating two groups used a

threshold on the percentage of a serotype’s cps genes sig-
nificantly present. For each sample and each classification
method separately, we inspected the serotype calls. For
each serotype in the call we recorded the percentage of the
serotype’s unique cps genes that were significantly present
(that is, having a Bonferroni adjusted p-value less than
0.05). If all the serotypes in the call hadmore than a prede-
termined percentage threshold of cps genes present, then
that sample was placed in group C, the high confidence
group. If any of the serotypes had less than this percent-
age of genes present then the sample was placed in group
NC. Percentage thresholds from 65 to 100% were tested.
The percentage of samples placed in group C and the error
rate in the group were recorded. The results for the GBM
on the dataset D.36 are shown in Fig. 7. We found that
with a threshold of 90% the error rate in group C was just
0.31% and it contained 78% of the dataset. Reducing the
percentage threshold increases the number of samples in
group C, but also increases the error rate in the group.
Increasing the threshold above 90% does not reduce the
error rate further, but does reduce the number of samples
in the group. Applying the same method to the Bayesian

model placed 80% of the samples in group C with an error
rate of 3.7%, again with a percentage filtering threshold of
90%.
The results for the D.73 dataset are also shown in Fig. 7.

With a 90% threshold the error rate in group C is now
2.6% and contains 70% of the dataset’s samples. For the
Bayesian model the values are 4.7 and 20%.
Finally we investigated combining the two different

methods to define the two groups. We first divided the
dataset based on the agreement between the Bayesian
model and the GBM. We then examined the samples in
group C using the second method for defining groups.
Samples that had any called serotypes with a percent-
age of cps genes lower than a predetermined threshold
were moved from group C to group NC. The results for
the D.36 dataset are shown in Fig. 8. Using a thresh-
old of 65% gives a 0.17% error rate (8 errors) in group
C which contains 83% of the dataset. With a thresh-
old of 95% the error rate is 0.046% (1 error) with 52%
of the samples in group C. The results for the D.73
dataset are also shown in Fig. 8; with a threshold of 65%
the error rate in group C is 0.49% (16 errors) which
contains 70% of samples, with a threshold of 95% the
error rate in group C is 0.25% (5 errors) with 42% of
samples.

Table 5 Results for the artificial single serotype training data

Dataset BM GBM GBM Artf. Train Data

no filt. Mixtures 17 (13.2-21.2) 5.3 (3.2-7.9) 53 (47.7-58.3)

Singles 8.4 (7.5-9.3) 9.8 (8.8-10.8) 39 (37.4-40.6)

Combined 9.4 (8.5-10.3) 9.3 (8.4-10.2) 40.7 (39.1-42.3)

50% filt. Mixtures 14 (10.5-17.9) 4.4 (2.5-6.8) 45 (39.7-50.3)

Singles 5.0 (4.3-5.7) 1.7 (1.3-2.2) 8.4 (7.5-9.3)

Combined 6.1 (5.4-6.9) 2.0 (1.6-2.5) 12.8 (11.8-13.9)

Percentage error rates for the Bayesian Model (BM), GBM using actual single serotype arrays for training (GBM) and GBM using artificial single serotype arrays for training (GBM
Artf. Train Data). 50% filtering refers to filtering calls on the percentage of a serotype’s cps genes significantly present using a 50% threshold. For samples containing mixtures,
samples containing single serotypes and all samples combined
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Fig. 7 Error rate in the high confidence group of samples against the
percentage of the dataset in that group. The GBM results and a
threshold on the percentage of a serotype’s cps genes significantly
present were combined in order to divide the dataset into two
groups of samples, a high confidence group of samples (Group C)
and others (Group NC). The graph plots the error rate in Group C
against the percentage of the dataset in that group, as the threshold
is varied. For datasets D.36 and D.73

Variable importance
Training on the single serotype arrays gives the relative
importance of the variables (cps genes) in classifying each
serotype. The H2O [5] GBM algorithm calculates this for
each variable based on whether that variable was selected
during splitting in the tree building process and howmuch
the squared error improved as a result [9].
Examining the variable importance can reveal biological

insights into the cps structure of serotypes. For example
serotypes 6A and 6B have identical cps gene profiles so are
distinguished in the Bayesian model of the data by a STID.
We found however that in more than 80% of cases it was
possible to correctly classify 6A and 6B single serotype

Fig. 8 Results of combining two methods to divide the dataset into
two groups of samples. Combining twomethods to divide the dataset
into two groups of samples, a high confidence group of samples
(Group C) and others (Group NC), one method being the agreement
between the Bayesian model and the GBM, the other method being a
threshold on the percentage of a serotype’s cps genes significantly
present. Graph plots the error rate in Group C on the left y-axis and
the proportion of the dataset in Group C on the right y-axis, against
the threshold used in the second method. For datasets D.36 and D.73

arrays without including the STID probes in the train-
ing data. So there are cps gene differences between the
two closely related serotypes and examining the variable
importances can reveal the nature of those differences.
We took all single serotype arrays that contained

serotypes 6A and 6B, comprising 189 6A arrays and 192
6B arrays.We randomly sampled 25% of the arrays to form
a test set and trained on the remainder. Only the cps gene
p-values were used, not the STID p-values. After training
and prediction we recorded the number of True Positive
predictions. We performed a grid search of the training
parameters to maximise the True Positive rate. The 25%
sampling was performed 5 times for each grid point of
parameters and the average True Positive rate recorded.
Setting the number of trees to 50, maximum depth to
200 and minimum rows to 50 maximised the True Posi-
tive rate, giving 88% for 6A and 82% for 6B. Using these
parameter values we ran the training and testing, with
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25% sampling, 100 times and recorded the variable impor-
tances of the 441 cps genes each time. Figure 9 shows a
boxplot of the 100 relative importance values for each cps
genes, ordered by mean variable importance, with only
the top 25 genes with the highest mean variable impor-
tance shown for clarity. The figure indicates which cps
genes the GBM has learnt are important in distinguish-
ing the two serotypes. One gene, 81.02, is consistently
essential for distinguishing between the two serotypes and
approximately six more have some importance.
Investigating gene 81.02 in more detail. Figure 10 shows

the mean, standard deviation and p-values for gene 81.02
from 189 arrays containing serotype 6A (red dots) and
193 arrays containing serotype 6B (black dots). It can be
seen that gene 81.02 is significantly present in both 6A
and 6B arrays, with all p-values less than 0.05 (horizon-
tal line). However the gene’s probes have a noticeably
lower median intensity and higher standard deviation in
most 6B arrays compared to the values in 6A arrays, sug-
gesting that there is some sequence divergence in gene
81.02 between serotypes 6A and 6B. This is an example of
how machine learning algorithms easily pick up on subtle
differences that humans may miss.

Discussion
A machine learning approach using a Gradient Boosting
Machine can give a better error rate classifying serotyping
data than even a carefully crafted Bayesian model. A lack
of training examples containing mixtures of serotypes can
be overcome with an iterative two-step approach that cre-
ates artificial mixture arrays from single serotype arrays.
Sufficient single serotype training data is important, but
even with relatively few training examples machine learn-
ing still gives a better performance than the Bayesian
model provided an extra filtering step is included to

remove False Positives. Of the two machine learning algo-
rithms tested the GBM performed better than Random
Forests.
The Bayesian model relies on known prior informa-

tion such as the cps gene profiles of the serotypes. The
strength of the machine learning approach is that there
may be features in the data important for accurate classi-
fication which are currently unknown but which machine
learning can identify automatically. And with sufficient
training examples machine learning can cope with bio-
logical and experimental variability in features important
for classification. The errors that do occur in the results
from the GBM algorithm may be due to biological vari-
ability occurring in the erroneous samples, variability that
the algorithm has not been sufficiently trained to detect.
Because training data is not available for all serotypes,

in practice the Bayesian model will still need to be
used to analyse the arrays, but we have shown that
combining the results with those from the GBM can
be used to assign arrays to a high confidence group
with a very low error rate. The added advantage of a
machine learning approach is that as further data becomes
available the classifier can be updated with a view to
increasing the prediction accuracy and increasing the
proportion of arrays assigned to the high confidence
group.
The bacterium is constantly evolving so it is likely

that in the future the machine learning algorithm will
encounter further serotypes which it will not have
been trained to recognise. So probably an approach
using the Bayesian model in combination with a GBM
may never be entirely redundant. The advantage of
the Bayesian model is that the cps gene profile of
a new serotype can be added straight away to the
information supplied to the Bayesian model, whereas

Fig. 9 Variable (cps gene) importance for distinguishing serotypes 6A and 6B. The top 25, out of 441, cps genes shown for clarity, ordered by their
mean importance evaluated from 100 cross-validation samplings
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a

b

c

Fig. 10 Summary values for gene 81.02 probes from arrays containing serotype 6A and 6B. Summary values for gene 81.02 probes from 189 arrays
containing serotype 6A (red dots) and 193 arrays containing serotype 6B (black dots). a p-values of probes (dotted line = log10(0.05)). bMedian of
probe intensities. c Standard deviations of probe intensities

the GBM will require training examples of the new
serotype first.
When no training data is available we found the

Bayesian model is better than a machine learning
approach that uses artificial single serotype training
arrays. Lacking probe data for genes unique to the miss-
ing 18 serotypes meant that probe specific distributions
were not possible. The approach also ignored cross-
hybridisation effects. In future work we will investigate
whether it is possible to construct better artificial training
data using the information from a BLAST search of all the
array probes against the sequences of the serotypes’ cps
genes.

Conclusions
The study illustrates the strength of a machine learning
approach for classifying genomic data with multiple vari-
ables. The algorithm learns which variables are important
for classification, unlike in a modelling approach where
the user has to make this choice. It also demonstrates
that when suitable training data is lacking steps can be
taken to create artificial training data. The general conclu-
sion of the study however is that in practical classification
problems the best approach may not be choosing between
either a Bayesianmodelling or amachine learning solution
but using a combination of the two methods. The study
also illustrates how the relative variable importance from a
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machine learning classification can be used as an efficient
research tool to investigate differences in the objects to
be classified, in this case the differences in the genomic
compositions of the serotypes.
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