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Abstract

Background: Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an
active research topic due to the large amount of sequence data from the new sequencing technologies. Genome
sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate
x 2-statistic has been suggested to compare two sequences. However, it is not known how to best choose the word

length k in such studies.

Results: We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences
between two sequences. Let the orders of the Markov chains for the two sequences be ry and ry, respectively. We
show through both simulations and theoretical studies that the optimal k = max(ry, ;) + 1 for both long sequences
and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several
methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS
reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is
minimal for some of the estimators of the orders of Markov chains.

Conclusion: Our studies provide guidelines on choosing the optimal word length for the comparison of Markov

sequences.

Keywords: Markov chain, Alignment-free genome comparison, Statistical power, NGS

Background

The comparison of genome sequences is important
for understanding their relationships. The most widely
used methods are alignment based algorithms such as
the Smith-Waterman algorithm [1], BLAST [2], BLAT
[3], etc. In such studies, homologous genes among the
genomes are identified, aligned, and then their relation-
ships inferred using phylogenetic analysis tools to obtain
gene trees. A consensus tree combining the gene trees
from all the homologous genes is used to represent
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the relationship among the genomes. However, non-
conserved regions form large fractions of most genomes
and they also contain information about the relationships
among the sequences. Most alignment based methods do
not consider the non-conserved regions resulting in loss
of information. Another drawback of the alignment based
method is the extremely long time needed for the analy-
sis, especially when the number of genome sequences is
large.

With the development of new sequencing technologies,
a large number of genome sequences are now available
and many more will be generated. To overcome the chal-
lenges facing alignment based methods for the study of
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genome sequence relationships, several alignment-free
sequence comparison methods have been developed as
reviewed in [4, 5]. Most of the methods use the counts of
word patterns within the sequences [6—12]. One impor-
tant problem is the determination of word length used
for the comparison of sequences. Several investigators
addressed this issue using simulation studies or empir-
ical data [13-15]. Wu et al. [15] investigated the per-
formance of Euclidian distance, standardized Euclidian
distance, and symmetric Kullback-Leibler discrepancy
(SK-LD) for alignment free genome comparison. For a
given dissimilarity measure, Wu et al. [15] simulated the
evolution of two sequences with different mutation rates
and chose the word length that yielded the highest Spear-
man correlation between the dissimilarity measure and
the mutation rate. They showed that SK-LD performed
well and the optimal word length increases with the
sequence length. Using a similar approach, Forét et al.
[14] studied the optimal word length for D, that mea-
sures the number of shared words between two sequences
[8]. Sims et al. [13] suggested a range for the optimal
word length using alignment-free genome comparison
with SK-LD.

Markov chains (MC) have been widely used to model
molecular sequences to solve several problems including
the enrichment and depletion of certain word patterns
[16], prediction of occurrences of long word patterns from
short patterns [17, 18], and the detecting of signals in
introns [19]. Narlikar et al. [20] showed the importance
of using appropriate Markov models on phylogenetic
analysis, assignment of sequence fragments to different
genomes in metagnomic studies, motif discovery, and
functional classification of promoters.

In this paper, we consider the comparison of two
sequences modelled using Markov chains [11, 12] as a
hypothesis testing problem. The null hypothesis is that the
two sequences are generated by the same Markov chain.
The alternative hypothesis is that they are generated by
different Markov chains. We investigate a log-likelihood
ratio statistic for testing the hypotheses and its corre-
sponding x2-statistic based on the counts of word pat-
terns in the sequences. The details of the statistics are
given in “The likelihood ratio statistic and the x2-statistic
for comparing two Markov sequences” subsection. We use
statistical power of the test statistic under the alternative
hypothesis to evaluate its performance. We will study the
following questions. a) What is the optimal word length k
yielding the highest power of the y2-statistic? b) How do
the estimated orders of the Markov sequences, sequence
length, word length, and sequencing error rate impact the
power of the Xz-statistic? ¢) For NGS read data, what is
the distribution of the x2-statistic under the null hypoth-
esis? (d) Do the conclusions from (a) and (b) still hold for
NGS reads?
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Methods

Alignment-free comparison of two long Markov sequences
We study alignment-free comparison of two long Markov
sequences using counts of word patterns. We first intro-
duce the likelihood ratio [11, 12] and corresponding x2-
statistic. We show theoretically and by simulations that
the optimal word length is k = max{ry, 2} + 1, where r;
and ry are the orders of the two Markov sequences. We
then study the effects of sequence length, word length, and
estimated orders of MCs on the power of the yx2-statistic.

The likelihood ratio statistic and the y2-statistic for
comparing two Markov sequences

Given two Markov sequences A; and Aj, we want to
test if the two sequences follow the same MC, that is,
if their transition probability matrices are the same. We
formulate this as a hypothesis testing problem. The null
hypothesis Hy is that the two sequences are generated
from the same MC. The alternative hypothesis H; is that
the two sequences are generated from MCs with different
transition probability matrices.

To test the hypotheses, we use a likelihood ratio test
statistic. Since we may not know the orders of MCs, we
use counts of word patterns of length k (k > 1) to test if
the two sequences are from the same MC of order k — 1
as in [11]. The basic formulation of the problem can be
described as follows. Let

As - As,lAs,Z """ As,LS: s=1,2,

where L; is the length of the s-th sequence and Ag;, 1 <
i < Ly is the letter of the sequence at the i-th position.

To derive the likelihood ratio test, we assume that both
sequences follow MCs of order k — 1. The probability of
the s-th sequence is

Ls
P(Ay) = nf(\S:lAs,zmAs,k_l 1_[ £ (Agickgr -+ Asio1, As)
i=k

Ny
= nl&?lAs,Z'”As,k—l 1_[ (t(S) (w_’ Wk)) ’ (1)
w

where w = wiwy - - - wy is any word pattern of length &,
W = wiwy - wi_q (the last letter is removed), N‘(j) is
the number of occurrences of word w, and £ (w™, wy) is
the (k — 1)-th order transition probability from w™ to wy
in the s-th sequence, and 7 is the initial distribution.
From this equation, it is easy to show that the maximum

likelihood estimate of t® (w™, wy) is
(s)

N
NY’
w

W, wy) =

Therefore, we can obtain the maximum likelihood
for the s-th sequence P(A;) by replacing £ (W, wy)
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with ) (w~, wy) in equation (1). The likelihood of both
sequences under the alternative hypothesis H; is

" Ny
Pl - HP(AS) - 1_[ n(S)IAS,Z"'As,k—l 1_[ (t(S) (W_, Wk)) :
w
()

Under the null hypothesis Hy, the transition matrices
for the two sequences are the same. Using the same argu-
ment as above, we can show that the maximum likelihood
estimate of the common transition probability t(w™, wy)
is given by

(=)

w
()

w

Hw™,wy) =

where Nv(v_) = Zszzl Nv(f ) Then the probability, Py, of both

sequences can be estimated similarly as in Eq. (2). The log-

likelihood ratio statistic is given by (ignoring the first k — 1
> NS lo

bases in each sequence)
<t< (W™ ,wk)>
s=1 wiwa-Wi_1 Wk W™, i)

2
log(P1/Po) = Y Y
Yy ZN(snog<N“(5)XN”)

(s) (=)
s=1 wiwo--Wp_1 Wi NS N
3)

The above statistic has an approximate y2-distribution
as the lengths of both sequences become large [21, 22].

It has been shown that twice the log-likelihood ratio
statistic has the same approximate distribution as the
following yx 2-statistic [11] defined by

NY NGNS

s=1 wiwa-Wi_1 Wi

(4)

Since 2log(P1/Po) and Sk are approximately equal, in our
study, we use the measure Sy for sequence comparison.

To test if two independent identically distributed (i.i.d)
sequences (r = 0) have the same nucleotide frequencies,
wesetk=1,N> =L, s =1,2, N’ = L1 + Ly, and §;
is calculated by

LiLa (pV — p&”)
Si=Y_ PR (5)
w 1Pw 2pw

where w is a nucleotide and the summation is over all the
nucleotides, p&s,) = N‘(Af) /L, and Ly is the length of the s-th
sequence.
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Estimating the order of a MC sequence

We usually do not know the order, r, of the MC corre-
sponding to each sequence and it needs to be estimated
from the data. Several methods have been developed to
estimate the order of a MC including those based on
the Akaike information criterion (AIC) [23] and Bayesian
information criterion (BIC) [24]. The AIC and BIC for a
Markov sequence of length L are defined by

N,
AIC(k) = —2 Z Ny log N—W +2(C — 1)Ck,
we Ak+1 v
Ny
BIC(h) = =2 ) Ny log ==+ (C — 1C*log(L — k+1),

we Ak+1

where C is the alphabet size. The estimators of the order
of a Markov sequence based on AIC and BIC are given by

;AIC = arg mkinAIC(k), (6)

rpICc = arg mkin BIC(k). (7)

Peres and Shields [25] proposed the following estimator
for the order of a Markov chain

k
A} —1, 8)

rps = arg mkax { Ak+1

where

A% = max [Ny — Eyl,
we Ak

and A is the set of all alphabet and E NYN‘:” is the

expectation of word w estimated by a k — 2-th order MC.
Based on similar ideas as in [25], Ren et al. [26] proposed
several methods to estimate the order of a MC based on

Ny — Ey)? N_wNy—
=Y W = E0)"  here By, = YowNw—
Ew N w_
we Ak

The statistic Ty has an approximate x 2-distribution with
dfy = (C — 1)2C*=2 degrees of freedom when k > r + 2
(21, 22, 27, 28]. When k < r + 2, Tj will be large if the
sequence is long, while Ty should be moderate when k >
r + 2. Based on this idea, we can estimate the order of the
MC by

Tt } 1. 9)

77 = arg min
& k { Tk

Instead of using T} directly, we can calculate the corre-
sponding p-value

pe=P(Ti = 80 =P (33, = ).

where ¢ is the observed value of T} based on the long
sequence. Since ¢ is generally large when kK < r 4+ 1 and
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thus py should be small, while py is moderate when k >
r + 2. Based on this idea, we can estimate the order of a
MC by

Fp = arg rr}(in { (10)

log(pr+1) } 3
log(pi)

It is also possible to estimate the order of a MC based on
the counts of individual word patterns. Let

where 62 = Ey (1= 350) (1- 3% ) with By =
%. It has been shown that, for every word w, Zy
is approximately normally distributed when k > r + 2.
When the sequence is long, we expect Zmax(k) =
MaXy, jw|=k |Zw| to be large when k < r+1, while it is mod-
erate when k > r + 2. Similar to the ideas given above, we
can estimate the order of the MC by

Zmax(k +1
f’z:argmin{maX(_{—)} -1 (11)

k Zmax (k)
We are interested in knowing the power loss of the

2 . . .
X “-statistic when any of the estimated orders of the two
sequences are used for the comparison of MC sequences.

Alignment-free comparison of two Markov sequences
based on NGS reads

We then investigate the comparison of sequences based
on NGS reads. We first extend the x2-statistic in Eq. (4)
to be applicable to NGS reads. We then extend the
methods for estimating the order of MC sequences for
long sequences to be applicable to NGS reads. Finally,
we study the optimal word length for genome compar-
ison based on NGS reads and investigate the effect of
sequence length, read length, distributions of reads along
the genome, and sequencing errors on the power of the
statistic.

Alignment-free dissimilarity measures for comparing
Markov sequences based on NGS reads

Next generation sequencing (NGS) technologies are
widely used to sequence genomes. Instead of whole
genome sequences, NGS data consists of short reads with
lengths ranging from 100 bps to several hundred base
pairs depending on the sequencing technologies. Since
the reads are randomly chosen from the genomes, some
regions can be sequenced multiple times while other
regions may not be sequenced. The log-likelihood ratio
statistic in Eq. (3) for long sequences cannot be directly
extended to NGS reads because of the dependence of the
overlapping reads. On the other hand, the x2-statistic in
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Eq. (4) depends only on word counts in the two sequences,
and thus can be easily extended to NGS read data. We
replace Ny, in Eq. (4) by NX, the number of occurrences
of word pattern w among the NGS reads, to obtain a new
statistic,

2
(NS = NEONG O NG)

R R(— R(—
NEONGTNES

$=3 Y ¥

s=1 wiwp-Wi_1 Wk

(12)
2
R R
R ZL1L2 <Pw(1) _pw(2)> 13
ST = 13
W L1P5(1)+L2P5(2)

We will use Sf to measure the dissimilarity between the
two sequences.

Estimating the order of a Markov sequence based on NGS
reads

We next extend the estimators of the order of a MC
in “Estimating the order of a MC sequence” subsec-
tion to NGS reads. The estimators raic and rgic can-
not be directly calculated because the likelihood of the
reads is hard to calculate due to the potential over-
laps among the reads. On the other hand, the other
remaining estimators in “Estimating the order of a MC
sequence” subsection, rps, rs,7p, and rz, depend only
on the word counts and we can just replace N, in
these Eqs. by NX for the NGS data. For simplicity of
notation, we will continue to use the same notation
as that in “Estimating the order of a MC sequence”
subsection for the corresponding estimators. Similar to
the study of long sequences, we investigate the power
loss of the statistic Sf when the estimated orders of the
sequences are used to compare the power of Sf when the
true orders of the sequences are used.

Results

Optimal word length for the comparison of Markov
sequences using the y2-statistic

The following theorem gives the optimal word length for
the comparison of two sequences using the y2-statistics
given in Eqgs. 4 and (5). The theoretical proof is given in
the Additional file 1.

Theorem 1 Consider two Markov sequences of orders
r1 and ry, respectively. We test the alternative hypothesis
Hjy: the transition matrices of the two Markov sequences
are different, versus the null hypothesis Hy: the transition
probability matrices are the same, using the x>-statistic in
Egs. (4) and (5) . Then the power of the x>-statistic under
the alternative hypothesis is maximized when the word
length k = max{ry,r} + 1.
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In the following, we present simulation results to show
the power of the statistic Sy in Egs. (4) and (5) for differ-
ent values of sequence length and word pattern length. We
simulated two Markov sequences A; and Aj with different
transition matrices and then calculated the distributions
of the x2-statistic. We set the length of both sequences to
be the same L: 10, 20 and 30 kbps, respectively, and started
the sequences from the stationary distribution. We sim-
ulated MCs of first order and second order, respectively.
Tables 1 and 2 show the transition probability matrices of
(a) the first and (b) the second order transition matrices
we used in the simulations. Here we present simulation
results based on transition matrices from Tables 1 and 2
for simplicity. We also tried other transition matrices and
the conclusions were the same.

The parameters «;, B, v, 8, i = 1,2, in Table 2 control
the transition matrix of the second order MC. Note that if
o = Bi = y; = 8;, i = 1,2, the MC will become a first
order MC.

Under the null hypothesis, sequences A; and A follow
the same Markov model. So we set the transition matrices
for both A; and A; to be Table 1. Under the alternative
hypothesis, the two sequences are different and we set the
transition matrix of sequence A; to be from Table 1 and
the transition matrix of sequence A, to be from Table 2.
We set the parameters of Table 2 tobe (1) o; = 8; = y; =
8; =005 i =1,2,and 2) a1 = ay = 0.05,81 = B =
—0.05,y1 = y» = 0.03,8; = 3 = —0.03. The former
scenario corresponds to the situation that sequences A;
and A have different orders and the latter scenario corre-
sponds to the situation that they both have first order but
different transition matrices. We then calculated the dis-
similarity measure between sequence A; and A using the
¥ 2-statistic in Eq. (4).

We repeated the above procedures 2000 times to obtain
an approximate distribution of Sx under the null hypothe-
sis. We sorted the value of Sy in ascending order and took
the 95% percentile as a threshold. Under the alternative
hypothesis, the power is approximated by the fraction of
times that Sy is above the threshold.

Figure 1 shows the relationship between the word size
k and the power of Sy for long sequences of different
lengths. It can be seen from the figure that the power of S
is highest when the word length is koptimal = max{ry, r2} +

Table 1 The transition probability matrix of the first order Markov
chain in our simulation studies

A @ G T
A 0.1 0.2 0.3 04
C 0.2 0.3 04 0.1
G 0.3 04 0.1 0.2
T 04 0.1 0.2 0.3
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Table 2 The transition probability matrix of the second order
Markov chain

A C G T
AA 0.1+ 0.2-a 0.3+an 04-a
AC 0.240 0.3-ay 04+ 0.7-a»
AG 0.3+ 0.4-a 0.1+ 0.2-a)
AT 04+a 0.1-a3 0.2+ 0.3-a
CA 0.1+ 0.2-p 0.3+ 04-B,
cC 0.2+ 0.3-B 04+ 0.1-82
CG 0.3+ 04-p4 0.1+, 0.2-82
cT 04+p 0.1-B1 0.2+8; 0.3-B2
GA 014y 0.2-y 0.3+ 04-y»
GC 024y 0.3-y 04+y» 0.1-y»
GG 034y 04-y 0.14+y» 0.2-y>
GT 0.4+, 0.1-1 02+y» 0.3-y»
TA 0.1+6; 0.2-6; 0.3+6> 04-8
TC 0.2+61 0.3-6; 04+6> 0.1-8
TG 0.3+61 0.4-6; 0.1+6> 0.2-8
T 04+61 0.1-8 0.244; 0.3-6;

1. When the word length is less than the optimal value, the
power of S can be significantly lower. On the other hand,
when the word length is slightly higher than the optimal
word length, the power of Sk is still close to the optimal
power. However, when the word length is too large, the
power of Si can be much lower.

Given long sequences, the orders of the MCs are usually
not known and have to be estimated from the data. We
then studied how the power of S; changes when the esti-
mated orders of the sequences are used compared to the
power when the true orders of the sequences are known.
Let 71 and 79 be the estimated orders of sequences A; and
Ay, respectively. We compared the power of S; where k=
max {?’1, ?"2} +1 with that of Sx_optimal Where k—optimal =
max {ry,r2} + 1. The power loss is defined as the differ-
ence between the power of Sx_optimal and that of S;. When
both sequences are of first order, there was no power loss
in our simulations. Figure 2 shows the power loss using
different methods to estimate the orders of the sequences
described in Egs. (6) to (11) when the first sequence is of
first order and the second sequence is of second order.
There are significant differences among the various esti-
mators when the sequence length is below 20 kbps. The
power loss is minimal based on raic, ric, and r, for all
three sequence lengths from 10 to 30 kbps, indicating their
good performance in estimating the true Markov order
of the sequence. When the sequence length is long, e.g
30kpbs, the power loss is minimal for all the estimators
across the sequence lengths simulated.
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0 1 2 3 4 5 6 0 1 2 3 4 5
Word length k Word length k
Fig. 1 Relationship between the word length k and the power. The transition matrix of sequence A; is from Table 1 and the transition matrix of
sequence A; is from Table 2 with the parameters being (@) o = B = y; = §; = 0.05, i = 1,2 for the first order MC and (b) a1 = a, = 0.05,
B1 = By =—005y1 =y, =003,8; =8 = —0.03 for the second order MC

Optimal word length for SZ for the comparison of two
Markov sequences with NGS data

The distribution of Sf was not known previously. In this
paper, we have the following theorem whose proof is given
in the Additional file 1.

Theorem 2 Consider two Markov sequences with the
same length L and Markov orders of r1 and ry, respec-
tively. Suppose that they are sequenced using NGS with
M reads of length « for each sequence. Let S}f be defined
as in Egs. (12) and (13). Suppose that each sequence can
be divided into (not necessarily contiguous) regions with
constant coverage r; for the i-th region, so that every base

1r
——AIC
——BIC
0.8’ —+—r.|.
r
p
g 0.6f ——Tpg
- —+Iz
2 0.4}
)
o
0.2+
Y\.:

10,000 20,000 30,000
Length of long sequence

Fig. 2 The power loss of the x 2-statistic based on the estimated
orders of the long sequences. A first order and a second order Markov
long sequences are used

is covered exactly r; times. Let Li; be the length of the i-
th region in the short read data for the s-th sequence and
lim;— oo Lis/L = fi, s=1,2. Then

1. Under the null hypothesis that the two sequences
follow the same Markov chain, as sequence length L
becomes large, Sf /d is approximately x>-distributed
with degrees of freedom dfy = (C — 1)CK=1, where C
is the alphabet size and

_ Zirizi

d S

(14)

In particular, under the Lander-Waterman model,
the reads are randomly sampled from the long
sequence so that the NGS reads follow a Poisson
process with rate A = Mk /L [29], for r; = i,
fi=Mexp(—A)/id =1+ A

2. Ifwe use Sllf to test whether the two sequences follow
the same MC, under the alternative hypothesis, the
power ofo is the highest when k = max{ry,r2} + 1.

To illustrate the first part of Theorem 2, we simu-
lated the distribution of Sf under the null hypothesis. We
assumed that both sequences are of order 1 with the tran-
sition probability matrix from Table 1. First, we generated
MCs with length of L = 10 and 20 kbps, respectively.
The simulations of long sequences were the same as in
“Optimal word length for the comparison of Markov
sequences using the y2-statistic” subsection. Second, we
simulated NGS reads by sampling a varying number of
reads from each sequence. The sampling of the reads was
simulated as in [26, 30]. The length of the reads was
assumed to be a constant x = 200 bps and the number of
reads M = 100 and 200 bps, respectively. The coverage of
reads is calculated as A = Mk /L. Two types of read distri-
butions were simulated: (a) homogeneous sampling that
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the reads were sampled uniformly along the long sequence
[29], and (b) heterogeneous sampling as in [31]. In het-
erogeneous sampling, we evenly divided the long genome
sequences into 100 blocks. For each block, we sampled a
random number independently from the gamma distribu-
tion I'(1, 20). The sampling probability for each position
in the block is proportional to the chosen number.

Sequencing errors are present in NGS data. In order to
see the effect of sequencing errors on the distribution of
Sf, we simulated sequencing errors such that each base
was changed to other three bases with equal probabil-
ity 0.005.

Once the reads are generated, we then calculated Sf
between two NGS read data sets. In our simulation study,
we fixed k = 3 and the simulation process was repeated
2000 times for each combination of sequence length and
number of reads (L, M) to obtain the approximate distri-
bution of S§ /d, where d is given in Eq. (14).

Figure 3 shows the Q-Q (Quantile-Quantile) plots of the
2000 S§ /d scores v.s. 2000 scores sampled from a st dis-
tribution, where the subscript 48 indicates the degrees of
freedom of the x? distribution. The constant d is 1 + A
where A denotes the coverage for homogeneous sampling;
and d is calculated from Eq. (14) for heterogeneous sam-
pling. It can be seen from the figure that the Q-Q plots
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center around the line y x for both homogeneous
and heterogeneous sampling without sequencing errors.
These observations are consistent with part 1 of the
Theorem 2 . However, when sequence errors are present,
the distribution of S§ /d deviates slightly from st.

We next studied how the power of S}f changes with word
length, sequence length, and sequencing errors. Here we
show the results for the scenario that one sequence has
first order and the other has second order. The results
for the scenario that both sequences are of first order are
given in the Additional file 1.

The type I error was set at 0.05. Figure 4 shows the rela-
tionship between the word length k and the power of Sf
using NGS short reads for different sampling of the reads
and with/without sequencing errors. Several conclusions
can be derived. First, the power of Sf is the highest when
the word length k = max{r;,r} + 1. This is consistent
with the result with long sequences. Second, sequencing
errors can decrease the power of Sf. However, with the
range of sequencing error rates of current technologies,
the decrease in power is minimal. Third, the power of Sf
based on heterogeneous sampling of the reads is lower
than that based on homogeneous sampling of the reads.
Fourth, the power of Sf increases with both sequence
length L and number of reads M as expected.
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Fig. 3 Q-Q plots of the 2000 Sg/d scores v.s. 2000 scores sampled from a ng distribution. The length of sequences L is 20kpbs and the number of
reads M is 200. a homogeneous sampling without errors, b homogeneous sampling with errors, € heterogeneous sampling without errors, and
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We then studied the effect on the power of Sf
using the estimated orders of the Markov sequences
with NGS reads. We used a similar approach as in
“Optimal word length for the comparison of Markov
sequences using the y2-statistic” subsection to study this
problem except that we change long sequences to NGS
reads. Figure 5 shows the results. It can be seen that
the power loss is significant except when r, was used to
estimate the order of the sequences. In all the simulated
scenarios, the power loss is very small when 7, is used to
estimate the orders of Markov sequences. This result is
consistent with the case of long sequences where r, also
performs the best.

Applications to real data

Searching for homologs of the human protein HSLIPAS

We used Sy to analyze the relationship of 40 sequences
chosen from mammals, invertebrates, viruses, plants,
etc. as in [32, 33]. We used HSLIPAS human lipopro-
tein lipase (LPL) of length 1612 bps as the query
sequence and searched for similar sequences from a
library set containing 39 sequences with length from
322 to 14,121 bps. The relationships among all the 40
sequences are well understood. Among the 39 library
sequences, 20 sequences are from the primate division

of Genbank, classified as being related to HSLIPAS, and
19 sequences that are from the divisions other than
the primate division of Genbank, classified as being not
related.

Wu et al. [32] estimated the orders of the 40 sequences
using Schwarz information criterion (SIC) [34] and found
that 13 of them follow independent identically distributed
(i.i.d) model (order = 0) and 27 of them follow a first order
MC. We also used BIC and found the same results as SIC.

As in Wu et al. [32], we used selectivity and sensitiv-
ity to quantify the performance of the measure S; for
different values of k. First, we calculated the dissimilar-
ity between HSLIPAS and each of the 39 sequences using
Sk and then ranked the 39 sequences in ascending order
according to the values of Sy. The sequence closest to
HSLIPAS is ranked as sequence 1, the sequence with
the next shortest distance as sequence 2, etc. Sensitivity
is defined as the number of HSLIPAS-related sequences
found among the first 20 (1-20) library sequences. Selec-
tivity is measured in terms of consecutive correct classi-
fications [35], that is, starting from sequence 1, the total
number of sequences are counted until the first non-
HSLIPAS-related library sequence occurs. Thus, selectiv-
ity and sensitivity are scores from 0 to 20 and higher score
means better performance on the real data set.



The Author(s) BMC Genomics 2017, 18(Suppl 6):732

Page 27 of 142

—~
Q
L=
-

——T.

o
o)
o

——Tpg

—T.

o
o

Power Loss
o
N

o
()

L=10% L=10* L=2"10% L=2"10"
M=100 M=200 M=100 M=200

—
(¢)
-~
—_

——T.

o
©
kel

—— rPS

o
o

_<_rz

Power Loss
o
N

o
)

L=10* L=10* L=2*10% L=2*10"
M=100 M=200 M=100 M=200

d heterogeneous sampling with errors

——T.

T

——Tpg

0.6 —4—I’Z

0.2
0
L=10* L=10* L=2*10%L=2*10"
M=100 M=200 M=100 M=200
@ |
_._rT
0.8 o

——Tpg
0.6 -,

=10 L=10* L=2*10% L=2*10"
M=100 M=200 M=100 M=200
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same as in Fig. 4. a homogeneous sampling without errors, b homogeneous sampling with errors, € heterogeneous sampling without errors, and

Table 3 shows the sensitivity and selectivity of Sy for
different values of k from 1 to 6. It can be seen from
Table 3 that k = 2 yields the best result for both selectiv-
ity and sensitivity. Since about two thirds of the sequences
have estimated order 1 and one third of the sequences
have estimated order 0, the results are consistent with our
conclusion.

Comparison of CRM sequences in four mouse tissues

We also used S to analyze cis-regulatory module (CRM)
sequences in four tissues from developing mouse embryo
[36-38] as in Song et al. [4]. The four tissues we used
are forebrain, heart, limb and midbrain, with the average
sequence lengths to be 711, 688, 657, and 847 bps,
respectively. For each tissue, we randomly chose 500
sequences from the CRM dataset to form the positive
dataset. For each sequence in the positive dataset, we

Table 3 The selectivity and sensitivity of S for different word
length k based on the comparison of HSLIPAS with 39 library
sequences

Word length k 1 2 3 4 5 6
selectivity 7 11 10 7 3 1
sensitivity 13 17 16 13 12 9

randomly selected a fragment from the mouse genome
with the same length, ensuring a maximum of 30% repet-
itive sequences to form the negative dataset. Thus, we
have a negative dataset containing another set of 500
sequences.

We calculated the pairwise dissimilarity of sequences
within the positive and also the negative dataset using
the S; statistic with word length from 1-7. Then we
merged the pairwise dissimilarity from the positive and
negative datasets together. Sequences within the positive
dataset should be closer than sequences within the nega-
tive dataset because the positive sequences should share
some common CRMs. Therefore, we ranked the pair-
wise dissimilarity in ascending order and then predicted
sequence pairs with distance smaller than a threshold as
from the positive sequence pairs and otherwise we pre-
dicted them as coming from the negative pairs. For each
threshold, we calculated the false positive rate and the true
positive rate. Thus, by changing the threshold, we plotted
the receiver operating characteristic (ROC) curve and cal-
culated the area under the curve (AUC). For each tissue
and each word length k, we repeated the above procedures
30 times.

We used BIC to estimate the MC orders of the
sequences. The estimated orders of positive sequences for
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all four tissues are given in the Additional file 1. Almost all
positive sequences in the positive dataset have estimated
orders of 0 or 1. The results are similar for the negative
sequences (data not shown).

Figure 6 shows the relationship between the word length
k and the AUC values in all four tissues using boxplot
for the 30 replicates. It can be seen from the figure that
the AUC values using word length 1-3 are much higher
than that using word length 4-7. The AUC values when
k =1 are slightly higher than that when k =2 and k = 3.
However, the differences are relatively small. The results
are consistent in all four tissues. These results show that
when the word length is close to the optimal word length
based on our theoretical results, the AUC is generally
higher than that when the word length is far away from
the optimal word length based on our theoretical results.

Discussion

In this paper, we investigated only the y2-statistic for
alignment-free genome comparison and the optimal-
ity criterion is to maximize the power of the x2-
statistic under the alternative hypothesis. Many other
alignment-free genome comparison statistics are avail-
able as reviewed in [4, 5]. The optimal word length we
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derived in this study may not be applicable to other
statistics.

We assumed that the sequences of interest are Markov
chains. Real molecular sequences do not exactly follow
Markov chains and the sequences are also highly related.
The relationship between the true evolution distance
between the sequences and the pairwise y2-dissimilarity
using the optimal word length needs to be further investi-
gated. These are the topics for future studies.

Conclusions

In this paper, we study the optimal word length when
comparing two Markov sequences using word count
statistics, in particular, the likelihood ratio statistic and
the corresponding x2-statistic defined in Eq. (4). We
showed theoretically and by simulations that the optimal
word length is k = max{r;,r2} + 1. When the orders of
the sequences are not known and have to be estimated
from the sequence data, we showed that the estimator
rp defined in Eq. (10) and the estimator raic defined
in Eq. (6) have the best performance, followed by rgic
defined in Eq. (7) based on long sequences. We then
extended these studies to NGS read data and found that
the conclusions about the optimal word length continue to
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hold. It was also shown that if we use r,, defined in Eq. (10)
to estimate the orders of the Markov sequences based
on NGS reads 7y and 7y, respectively, and then com-

pare the sequences using S _ p with k— optimal =

optima
max{#y1, 72} +1, the power losé3 is minimal. These conclu-
sions are not significantly changed by sequencing errors.
Therefore, our studies provide guidelines on the opti-
mal choice of word length for alignment-free genome

comparison using the x 2-statistic.

Additional file

Additional file 1: Supplementary Materials. Proofs of Theorem 1 and 2,
simulation results for the comparison of two first order Markov sequences
based on NGS reads and estimated orders of positive sequences in four
mouse tissues. (PDF 274 kb)
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