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Abstract

Background: RNA sequencing (RNA-seq) has become an indispensable tool to identify disease associated
transcriptional profiles and determine the molecular underpinnings of diseases. However, the broad adaptation
of the methodology into the clinic is still hampered by inconsistent results from different RNA-seq protocols
and involves further evaluation of its analytical reliability using patient samples. Here, we applied two commonly used
RNA-seq library preparation protocols to samples from acute leukemia patients to understand how poly-A-tailed mRNA
selection (PA) and ribo-depletion (RD) based RNA-seq library preparation protocols affect gene fusion detection, variant
calling, and gene expression profiling.

Results: Overall, the protocols produced similar results with consistent outcomes. Nevertheless, the PA protocol
was more efficient in quantifying expression of leukemia marker genes and showed better performance in the
expression-based classification of leukemia. Independent qRT-PCR experiments verified that the PA protocol
better represented total RNA compared to the RD protocol. In contrast, the RD protocol detected a higher number of
non-coding RNA features and had better alignment efficiency. The RD protocol also recovered more known
fusion-gene events, although variability was seen in fusion gene predictions.

Conclusion: The overall findings provide a framework for the use of RNA-seq in a precision medicine setting
with limited number of samples and suggest that selection of the library preparation protocol should be based on the
objectives of the analysis.
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Background
RNA sequencing (RNA-seq) has become an important
technology in the comprehensive analysis of disease tran-
scriptomes and holds great promise for clinical applica-
tions including disease diagnosis, therapeutic selection,
and precision medicine strategies [1–4]. The technique
has been particularly insightful in understanding the
pathogenesis and classification of leukemia [5, 6]. For
example, it has enabled identification of a wide variety of
clinically relevant predictive expression biomarkers [4, 7],
fusion-genes and recurrent mutations [8, 9], expressed
variants [5], and alternative splicing events [10] in

different leukemia types. However, as a relatively new
technology, sample preparation protocols and data ana-
lysis methods are still in their infancy and require further
testing before RNA-seq can be translated to standard clin-
ical practice [2].
Generation of a sequencing library for RNA-seq analysis

is a complex, multi-step process and a potential source of
significant variation [11, 12]. This process is most com-
monly carried out using poly-A-tailed mRNA selection
(PA) or rRNA depletion (RD) to eliminate rRNAs that are
naturally abundant in the sample and which would other-
wise dominate the sequence data [13, 14]. However, both
of these mainstream methods have their own advantages
and limitations. For example, recent studies have noted
that the RD protocol captures a wide repertoire of tran-
scripts [15, 16] and works efficiently with degraded RNA
[12, 15]. The high number of intron mapping reads in RD
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datasets may also be advantageous in understanding pre-
mRNA dynamics and the post-transcriptional impact of
microRNAs [17]. In contrast, Li et al. have reported PA
libraries to contain less intronic reads than RD libraries
[12] thereby offering a more cost-effective solution for
gene expression studies [18]. The PA method also appears
to outperform the RD protocol in detecting differentially
expressed genes [15, 18]. However, the assessments of dif-
ferent RNA-seq library preparation protocols have mostly
relied on non-clinical samples [16, 18–20], emphasizing
the need for systematic comparison of library preparation
protocols using patient samples. To address this need, our
comparative analysis provides recommendations for the
application of RNA-seq in clinical or pre-clinical settings
with a limited number of samples.
In this study, we tested the performance of PA and RD

protocols on samples from acute myeloid leukemia (AML)
and acute lymphoblastic leukemia (ALL) patients in a per-
sonalized medicine setting. For each patient sample we
generated two RNA-seq libraries using the PA and/or RD
protocols. We then assessed the effects of the two differ-
ent protocols on i) expression of protein coding and
non-coding RNAs, ii) differential gene expression ana-
lysis, iii) pathway analysis, iv) fusion gene detection,
and v) expressed variant calling. In addition, we mea-
sured the variability introduced by library preparation
in technical replicates along with biological replicates
and developed metrics applicable in routine medical
practice and other small-n settings by integrating
RNA-seq data with variant, biomarker, and ex vivo drug
sensitivity and resistance testing (DSRT) data. Our ana-
lyses showed that PA and RD protocols produced consist-
ent results and that patient heterogeneity represented the
largest source of variation. However, the RD method
captured more transcriptome features whereas PA out-
performed the RD protocol in detecting differentially
expressed genes and leukemic markers. Importantly,
some of the observed discrepancies were clinically rele-
vant and therefore selection of the protocol is a crucial
step in clinical decision-making. Our results are directly
relevant for researchers and healthcare professionals
aiming to apply RNA-seq in a precision medicine setting
to examine transcriptomes of hematological diseases for
clinical assessment and indicate that the selection of the
library preparation protocol should be guided by the study
objectives.

Methods
Patient material
The Helsinki University Hospital Ethics Committee has
approved the study and collection of samples (permit
numbers 239/13/03/00/2010, 303/13/03/01/2011). Bone
marrow (BM) aspirates from two AML and two ALL

patients were collected after signed informed consent
and with protocols in accordance with the Declaration
of Helsinki. Mononuclear cells (MNCs) were isolated by
density gradient separation from the BM of the patients
(Ficoll-Paque PREMIUM; GE Healthcare; Little Chalfont,
Buckinghamshire, UK).

mRNA purification and library construction
Total RNA was extracted from MNCs using the Qiagen
miRNeasy kit (Qiagen, Hilden, Germany). The kit is cap-
able of isolating all types of RNA from a minimal amount
of starting material. Short RNAs (< 200 nt) present in the
total RNA were removed prior to preparation of the
RNA-seq libraries. Next, RNA was quantified using the
Qubit fluorometer (Thermo Fisher, Carlsbad, CA, USA),
while the quality of the RNA samples was measured using
a Bioanalyzer instrument and RNA nano chips (Agilent,
Santa Clara, CA, USA). For the PA protocol, 2.5-5 micro-
gram of total RNA from the ALL 542 and AML 800 sam-
ples was then subjected to oligo(dT) selection using the
Dynabeads® mRNA Purification Kit (Thermo Fisher) as
per the manufacturer’s instructions. The RD protocol was
carried out from 2.5-5 microgram of total RNA from ALL
542, ALL 668, AML 800 and AML 1867 samples using
the Ribo-Zero™ rRNA Removal Kit (Epicentre, Madison,
WI, USA) as per the manufacturer’s instructions. After PA
or RD selection, the samples were purified using Agen-
court AMPure XP SPRI beads (Beckman Coulter, Brea,
CA, USA) to remove chemical contaminants and short
RNAs less than 200 nt in length.
PA and RD samples were further reverse transcribed to

double stranded cDNA using the SuperScript Double-
Stranded cDNA Synthesis Kit (Thermo Fisher). Random
hexamers (New England BioLabs, Ipschwich, MA, USA)
were used for priming the first strand synthesis reaction.
Samples were prepared for RNA-seq using Illumina com-
patible Epicentre Nextera™ technology. After limited cycle
PCR the RNA-seq libraries were size selected (350–700 bp
fragments) in 2% agarose gel followed by purification with
the QIAquick gel extraction kit (Qiagen).

RNA sequencing
Each transcriptome was loaded to occupy one third of the
lane capacity in the flow cell. The cBot-2 system and Tru-
Seq PE Cluster Kit v3 (Illumina, San Diego, CA, USA)
were used for cluster generation, and TruSeq SBS Kit v3-
HS reagent kit and HiSeq2000 instrument (Illumina, San
Diego, CA, USA) was used to generate paired 100-bp
reads according to the manufacturer’s instructions. Nex-
tera Read Primers 1 and 2 as well as Nextera Index Read
Primer (Illumina) were used for paired-end sequencing
and index read sequencing, respectively.

Kumar et al. BMC Genomics  (2017) 18:629 Page 2 of 13



Data analysis
Detailed descriptions of the data analysis methods, tools
and information of used published data are provided in
Additional file 1.

Real-time quantitative reverse transcription-PCR
(qRT-PCR)
Total RNA was extracted from two patients (ALL 542 and
AML 800) and four breast cancer cell lines BT-474, MCF-
7, KPL-4 and SKBR3 with on column DNase treatment.
The RNA was quantified using the Qubit fluorometer. For
each sample, the RNA was divided into three fractions for
total RNA and PA and RD processing. PA capture was
carried out using Dynabeads mRNA Purification Kit
(Thermo Fisher). RD was performed with Ribo-Zero
Magnetic Gold Kit (Epicentre). The cDNA was synthe-
sized using SuperScript III Reverse Transcriptase (Thermo
Fisher). The qRT-PCR reactions were prepared using
10 ng of cDNA from each cell line or patient sample plus
the iQ SYBR Green Super Mix (Bio-Rad, Hercules, CA,
USA), and reactions run on the CFX96 Real Time System
instrument (Bio-Rad). Normalized fold expression values
were calculated by the ΔΔCt method using B2M, GAPDH,
PGK1, and RPLP0 as reference genes and total RNA as
control [21]. The primer sequences are listed in Additional
file 2: Table S8.

PCR and Sanger sequencing
To validate the suspected fusion genes standard PCR was
performed on cDNA from the ALL 542 and AML 800
samples. The cDNA was synthesized from total RNA
using SuperScript III Reverse Transcriptase (Thermo
Fisher). Primers were designed for ST3GAL1-NDAG1,
MCM4-PRKDC, HBB-B2M, PQLC1-CTDP1, NCL-NR4A1
(Additional file 2: Table S8). The cDNA was amplified
with Taq polymerase and using the T Professional thermo-
cycler (Biometra, Göttingen, Germany). No template and
GAPDH were included as negative and positive controls,
respectively. PCR products were run on a 3% agarose gel,
stained with GelRed Nucleic Acid Stain (Biotium,
Fremont, CA, USA) and visualized on a standard UV
trans illuminator. The DNA fragment for the HBB-B2M
fusion gene was excised from the gel, cleaned using the
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel,
Düren, Germany), and quantified using the Qubit dsDNA
HS kit (Thermo Fisher). 4.5 ng of the fragment was used
for Sanger sequencing using both forward and reverse
primers of the HBB-B2M fusion gene and standard
sequencing protocols.

Statistical analysis
Statistical analyses were performed with R version 3.3.1
(2016-06-21) and Prism software version 6.0 (GraphPad
Software, San Diego, CA, USA). In the qRT-PCR analysis,

two-tailed Student’s T-test was used to analyze gene ex-
pression and P-values <0.05 were considered as statisti-
cally significant. Statistical dependence between two
variables was calculated by Spearman’s rank, Pearson’s
correlation analysis and hypergeometric distribution as
implemented in R.

Results
Overview of the study design
To determine the relative merits of two mainstream RNA-
seq protocols in a setting with a limited number of clinical
samples, we prepared technical, experimental, and bio-
logical replicate RNA-seq libraries (Fig. 1a). Altogether
eight libraries were prepared from samples collected from
two AML (patients 800 and 1867) and two ALL (patients
542 and 668) patients. These included two pairs of experi-
mental replicates constructed from the same total RNA
source (800 and 542) and two pairs of technical replicate
libraries (1867 and 668). All libraries were prepared from
high-quality RNA (RNA integrity number ≥ 8.2) and were
subjected to paired-end sequencing using an Illumina
HiSeq instrument. Analytical comparisons were focused
on features relevant for clinical application, therapy
optimization, and disease diagnosis, including transcript
quantification, gene expression patterns, differential gene
expression, and fusion gene discovery. The data analysis
steps, such as quality check, reference genome alignment,
fusion gene identification, variant calling, and gene expres-
sion quantifications are summarized in Fig. 1b. Clinical
details of each patient are shown in Fig. 1c.

Reads and read mapping statistics
We generated on average 146.9 million 94-base-pair reads
(73.5 paired-end read-pairs) for each sample. The base
quality along these reads was uniform and high, with a
median quality score > 30 for all bases. The estimated
average fragment sizes were also similar (280 bp in PA
and 294 bp in RD), further suggesting a high level of tech-
nical similarity between the different libraries. From the
raw reads, an average of 137.5 million reads (89.9-97.2%)
passed quality processing and on average 121.3 million
(78.8-88.8%) mapped to the reference genome (Fig. 2a).
The libraries also had a comparable percentage (95.0-
97.3%) of reads mapping to known human genes. How-
ever, the PA protocol provided higher fractions of exon-
mapping reads (75.2-76.9%) compared to the RD libraries
(52.0-72.6%). Conversely, reads mapping to intronic re-
gions increased from an average of 21.0% in PA to 33.8%
in RD (Fig. 2c). No major differences were seen in normal-
ized gene body read count distributions (Additional file 3:
Figure S1), revealing an accumulation of reads in the
midpoint of the transcripts.

Kumar et al. BMC Genomics  (2017) 18:629 Page 3 of 13



Expression landscape
We observed in total 30,205 features in the PA libraries as
compared to 32,830 features detected in their matched
RD counterparts using an RPKM (reads per kilobase per
million) value of 0.125 as a threshold for minimum ex-
pression [22] (Additional file 3: Figure S2). While rather
similar sets of features were captured, some differences
were observed in specific transcript classes, such as proc-
essed pseudogene (7.82% to 7.03%), lincRNA (5.35% to
4.67%), and snRNA (6.99% to 6.54%) elements, as pre-
sented in a biodetection plot (Fig. 2b, Additional file 2:
Table S1). Overall, the RD protocol detected 20.8 to 26.3%
more of these features compared to PA. Antisense and
miRNA features were also called at greater level by the
RD protocol, while rRNA elements were enriched in the
PA protocol. Notably, discrepancies in the calling of
lincRNA, miRNA, and antisense genes resulted mainly
from protocol differences, given the similar levels of these

types of calls across the technical replicates (Fig. 2b). We
also observed subtle but biologically intriguing variations
in the detection of protein coding gene transcripts. For ex-
ample, a total of 1380 protein-coding genes were called
discordantly between the matched PA and RD libraries at
RPKM threshold of 0.125 (Additional file 3: Figure S3),
which is close to twice that observed between technical
replicates (patient 668 and 1867; Additional file 3:
Figure S4). Further analysis of discordantly identified
protein coding transcripts revealed most of these to be
attributable to RNA preparation (Additional file 2:
Table S2). On one hand, 55 of a total of 71 histone
genes (hypergeometric distribution p-value <0.05) were
overlooked by the PA library protocol at RPKM value
of 0.125. On the other hand, protein-coding genes rele-
vant to cancer such as TGF-β1 mediating the activation
of TGF-β/SMAD signaling pathway in ALL cells [23],
BCL3, a proto-oncogene candidate associated with B-cell
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leukemia [24], and BRD4, which is associated with tran-
scriptional deregulation in leukemia [25] were overlooked
by the RD protocol at this threshold.

rRNA removal efficiency
To compare the rRNA depletion efficiency of the RD
and PA protocols, the fraction of reads aligned to known
human rRNA sequences in each library was quantified
by aligning reads to the rRNA precursor sequences with
the RNA-SeQC software [26]. Rather unexpectedly, the
PA libraries exhibited higher rRNA mapping read rates

than RD libraries (1.8% vs. 0.6%; Fig. 2d). However, the
rRNA mapping rates varied highly (2.24% to 0.04% and
0.67% to 0.48%) even between technical replicate
libraries.

Reproducibility of transcript abundances
Assessment of the concordance of protein-coding tran-
script abundances was made by measuring the correl-
ation of RPKMs between different datasets (Additional
file 3: Figure S6). We found a high level of concordance
between the RPKMs of matched PA and RD samples
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(Spearman rho >0.95) and technical replicates (Spearman
rho >0.98) in agreement with previously published results
[18]. Since RPKM values between protocol-matched bio-
logical replicates (Spearman rho >0.91) and between AML
and ALL samples (Spearman rho >0.88) were less corre-
lated, patient heterogeneity appeared to represent the
largest source of variation in these data. The hierarchical
clustering of protein-coding transcripts with RPKM >4
and coefficient of variation >20 also corroborated the
above findings and revealed that clustering was driven by
disease type and patient rather than library type (Fig. 2e).

Accuracy in expression-based leukemia classification
RNA-seq is often used to identify disease associated
transcriptional profiles and for expression-based disease
classification. To assess how the PA and RD protocols
perform in these popular tasks, the utility of protocols to
classify known leukemia marker and indicator genes was
measured by plotting the true positive rate (sensitivity)
against the false positive rate (100-specificity) at different
fold-changes and RPKM cut-offs to compute the area

under the receiver operating characteristic (ROC) curve
(AUC). Importantly, both protocols distinguished target
genes from the remaining human transcriptome well in this
test, which produces robust results even in the lack of repli-
cates. The PA protocol, however, systematically surpassed
the RD protocol and generated 1-4% better AUC measure-
ments. For example, it achieved a 1% larger AUC as com-
pared to the RD protocol in detecting fold-differences in
expression in a set of 421 AML and ALL indicator genes
reported by Haferlach and colleagues [27] (Fig. 3a), and
4% larger AUC in detecting a set of 78 genes differentially
expressed between AML and ALL in four independent
microarray studies (Fig. 3b) [28–31]. The PA protocol also
provided consistently higher RPKM values for the target
genes for 17 clinically approved drugs used for AML and
ALL treatment (Fig. 3c), ex vivo experimental drug candi-
dates that were either highly sensitive or resistant in each
patient case (in-house drug sensitivity and resistance test-
ing experiments) [32, 33] (Fig. 3d), and for the leukemia-
specific marker genes (Fig. 3e and f). The list and details
of clinically approved drugs, experimental drugs and gene

a b c 

d e f 

Fig. 3 Receiver operating characteristics (ROC) analysis. a, b ROC curves of differentially expressed genes between AML and ALL, the plot shows
higher AUC with the PA method. c Genes were selected from the literature based on putative targets of 17-oncology drugs used in clinic for the
AML and ALL treatment. d The gene targets of 47 approved and investigational oncology compounds, which had high efficacy towards primary
AML and ALL samples based on in-house ex vivo drug testing data. e Leukemia specific marker genes from microarray based published studies.
f Cluster of differentiation (CD) marker genes. The PA protocol provided constantly higher RPKM values for the target genes in all comparisons
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targets used for ROC analyses are available in Additional
file 1 and Additional file 2: Table S3.

Independent validation of RD and PA expression
estimates
To further evaluate the impact of library preparation on
mRNA expression estimates, we prepared i) total, ii) PA,
and iii) RD processed RNA isolates from two leukemia
patient samples and four breast cancer cell lines and
measured the expression of a set of oncogenes by qRT-
PCR. Interestingly, analysis of the expression of five
oncogenes in the patient samples showed that the RD
protocol captured target mRNAs less efficiently than the
PA protocol (Fig. 4a and b). While only one gene, NABP1,
was significantly depleted after PA processing, three genes
(POLR1B, SRM, and TGFB1) were all depleted in the
RNA from the RD protocol (Additional file 3: Figure S7).
Next, expression changes of these five genes between
AML and ALL within the protocols were computed and
compared to those derived using RNA-seq, validating our
finding that the PA protocol suits better for differential
gene expression analysis (Fig. 4c and d). Similarly, we ob-
served that the target genes were under detected in the
RD library in an independent set of four human breast
cancer cell lines when compared to total RNA (Fig. 4e and
f). For the PA library prepared RNA, we had similar ob-
servations, although the difference between total RNA
was less than that seen in patient samples. Importantly, in-
dividual gene expression assessment in the cell lines
showed that out of 9 tested genes, only STAT3, NABP1
and TET2 were significantly depleted in the PA enriched
library (Fig. 4e), whereas NRAS, STAT3, TET2, EMD,
SRM, TGFB1, and ZFP36L2 all showed a significant differ-
ence between the RD library and total RNA (Fig. 4f).
Finally, we observed that the RD method efficiently de-
pleted rRNA compared to the PA protocol confirming our
findings from the RNA-seq data (Fig. 4g). As expected,
three small nucleolar RNAs and one miRNA in two breast
cancer cell lines (MCF7, SKBR3) were not captured as ef-
ficiently by the PA compared to the RD method (Fig. 4h),
indicating that the PA protocol may overlook non-coding
transcripts and confirming also this aspect of our results.

Fusion gene detection
The detection of genome rearrangements and transcrip-
tional abnormalities resulting in in-frame expressed fusion
genes plays a major role in the diagnosis and treatment of
many hematological and other cancers [8, 34]. However,
routine clinical testing is currently limited to the detection
of a few well-known fusions while RNA-seq could allow
means for their global interrogation [2]. To evaluate the
efficiency of the PA and RD protocols in detecting fusion
genes, the FusionCatcher [35] software tool was applied to
the datasets. Altogether, the analysis reported 25 high

quality (supported by ≥ 10 spanning reads; Fig. 5) and 102
other fusion gene candidates (Additional file 3: Figure S8)
that were categorized into five types. Most fusion calls
were read-throughs (48.8%) followed by putative fusions
(25.1%), probably false positive read-throughs (10.2%),
known fusions (7.8%), already known fusion read-
throughs (3.9%), and reciprocal fusions (3.9%) (Additional
file 3: Figure S8). Of these, the known fusions genes repre-
sented the clinically most important candidates with well-
known roles in leukemia pathogenesis. Included in this
category was the BCR-ABL1 in-frame fusion gene that was
supported by >180 spanning pair-end reads in both ALL
542 libraries, two in-frame fusions TCF3-PBX1 (135 and
145 spanning reads) and TPM4-KLF2 (12 spanning reads
in each replicate) that were detected in both ALL 668
libraries, and KMT2A − MLLT4 (16 and 36 spanning
reads) that was discovered in both AML 1867 libraries
(Fig. 5). In contrast to the high-quality detections, more
variance was seen across detections with <10 read pairs.
For example, the known fusion ST3GAL1 − NDRG1
(CDS-truncated) was detected only in ALL 542-PA (5
spanning reads), the MCM4-PRKDC (UTR-intronic) only
in ALL 542-RD (3 spanning reads), PQLC1-CTDP1 (6
spanning reads) and ARL17A-KANSL1 (4 spanning reads)
only in AML 800-RD (Additional file 3: Figure S8). Inter-
estingly, lower quality fusion gene detection among tech-
nical replicates also varied notably. For example, only one
of the replicates supported the presence of the known
fusion genes KCTD5-AC141586.5 (10 spanning reads) and
OAZ1-KLF2 (4 spanning reads) in ALL 668, while the
TPM4 − KLF2 (12 spanning reads) was identified only in
one AML 1867-RD library (Additional file 3: Figure S8),
indicating that low coverage may indeed impair fu-
sion gene detection.
To confirm some of the low confidence fusion genes,

we tested the presence of five fusion partners with
discordant fusion detections in two samples (AML 800
and ALL 542) using a standard PCR assay. PCR amplifica-
tion of ST3GAL1-NDRG1 (5 spanning reads in ALL 542-
PA), MCM4-PRKDC (3 spanning reads in ALL 542-RD),
PQLC1-CTDP1 (6 spanning reads in AML 800-RD), NCL-
NR4A1 (3 spanning reads in AML 800-PA) and HBB-
B2M (8 spanning reads in ALL 542-RD) failed to detect
the fusion gene, except HBB-B2M in ALL 542-RD. How-
ever, Sanger sequencing did not confirm the HBB-B2M
fusion, which could be due to low abundance of the
fusion in the sample or false positive prediction by
the FusionCatcher tool (Additional file 2: Table S9).

Variant detection
Variant detection based on RNA-seq data provides an effi-
cient means to detect sequence variation in those genes
that are expressed in the sample [36]. However, the suit-
ability of the two mainstream RNA-seq library preparation
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protocols on variant discovery has not yet been ad-
dressed thoroughly using patient samples. To under-
stand the potential of each protocol to characterize
variants associated with AML and ALL, we extracted
the genomic coordinates of all nonsense (743 bp ana-
lyzed), missense (12,782 bp analyzed), frameshift deletion

(2044 bp analyzed) and frameshift insertion (1047 bp ana-
lyzed) AML and ALL variants from the COSMIC database
[37] and computed their coverage efficiency as a function
of sequencing depth (Fig. 6). Similar to the results
observed in gene expression analyses, the PA method out-
performed the RD method and captured a higher amount
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of target bases at all read count and depth cut-offs (Fig. 6,
Additional file 3: Figure S5). The most profound differ-
ence was at low read counts (from 1 M to 10 M), which is
best explained by the lower rate of intron mapped reads in
the PA libraries (Fig. 2c) and high fraction of exonic vari-
ants in the test data. For example, the RNA-seq data ori-
ginating from the PA protocol covered around 25, 31 and
35% of target regions with at least 15× depth, capturing
roughly 6, 4, and 3% more AML and ALL associated vari-
ants than the RD protocol, respectively. At higher read
counts we observed more marginal differences, with both
protocols capturing >42% of the target bases (Fig. 6).

Higher read depths also increased the consistency
(Additional file 2: Table S4). For example, a higher level
of concordance between matched RD and PA libraries
was observed at ≥15× (Phi correlation >0.82) than ≥5×
(Phi correlation >0.69) threshold. Overall, the level of con-
cordance was higher between technical replicates (Phi cor-
relation >0.86 at ≥15×) and matched RD and PA libraries
(Phi correlation >0.82 at ≥15×) than between biological
replicates (Phi correlation >0.75 at ≥15×).
In addition to the capture efficiency analysis, we per-

formed variant effect annotation and filtering analysis on
discovered variants. On average, 131,623 variants and
293 filtered variants were discovered in the process
(Additional file 2: Table S5). Among these were several
affecting one of the top 20 mutated genes for AML or
ALL (Additional file 2: Table S6). For example, ALL 542-
PA and ALL 542-RD had mutations in CREBBP (p.L161 fs)
and ABL1 (p.T315I; present in 73 samples in COSMIC)
genes, while AML 800-PA and AML 800-RD supported a
mutation in the TP53 gene (p.R273C; present in 142
COSMIC samples). In addition to these three variants
supported by both library preparation protocols, AML
800-PA revealed the presence of a mutation in the
TET2 gene (p.V1949 fs). The library replicates de-
tected mutations in DNMT3A, NRAS, TET2, BCOR,
and CREBBP genes, indicating that variant discovery
had high technical reproducibility and concordance.

Effect of library preparation on pathway enrichment
analysis
We also sought to compare the effect of library preparation
methods on pathway enrichment analysis through the use
of the GOrilla threshold free enrichment approach [38] and
Gene Ontology [39]. For this analysis, protein-coding genes
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were ranked according to their fold-change in an AML
sample compared to its protocol-matched ALL sample and
the whole gene list was analyzed in both ascending (Fig. 7a)
and descending (Fig. 7b) order. Overall, the GOrilla ana-
lyses resulted in similar sets of statistically enriched
(FDR ≤ 0.05) gene ontology terms. Interestingly, analysis of
the RD data resulted in slightly more significant enrich-
ments (Fig. 7a and b), an indication of a stronger signal and
consistency across the different gene lists. However, in most
cases and for both protocols, the reported pathways were
rather generic and revealed no knowledge on disease patho-
genesis. Additional pathway enrichment analysis was per-
formed using QIAGEN’s Ingenuity® Pathway Analysis
(IPA®, QIAGEN Redwood City, https://www.qiagenbioin-
formatics.com/products/ingenuity-pathway-analysis/). This
revealed 19 and 16 canonical pathways enriched by genes
differentially expressed between protocol-matched AML
and ALL samples in the PA and RD comparisons, respect-
ively (Additional file 1 and Additional file 2: Table S7).

Discussion
With the unique ability to comprehensively characterize
transcriptomes, RNA-seq has the potential to revolutionize
clinical testing for a wide range of diseases. However, be-
fore the broader translation of RNA-seq into clinical prac-
tice, additional knowledge is needed to guide the selection
of the library preparation protocol, as different alternatives
can have a significant effect on downstream analysis and

interpretation of RNA-seq outputs [12, 15, 18]. The per-
formance of RNA-seq library preparation protocols has
mostly been tested on non-clinical samples [16, 18–20]
and the impact of protocols on clinical decision-making
has not yet been addressed systematically. Some studies
have even reported marked inconsistencies between RNA-
seq data originating from differently processed libraries
[19, 38], indicating that RNA-seq library preparation could
also influence clinical decision-making.
To fill the gap in knowledge and assess the role of

library preparation protocols on the detection of clinic-
ally important molecular characteristics, we applied two
mainstream library preparation protocols to samples from
leukemia patients and systematically compared their per-
formance in a precision medicine setting. Although the
small number of patient samples in our study is a limita-
tion, especially for differential gene expression and path-
way analysis, it absolutely mimics the clinical scenario and
provides a fair equivalent to the current personalized
medicine practices. Also, it is important to study the be-
havior of RNA-seq in a small-n setting to understand how
RNA-seq performs in situations where only a few samples
are available with no possibility of multiple replicates.
Otherwise there is a risk that RNA-seq protocols are eval-
uated using metrics non-optimal for the goals of precision
medicine and a wrong protocol is translated to standard
clinical practice. Importantly, our study highlighted
important differences between RNA-seq protocols, some
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of which were even clinically relevant, and indicated that
that library preparation protocols have differing prefer-
ences for differential gene expression analysis, transcrip-
tome characterization, fusion gene detection, and variant
discovery.
Read and read mapping statistics demonstrated PA

and RD libraries were largely comparable. All libraries
were constructed from high quality RNA, had approxi-
mately similar insert sizes, and contained roughly the
same amount of different types of reads. In line with
recently published studies [12, 18], the PA protocol cap-
tured more transcripts emanating from exonic regions
than the RD protocol. Given that these exon-mapping
reads positively affect differential expression analysis
[40], the PA protocol is the preferred method in under-
standing differential expression. In contrast, the higher
intergenic or intronic mapped reads counts in the RD
protocol can be advantageous in understanding pre-
mRNA dynamics and identifying previously uncharacter-
ized transcripts [17]. Moreover, the RD protocol captured
6.3% more non-coding RNAs compared to the PA proto-
col and depleted less non-coding RNAs in our qRT-PCR
results suggesting its superiority at characterizing the
non-coding RNA landscapes of the leukemia samples. In
agreement with Sultan et al., [15] we found more rRNA
mapping reads in the PA libraries than RD libraries, sug-
gesting higher efficiency of the RD method to remove
rRNAs compared to the PA method. This finding was fur-
ther supported by expression estimation of rRNA genes in
two patient samples by qRT-PCR. However, the rRNA
mapping rates varied highly between technical replicate
libraries, indicating that this step was greatly affected by
experiment and preparation-dependent factors.
Regarding protein coding gene identification, the RD

protocol performed a bit better and captured a wider
repertoire. This method, for example, detected many
non-polyadenylated protein-coding genes missed by the
PA protocol, corroborating results from an earlier study
[15]. Despite the better capture efficiency of the RD
protocol, several known oncogenes were missed by this
method. For example, TGF-β1, BCL3 and BRD4, which
all have been linked with leukemia development [23–25]
were overlooked by the RD protocol. This suggests that
the PA protocol may suit better for characterization of
leukemia transcriptomes and indicates that selection of
the RNA-seq library protocol should be guided by the
objectives of the study.
Protein coding transcript abundances were largely in

agreement and a high level of concordance was found
between the RPKMs of matched PA and RD samples. If
extrapolated to other leukemia studies, our results indi-
cate that biological features impact more on RNA-seq
data reproducibility than library preparation. Moreover,
disease heterogeneity rather than the protocol limits the

comparison of RNA-seq data across leukemia studies.
Nevertheless, the PA protocol quantified expression dif-
ferences between AML and ALL better and provided
constantly higher RPKM values for leukemia marker
genes. This implies the suitability of the PA protocol for
differential expression analysis is partly attributed to the
higher number of exon-mapping reads in PA libraries,
indicating that the read depth should be a key consider-
ation in the adaption of RNA-seq to leukemia samples.
Validation by qRT-PCR also highlighted the suitability of

the PA protocol for gene expression analysis. In particular,
the PA protocol detected mRNAs efficiently and more ac-
curately reproduced expression differences in clinical sam-
ples. Moreover, the PA protocol performed better in the
analysis of breast cancer cell lines, emphasizing that the
effect of the library preparation is consistent irrespective
of the source of RNA material and type of cancer. In con-
trast, the RD protocol efficiently depleted rRNA molecules
compared to the PA protocol and was better suited for the
non-coding RNA detection. Overall, the qRT-PCR results
suggested that PA better mimics total RNA when analyz-
ing mRNA transcripts, which could be explained by the
higher efficiency of the qRT-PCR reaction in PA libraries
and presence of mature mRNAs in this RNA preparation.
Abnormal fusion genes caused by chromosomal re-

arrangement are important genomic events in leukemia
and characterize a substantial population of the leukemia
cases. For example, the BCR-ABL1 fusion gene is de-
tected in 25–30% of young adult ALL cases [41] and is a
clinical marker for treatment with targeted drugs. Mark-
edly, both RNA-seq protocols successfully identified all
known clinical diagnostic fusion genes BCR-ABL1,
MLLT4-MLL and TCF3-PBX1 in the patient material
with high numbers of supporting reads. This indicates
that RNA-seq and fusion gene analysis can sensitively
detect fusions despite some previous claims to the con-
trary [42]. In addition, many potentially false positive
predictions were made and fusion genes were called ra-
ther discordantly even between protocol and technical
replicates. However, most of the discordantly detected
gene fusions were supported only by a small number of
spanning read pairs, indicating that precision could be
improved significantly using stricter filtering parameters.
Results from PCR amplification of low confidence fusion
genes supported by <10 reads also suggest that fusion
genes supported by few spanning reads may be false pos-
itives and should be validated by other methods, if these
fusions are of interest. However, validation methods such
as PCR amplification followed by Sanger sequencing
may not be sensitive to detect low expressed fusions.

Conclusion
Overall, this comparative study provides preliminary
guidelines for the use of RNA-seq in a personalized
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medicine and other small-n setting, especially for
hematological malignancies. In general, it showed that
both PA and RD protocols produced consistent mea-
sures and were largely of similar usability. However,
the PA protocol outperformed the RD protocol in
more tests and it showed improved performance in
gene expression analysis, classification of leukemia pa-
tients, quantification of leukemic marker genes, and vari-
ant analysis, which are all important for clinical sample
assessment. Given that the study included only a limited
number replicates, it would be beneficial to validate results
using a larger cohort. Additionally, the effect of cDNA
synthesis on library composition should be evaluated.
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