
Zhu et al. BMC Genomics 2017, 18(Suppl 10):879
DOI 10.1186/s12864-017-4271-8

RESEARCH Open Access

Single molecule sequencing-guided
scaffolding and correction of draft assemblies
Shenglong Zhu1*, Danny Z. Chen2 and Scott J. Emrich3

From 6th IEEE International Conference on Computational Advances in Bio and Medical Sciences (ICCABS)
Atlanta, GA, USA. 13-15 October 2016

Abstract

Background: Although single molecule sequencing is still improving, the lengths of the generated sequences are
inevitably an advantage in genome assembly. Prior work that utilizes long reads to conduct genome assembly has
mostly focused on correcting sequencing errors and improving contiguity of de novo assemblies.

Results: We propose a disassembling-reassembling approach for both correcting structural errors in the draft
assembly and scaffolding a target assembly based on error-corrected single molecule sequences. To achieve this goal,
we formulate a maximum alternating path cover problem. We prove that this problem is NP-hard, and solve it by a
2-approximation algorithm.

Conclusions: Our experimental results show that our approach can improve the structural correctness of target
assemblies in the cost of some contiguity, even with smaller amounts of long reads. In addition, our reassembling
process can also serve as a competitive scaffolder relative to well-established assembly benchmarks.

Keywords: Genome improvement, Single molecule sequencing, Sequence assembly, Genome scaffolding

Background
Paired end sequencing, where shorter, high quality
sequences are generated from both ends of a longer DNA
fragment, has been used to improve genome assemblies
(see [1] for a review). This method was a significant
advance since it allowed scaffolding [2] and improved
assembly quality assessment [3]. It also helped resolve
many repetitive sequences that are smaller than the DNA
fragments provided to sequencing [1].

Although the total cost of sequencing has decreased
substantially, the DNA fragment sizes suitable for inex-
pensive sequencing have remained similar. As a result,
repetitive sequences larger than a few thousand bases in
extant genomes largely remain either incorrect or absent.
Prior work has focused on combining different assem-
blers or picking the best assembly (see [4] for a review),

*Correspondence: szhu3@nd.edu
1Department of Computer Science & Engineering, University of Notre Dame,
244 Fitzpatrick Hall, Notre Dame, IN 46556, USA
Full list of author information is available at the end of the article

but these approaches cannot fix errors (or omissions)
produced by all assemblers [2].

Newer sequencing methods, such as Illumina’s long
reads (e.g., [5]) or the more recent 10X Genomics
Chromium platform, will indirectly increase fragment
sizes through localized assembly. If repeats are spread
throughout the genome, instances of repeats should be
unique in each subproblem (reconstructed fragment) and
therefore can be assembled well. If they are not distributed
throughout, as in the case of complex genomes like maize
[6], such approaches will suffer from the same pitfalls of
traditional assembly.

In this paper, we present an alternative framework
that uses single molecule sequencing (SMS) data [7–10].
In contrast to paired end sequencing, SMS platforms
like Oxford Nanopore generate low quality sequences
that currently can be as large as one hundred thousand
nucleotides. Because the sequences are generated from
actual DNA molecules, they are ideal to resolve local
tandem repeats, transposon structure(s), and small-scale
inversions and translocations. Most importantly, this new
method can in theory be applied to any extant genome

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-4271-8&domain=pdf
mailto: szhu3@nd.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 52 of 88

to improve quality. We demonstrate this on both bacterial
and yeast genomes using currently available SMS data.

To the best of our knowledge, the framework of BIG-
MAC [11] is the most similar to ours. BIGMAC, however,
is designed to improve genome accuracy for metagenomic
assembly by extensively relying on the assembly itself. As
a result, it can hardly correct structural errors depicted
in Fig. 1, and this was validated in a comparison. Individ-
ual components of this method are also related to prior
work in assembly improvement. For example, our scaf-
folding step is similar to the likelihood-based gap closing
approach of GMcloser [12], similar to [13], as well as the
recently reported ScaffMatch [14]. In contrast, we com-
pute overlaps between SMS reads in order to more accu-
rately weight the connections between genome regions.
To further validate and compare with prior methods,
we also test our approach on a well-established genome
assembly benchmark (GAGE [15]) at varied coverages of
SMS scaffolding data.

Results
We evaluate the performance of our program, denoted
as SMSC, on both synthetic data and real data as target
assemblies. In the case that the experimental results of dif-
ferent program settings are similar, we present only one of
them.

Synthetic data
Escherichia coli is a well studied organism with a highly
curated genome assembly. For this reason, it is a common
benchmark for assembly software. The input to our pro-
gram is a target assembly with induced structural errors
(see below) and Nanopore long reads that have already
been corrected by Nanocorr [16].

To randomly mutate the complete genome of E. coli
K-12 (accession NC_000913), we wrote a Python script
to cut the genome randomly N − 1 times (N = 50 in

Fig. 2a). Specifically, if the total length of the remaining
genome is L, and there are m cuts to go, then we chose
a cutting point uniformly randomly between length l and
L/(m + 1) (l = 10000 when N ≤ 400 and l = 5000 when
N = 500 in Table 1. The reason we chose different l is to
more accurately represent expected fragmentation post-
assembly given the length of the E. coli sequence). After
this cut, there are (m − 1) cuts to go. After all the cuts, we
then shuffle the pieces and randomly reverse complement
some to eliminate known order and orientation. Further,
we introduced 2% insertion, deletion, and mismatches
each into the new target assembly for correction.

The coverage of these Nanopore long reads is 50x, the
average length is 4070 base pairs (bp), and the upper quar-
tile is 6231 bp. Figure 2 is a before and after example
comparison using these data in our method visualized
using mummerplot [17]. Bacterial genomes are circular,
so the two genome alignment segments actually repre-
sent a single genome. This figure shows that our method
disassembled the erroneous genome and then correctly
reassembled the consistent segments.

To test the performance of our method with higher
fragmentation, we gradually increased the number of
mutations in the mutated genome (see Table 1). The
numbers of relocations and inversions post correction
were assessed by dnadiff, which is another tool in the
MUMmer toolkit. Based on the definition of compar-
isons in [17], translocations are not reported given that
E. coli K-12 is a single sequence. Because dnadiff does
not natively distinguish whether a genome is circular,
there will be a relocation if the starting location of our
output is different from that of the ground truth. We
also noticed that many inferred relocations and inversions
are small and localized. These appear to be insertions
present in our assembly resulting from either imper-
fect read alignments or uncorrected errors in the long
reads.

a

b

c
Fig. 1 A visual overview. a Alignment of long reads to the target assembly. b Extraction of structurally consistent segments from the target assembly.
c The reassembly of the consistent portions has two scaffolds: The first scaffold is formed by the red (1st) segment followed by the reverse complement
(indicated by a leftward arrow) of the blue (3rd) segment in b, and the gap induced by disassembling is then filled by one or more connecting long
reads; the second scaffold is the single green (2nd) segment

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 53 of 88

0
10

00
00

0
20

00
00

0
30

00
00

0
40

00
00

0

0 1000000 2000000 3000000 4000000

m
ut

at
ed

gi|556503834|ref|NC_000913.3|

a

0
10

00
00

0
20

00
00

0
30

00
00

0
40

00
00

0

0 1000000 2000000 3000000 4000000

co
ns

_0

gi|556503834|ref|NC_000913.3|

b
Fig. 2 Comparisons generated by Nucmer and delta-filter (with -r and -q options). a Comparison of the mutated E. coli genome to reference.
b Comparison after applying our method

To see how the coverage of the long reads affects our
method, we downsampled the long reads to 25x and 12.5x,
where the 12.5x sampling is a subset of the 25x sample
(see Table 1). Because the results of using Nucmer and
BLASR as alignment tools are similar for this genome, the
results in Table 1 were all produced using Nucmer as the
alignment tool.

The results of our experiments show that, as expected,
our results depend somewhat on both the coverage of the
long read data and the fragmentation/errors present in the
target assembly. Higher fragmentation produces shorter

fragments, which will lead to shorter validated segments
because our conservative method requires 99% of the long
reads to align. We expect this could be alleviated some-
what by changing the parameters to be 99% of the smaller
of the two sequences or relaxing this threshold.

Real data
S. cerevisiae W303
We downloaded the yeast (S. cerevisiae W303) draft
assembly from [18], and error-corrected PacBio long reads
(10x, upper quartile length of 932bp, already corrected by

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 54 of 88

Table 1 Correction of mutations of E. coli K-12 with two additional downsamples of the 50X data

Coverage # of mutations 50 100 150 200 300 400 500

50x scaffolds 1 1 3 1 2 9 7

Total running time 23m35s 25m 26m37s 27m41s 32m15s 37m51s 38m29s

Stage 1 time 20m31s 20m4s 19m24s 18m37s 18m25s 17m58s 17m30s

Stage 2 time 3m4s 4m56s 7m13s 9m4s 13m50s 19m53s 20m59s

Relocations 1 1 3 2 3 6 5

Inversions 0 0 0 0 0 0 1

N50 4641851 4642418 3799940 4641735 4495031 1610858 2378162

25x scaffolds 3 3 7 16 14 23 39

Total running time 17m47s 18m47s 20m8s 20m56s 23m31s 27m2s 26m7s

Stage 1 time 15m52s 15m27s 15m26s 14m50s 14m21s 14m37s 13m13s

Stage 2 time 1m56s 3m20s 4m42s 6m6s 9m10s 12m25s 12m54s

Relocations 2 1 2 1 3 7 12

Inversions 0 0 0 0 1 3 7

N50 3046572 4641477 4638607 4641947 2781405 906635 1057202

12.5x scaffolds 20 11 18 31 59 74 120

Total running time 16m28s 16m43s 17m17s 17m32s 18m32s 19m34s 18m33s

Stage 1 time 14m31s 13m51s 13m12s 12m37s 11m41s 11m1s 9m45s

Stage 2 time 1m57s 2m52s 4m5s 4m55s 6m51s 8m33s 8m48s

Relocations 3 1 3 6 7 9 11

Inversions 0 0 2 2 1 6 8

N50 1592081 1150026 719436 730221 385833 276032 118970

the Celera Assembler PBcR pipeline) from [19]. After run-
ning our program on this draft assembly with the error-
corrected long reads, the number of contigs increases
from 30 in the draft assembly to 294 (using BLASR as
alignment tool) and 278 (using Nucmer as alignment tool).
Given the short and overall low coverage post long read
correction, however, this added fragmentation is consis-
tent with our earlier simulations.

To our best knowledge, there are only draft assemblies
available for S. cerevisiae W303 [16, 19, 20]. We therefore
used its closely related strain S. cerevisiae S288 (available
at [16]) as in [16]. We then used Quast [21] as the quality
assessment tool to determine the overall quality. As for the
required independent Illumina pair-end reads for Quast
evaluation, we used the S288 data downloaded from NCBI
(SRA accession SRR507778).

In this experiment, we also compared our results with
another scaffolder ScaffMatch [14], which requires tradi-
tional paired end reads for scaffolding. The pair-end reads
were downloaded from [16]. Its coverage is 105.5x. Since
ScaffMatch can only do scaffolding, we use our disassem-
bler output, i.e., the validated segments, as the common
input for both methods. Because our edge weighting is
based on alignments between error-corrected PacBio long

reads, it can therefore fill gaps. ScaffMatch, on the other
hand, can only estimate the size of the gap and insert an
appropriate number of padding characters (usually an ‘N’).

Table 2 shows that even with suboptimal long read
data (10X coverage, <1kb length), the post-correction
result is better than the original target assembly. When
using BLASR as the alignment tool, our method per-
forms the best, followed by ScaffMatch, except that SMSC
with BLASR produces an inversion. Note that the higher

Table 2 Errors determined by Quast on assemblies of S. Cerevisiae
W303

Draft Correction Correction Correction
assembly (BLASR) (Nucmer) (ScaffMatch)

Contigs 30 294 278 204

Misassemblies 108 22 64 26

Relocations 37 7 18 9

Translocations 69 14 46 17

Inversions 2 1 0 0

Misassembled 10 865 048 969 713 3 151 961 1 607 623
contig length

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 55 of 88

fragmentation of our method is somewhat expected given
that we are using less data (10X vs. >105X).

S. aureus USA300
Since we did not use the exact strain in the comparison
above, we decided to also test a well-characterized GAGE
benchmark [15]: S. aureus USA300.

Its complete genome, a draft assembly, and pair-end
reads were downloaded from [15]. Although there are sev-
eral assemblies on GAGE, we present only the results from
the Allpath-LG assembly since there were no detected
structural errors and our method worked best with this
assembler. The accession number for the raw PacBio long
reads data is SRR2063240, which is then error corrected.
After correction by Canu [22], the coverage reduces to
28.63X (from over 293X originally).

Here, we compare with ScaffMatch as before. Since we
used Canu to correct the PacBio long reads, we also pro-
duced a de novo assembly for S. aureus USA300 based only
on long reads. The experiments on the full dataset (the
one with coverage of 293.6x of long reads in Table 3) show
that SMSC has better N50 value but more pieces. This is
because there are 8 contigs of length ≤ 300 and 2 of length
about 1500.

We also downsampled the raw PacBio long reads to
observe the effects of coverage for this genome. Consider-
ing that we downsampled only the raw PacBio long reads
but not the PE reads, the output of ScaffMatch will appear
to be very good. We also take as input for ScaffMatch the
error-corrected PacBio long reads. Since this is not a fair

usage of ScaffMatch, we will denote it by ScaffMatch∗.
Table 3 includes our experimental results from 6 to 10%
of the full coverage, and from this table one can see
that our approach and ScaffMatch have higher contiguity
and identity than de novo assemblies. ScaffMatch almost
always has a constant contiguity because the PE reads
were not downsampled. By taking as input the error-
corrected downsampled PacBio long reads, ScaffMatch∗
outputs improvement of contigs as the downsample-size
increases, as anticipated.

Discussion
Our results indicate that SMSC is competitive with Canu
in terms of contiguity and identity when using lower cov-
erage SMS data. Interestingly, and maybe as expected,
scaffolding using both SMSC and ScaffMatch is worse
than high-depth SMS de novo assembly using Canu.

The higher relocations and misassemblies in ScaffMatch
seem to be caused by gaps induced by regions missing in
mate-pair data. Since ScaffMatch uses the output of the
first stage of SMSC as input, and SMSC implements a
simpler scaffolding algorithm than ScaffMatch, we expect
that our results could improve if we implemented a more
complete algorithm, with the structural consistency com-
petitive with Canu. We leave this implementation as
future work.

Conclusion
Here we presented a new framework that can cor-
rect structural assembly errors using single molecule

Table 3 Quality comparisons for S. aureus USA300 assemblies using downsampled PacBio long reads

Coverage Tools Contigs N50 NG50 AvgIdentity Reloc Trans Inv Total T Stg1 T Stg2 T

293.63x SMSC 13 2585902 2585902 99.99 3 0 0 6m51s 2m12s 4m39s

Canu 5 1492711 1492711 99.98 2 0 0 36m26s N/A N/A

ScaffMatch 14 1099804 1099804 99.98 28 2 0 N/A N/A 1m7s

ScaffMatch∗ 31 611114 479066 99.98 16 0 0 N/A N/A 2m12s

17.54x SMSC 55 91135 91135 99.84 8 0 1 2m15s 1m5s 1m10s

Canu 52 89147 84231 99.64 2 0 0 6m8s N/A N/A

ScaffMatch 13 1131851 1131851 99.85 30 0 1 N/A N/A 1m6s

ScaffMatch∗ 106 50567 49351 99.87 2 0 0 N/A N/A 25s

23.47x SMSC 18 641333 641333 99.94 3 0 0 2m37s 56s 1m41s

Canu 27 224570 224570 99.85 2 0 0 7m29s N/A N/A

ScaffMatch 14 1091191 1091191 99.94 29 0 0 N/A N/A 54s

ScaffMatch∗ 70 89077 89077 99.95 3 0 0 N/A N/A 32s

29.31x SMSC 12 2569515 2569515 99.95 6 0 0 3m6s 1m4s 2m2s

Canu 15 426754 426754 99.92 2 0 0 9m54s N/A N/A

ScaffMatch 13 1091146 1091146 99.96 34 0 0 N/A N/A 54s

ScaffMatch∗ 55 149552 149552 99.97 6 0 0 N/A N/A 37s

The ScaffMatch* means the ScaffMatch that takes error-corrected PacBio long reads as input

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 56 of 88

sequencing (SMS) data. Further, we show that long reads
when applied to an extant genome can fill scaffold gaps
and produce higher overall structural consistency. We
expect this framework to be more useful for researchers
who have invested heavily in a draft genome and do not
want to completely re-sequence this genome.

Methods
In general, our method consists of disassembling and
reassembling genomic regions (Fig. 1). In the first step,
we locate structurally consistent segments in an assembly
(Fig. 1a) and extract these regions (Fig. 1b), thus disassem-
bling the input assembly into smaller, validated portions
(or contigs). In the second step, we reassemble the consis-
tent regions (Fig. 1c) by applying an independently derived
path cover model first proposed as a scaffold problem in
[14] and fill the gaps. The details of our algorithms are
presented below.

Disassembling
Long-read alignment
We first align error-corrected long reads to a target assem-
bly (see Fig. 1a), using either Nucmer [17] or BLASR
[23] (any long-read alignment tool could in theory be
used here). The output of Nucmer/BLASR can be viewed
as a sequence of aligned blocks (DLi, DRi, RLi, RRi),
such that the nucleotides in the range [DLi, DRi] of
the target assembly are aligned to the long read in the
range [RLi, RRi]. If there are overlaps between consec-
utive aligned blocks, either in the draft sequence or in
the long read, we cut off the left ends of the blocks
on the right. We then attempt to close any small gaps
between these aligned blocks via the Needleman-Wunsch
Algorithm, and call the resulting alignment region an
alignment segment.

An alignment segment is kept and used if for any
sequence in the target assembly and a long read, the
following hold: i) For any gap of length g1 between
two aligned blocks [DLi, DRi] and [DLi+1, DRi+1] in the
draft assembly, and for the corresponding gap between
[RLi, RRi] and [RLi+1, RRi+1] of length g2 in the long read,
the value |g1 − g2| is within a chosen threshold (30 in our
experiments); ii) the sum of all alignment blocks for a long
read divided by the length of the long read is larger than a
chosen threshold (0.99 in our experiments). After picking
out these good alignment segments, we claim that if there
are two aligned segments overlapping by at least δ (also a
threshold, 50 in our experiments) in the target assembly,
then these two aligned segments in the assembly should
be merged.

Since we do not have a quantitative measure for block
quality, the choices of these thresholds are based on obser-
vations derived from custom visualizations of the align-
ment results. In general, the first threshold makes sure

that if the target assembly is of high quality, then there are
not too many pieces after disassembly. The second thresh-
old guarantees that the long reads are well-contained in
the target assembly. The third threshold eliminates over-
laps that are not trustworthy while trying to retain con-
tiguity. Using error-corrected long reads maximizes the
number of obtained alignments and is not a requirement
for this step.

The time complexity of the alignment step depends on
the tool used (e.g., BLASR or Nucmer). Sorting the aligned
blocks takes O(a log a) time, where a is the total num-
ber of aligned blocks. Cutting off the overlaps takes O(k)

time, where k is the number of insertions in all the aligned
blocks [DLi, DRi, RLi, RRi]. Closing the gaps takes O(l1l2)
time for each gap, where l1 = DLi+1 − DRi − 1 and l2 =
RLi+1 − RRi − 1. Theoretically, in the worst case, the time
bound could be O(MN), where M is the total length of the
target assembly and N is the total length of all the long
reads; but this is unlikely to happen in practice because
the Needleman-Wunsch Algorithm will not be applied if a
contig and a long read are not already aligned by BLASR or
Nucmer. Another task is to determine whether an align-
ment segment should be kept, which takes linear time to
handle. In general, this alignment step takes O(MN) time
in the worst-case, and may run faster in practice.

Segment extraction
Once we obtain validated segments from the target assem-
bly, we extract these segments and discard the remain-
ing untrustworthy regions (see Fig. 1b). We support two
options for extracting structurally validated segments.
The first one is simple extraction. This option is preferred
if the quality of the target draft assembly is fairly high. The
second option is to generate a new consensus from the
long read data aligned to each segment. This option is pre-
ferred if the draft assembly quality is relatively low (e.g., a
low coverage sequencing scheme).

The first option takes O(K) time, where K is the number
of validated segments. The second option can take much
longer time, because it requires to call BLASR or Nucmer
for another sequence alignment. This new alignment is
then used for consensus of the validated segments.

Reassembling
In this step, our goal is to reassemble the extracted seg-
ments (e.g., Fig. 1c is a possible reassembly). The available
information for closing induced gaps hopefully is within
the remaining unaligned long reads. Therefore, we next
utilize these remaining long reads using a graph-based
theoretical model — which also appeared as the scaffold-
ing problem proposed by Igor et al. [14].

Prior work on this scaffolding problem was to reduce
it to the vertex disjoint problem that is NP-hard, but no
complexity analysis was given for the scaffolding problem.

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 57 of 88

Here, we show that this scaffolding problem is indeed
NP-hard. We also prove that the algorithm presented in
ScaffMatch [14] is a 2-approximation of an optimal scaf-
folding using our independent formulation of this model.

Graph model construction
Our graph model (see Fig. 3 for an example) is derived
from the concept of breakpoint graphs [24–26]. In a
breakpoint graph, each gene is represented by two ver-
tices, indicating the 5’-end and 3’-end of the gene. If two
genes are consecutive in a scaffold, a colored edge will be
added to connect the two corresponding vertices. Follow-
ing the same idea, we view each validated segment as two
vertices, and a dashed edge is added between these two
vertices. A solid edge can be added between two vertices
in the graph if there is a long read bridging them. Similar
edges can be merged in this step. If there are still multi-
ple edges between two vertices, we consider using the one
with the largest support (the number of long reads) (see
Fig. 3a). This construction of the model has the advantage
that in the successive steps of the algorithm, we do not
have to consider the directions of the vertices (as shown in
Fig. 3b and c). Prior approaches of MAIA [13] and Medusa
[27] both require the directions of vertices and edges to be
determined. The directions are usually determined in two
separate phases, which may result in accumulative assem-
bly errors, given that both phases are NP-hard problems
(and therefore approximated). This 2-phase difficulty was
addressed by both our model and the similar graph model
in ScaffMatch [14].

NP-hardness of the scaffolding problem
In this graph, an alternating path that starts at a dashed
edge, followed by a solid edge, . . ., and ends at a dashed

edge, is a possible scaffold (as shown in Fig. 3b). Since
each validated segment should ideally appear in exactly
one scaffold in the final output assembly (i.e., no repeats,
see Fig. 3c), the objective of the problem is to find a set
of (vertex-disjoint) alternating paths that covers all the
dashed edges exactly once. In addition, we can weight the
solid edges between vertices by the number of long reads
that support that connection. Thus, the objective is to find
a maximum weighted alternating path cover.

Formally, the scaffolding problem is defined as follows.

Definition 1 Given a weighted undirected graph
G = (U , U ′; E), where U = {u1, u2, . . . , un}, U ′ =
{u′

1, u′
2, . . . , u′

n}, and E is a set of dashed edges and
solid edges. The dashed edges are exactly {(u1, u′

1),
(u2, u′

2), . . . , (un, u′
n)}. The solid edges may connect any

two vertices in the graph. Each solid edge is assigned a
positive edge weight, and the edge weight for each dashed
edge is 0. An alternating path is defined as a simple path
that starts at a dashed edge, followed by a solid edge, then
a dashed edge, then a solid edge, . . ., and ends at a dashed
edge. The objective is to find a set of alternating paths such
that each vertex and each dashed edge appear in the paths
exactly once (i.e., an alternating path cover), and the sum
of the edge weights in all paths is maximized.

To prove that this problem is NP-hard, we prove that the
decision version of the problem is NP-complete.

Theorem 1 Given a weighted undirected graph G =
(U , U ′; E) defined as above, and a parameter k, the prob-
lem of determining whether there exists an alternating path
cover whose edge weight sum is at least k is NP-complete.

a

b

c
Fig. 3 An example of our underlying graph model. a The graph constructed for four segments. Each dashed edge represents a segment from tail
(5’-end) to head (3’-end). Each solid edge is for a bundle of long reads. b A possible ordering of the vertices/segments. This ordering will also decide
the orientation of the segments in the resulting scaffolds. c The actual ordering and orientation based on the result of b

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 58 of 88

Proof Given any set of paths, we can easily verify
whether they form an alternating path cover and the
weight sum is at least k in polynomial time. Hence, the
decision version of the scaffolding problem is in NP.

To prove that the decision version is NP-complete, we
reduce the Hamiltonian path problem (the undirected
graph version) to this problem. Given an instance I of the
Hamiltonian path problem G = (V , E), we make a copy
of the vertex set V and E as V ′ and E′. Let E ∪ E′ be the
solid edges in the instance I ′ of the decision version of
the scaffolding problem. The dashed edges in I ′ are con-
structed by connecting the corresponding vertices in V
and V ′. The edge weights of the solid edges are all 1’s and
k = n − 1. In this way, we construct an instance of the
decision version of the scaffolding problem in polynomial
time. Figure 4 shows an example of the construction.

(⇒) If there is a Hamiltonian path in I, we can denote
the path as u1 → u2 → · · · → un. Then we can construct
a single alternating path u1 → u′

1 → u′
2 → u2 → u3 →

u′
3 → · · · . The path ends at un if n is even, and at u′

n if n is
odd. The edge weight sum of the alternating path is (n−1).
Each dashed edge and each vertex in I ′ are covered exactly
once, and edges (u′

1, u′
2), (u2, u3), . . . must be in the graph

I ′ because the corresponding edges are in the Hamiltonian
path, and thus in the original graph I.

(⇐) If there is an alternating path cover of edge weight
sum at least (n − 1) in the graph I ′, then the path cover
must be a single alternating path. W.L.O.G, we can assume
that the path starts at a vertex in U. Then the alternating
path would be ui1 → u′

i1 → u′
i2 → ui2 → ui3 → u′

i3 · · · .
We can construct a Hamiltonian path ui1 → ui2 → · · · →
uin since these edges must exist in the graph I.

Hence, the decision version of the scaffolding problem
is NP-complete.

The 2-approximation algorithm
For completeness, we also describe the algorithm pre-
sented in ScaffMatch [14]:

Fig. 4 An example of the NP-completeness reduction. The reduction
is from the Hamiltonian path problem to the decision version of the
scaffolding problem. The instance of the Hamiltonian path problem is
the 5-vertex graph on the left. The instance of the decision version of
the scaffolding problem is the entire graph, including the dashed
edges

1. Find a maximum weighted matching by considering
only the solid edges.

2. Add the dashed edges to the matching.
3. For each alternating cycle, change the smallest

weight of its solid edges to -1, and run steps (1) and
(2) until there is no cycle.

To prove that this is a 2-approximation algorithm, for
simplicity, we relax step (3) such that we remove the small-
est weight solid edge from each cycle. This relaxation is
worse than the iterative algorithm above, but the worst
case is equal. In fact, the current implementation of our
algorithm follows this relaxed version. Our proof is similar
to that for the ordinary path cover problem in [28].

Theorem 2 There is a 2-approximation algorithm for
the scaffolding problem.

Proof Let M∗ be the weight sum of the maximum
matching from step (1), ALG be the output value of the
algorithm presented above, and OPT be the optimal value
of the scaffolding problem. For each feasible solution, after
removing the dashed edges, the solution must be a match-
ing. Hence, we have OPT ≤ M∗. On the other hand, for a
cycle ci, let ki be the number of solid edges in ci. And let
kmin = min{ki}. Since we remove the smallest weighted
edge from each cycle. It follows that ALG ≥ M∗ · (kmin −
1)/kmin. Thus OPT/ALG ≤ kmin/(kmin − 1). In the worst
case, kmin = 2. Hence, OPT/ALG ≤ 2.

Remark 1 If the output of the maximum weighted
matching is improved (i.e., kmin is larger), then the approx-
imation ratio of the algorithm will be better.

The time complexity of our 2-approximation algorithm
is dominated by the maximum weighted matching. We
applied the implementation version of the maximum
weighted matching in the library LEMON [29] whose
time complexity is O(mn log n), where n is the number
of vertices and m is the number of edges in the graph
for matching. Hence, the total time complexity for the 2-
approximation algorithm is O(Km log K), where m is the
number of edges, which in the worst case is the number
of long reads, and K is the number of validated segments,
which is proportional to the number of vertices in the
graph.

Abbreviations
SMS: Single molecule sequencing

Funding
This work was supported in part by NIH grant R21AI112734 and NIH contract
HHSN272200900039C (SJE), NIH grant R21AI123967 (SJE and DZC), and NSF
grants CCF-1217906 and CCF-1617735 (DZC). The publication cost will come
from NIH grant R21AI123967.

Availability of data and materials
The software is available at https://bitbucket.org/NDBL/smsc.

https://bitbucket.org/NDBL/smsc

Zhu et al. BMC Genomics 2017, 18(Suppl 10):879 Page 59 of 88

About this supplement
This article has been published as part of BMC Genomics Volume 18
Supplement 10, 2017: Selected articles from the 6th IEEE International
Conference on Computational Advances in Bio and Medical Sciences
(ICCABS): genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-
18-supplement-10.

Authors’ contributions
SZ implemented the program, designed and performed experiments,
analyzed the data, and prepared the manuscript. SJE provided the
experimental data. DC and SJE supervised this project and edited the
manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science & Engineering, University of Notre Dame,
244 Fitzpatrick Hall, Notre Dame, IN 46556, USA. 2Department of Computer
Science & Engineering, University of Notre Dame, 326E Cushing Hall, Notre
Dame, IN 46556, USA. 3Department of Computer Science & Engineering,
University of Notre Dame, 211B Cushing Hall, Notre Dame, IN 46556, USA.

Published: 6 December 2017

References
1. Nagarajan N, Pop M. Sequence assembly demystified. Nat Rev Genet.

2013;14(3):157–167.
2. Bradnam K, Fass J, Alexandrov A, Baranay P, Bechner M, Birol I, et al.

Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. GigaScience. 2013;2(1):10. Available from: http://
dx.doi.org/10.1186/2047-217X-2-10. Accessed 8 Nov 2017.

3. Phillippy AM, Schatz MC, Pop M. Genome assembly forensics: finding the
elusive mis-assembly. Genome Biol. 2008;9(3):R55–R55.

4. Koren S, Treangen T, Hill C, Pop M, Phillippy A. Automated ensemble
assembly and validation of microbial genomes. BMC Bioinformatics.
2014;15(1):126. Available from: http://www.biomedcentral.com/1471-
2105/15/126. Accessed 8 Nov 2017.

5. McCoy RC, Taylor RW, Blauwkamp TA, Kelley JL, Kertesz M, Pushkarev D,
et al. Illumina TruSeq Synthetic Long-Reads Empower de novo Assembly
and Resolve Complex, Highly-Repetitive Transposable Elements. PLoS
ONE. 2014;09;9(9):e106689.

6. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The
B73 maize genome: complexity, diversity, and dynamics. Science.
2009;326(5956):1112–1115.

7. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al.
Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat Biotechnol. 2012;30:693–700.

8. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap:
upgrading genomes with Pacific Biosciences RS long-read sequencing
technology. PLoS One. 2012;7(11):e47768.

9. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al.
Nonhybrid, finished microbial genome assemblies from long-read SMRT
sequencing data. Nat Methods. 2013;10:563–569.

10. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft
genomes using long read sequence information. BMC Bioinformatics.
2014;15(1):211. Available from: http://www.biomedcentral.com/1471-
2105/15/211. Accessed 8 Nov 2017.

11. Lam KK, Hall R, Clum A, Rao S. BIGMAC: Breaking Inaccurate Genomes
and Merging Assembled Contigs for long read metagenomic assembly.
BMC Bioinformatics. 2016;17(1):435.

12. Kosugi S, Hirakawa H, Tabata S. GMcloser: closing gaps in assemblies
accurately with a likelihood-based selection of contig or long-read
alignments. Bioinformatics. 2015;31(23):3733–3741.

13. Nijkamp J, Winterbach W, Van den Broek M, Daran JM, Reinders M,
De Ridder D. Integrating genome assemblies with MAIA. Bioinformatics.
2010;26(18):i433–i439.

14. Mandric I, Zelikovsky A. ScaffMatch: scaffolding algorithm based on
maximum weight matching. Bioinformatics. 2015;31(16):2632–2638.

15. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al.
GAGE: a critical evaluation of genome assemblies and assembly
algorithms. Genome Res. 2012;22(3):557–567. Available from: http://gage.
cbcb.umd.edu/data/index.html. Accessed 8 Nov 2017.

16. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC,
McCombie WR. Oxford Nanopore sequencing, hybrid error correction,
and de novo assembly of a eukaryotic genome. Genome Res. 2015;25(11):
1750–1756. Available from: http://schatzlab.cshl.edu/data/nanocorr/.
Accessed 8 Nov 2017.

17. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
et al. Versatile and open software for comparing large genomes. Genome
Biol. 2004;5(2):R12.

18. DevNet, PacificBiosciences, (eds). PacificBiosciences/DevNet. Pacific Bio-
sciences of California, Inc.; 2013. Available from: http://datasets.pacb.com.
s3.amazonaws.com/2013/Yeast/HGAP_Assembly/polished_assembly.
fasta. Accessed 8 Nov 2017.

19. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al.
Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat Biotechnol. 2012;30(7):693–700. Available from:
ftp://ftp.cbcb.umd.edu/pub/data/PBcR//corrected/yeast.corrected.fasta.
bz2. Accessed 8 Nov 2017.

20. Ralser M, Kuhl H, Ralser M, Werber M, Lehrach H, Breitenbach M, et al.
The Saccharomyces cerevisiae W303-K6001 cross-platform genome
sequence: insights into ancestry and physiology of a laboratory mutt.
Open Biol. 2012;2(8):120093.

21. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR:
a universal tool for genome assembly evaluation. Genome Biol.
2013;14(5):R47.

22. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM.
Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623–630.

23. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application
and theory. BMC Bioinformatics. 2012;13(1):238.

24. Sankoff D, Blanchette M. Multiple genome rearrangement and
breakpoint phylogeny. J Comput Biol. 1998;5(3):555–570.

25. Aganezov S, Alekseyev MA. Multi-genome Scaffold Co-assembly Based
on the Analysis of Gene Orders and Genomic Repeats. In: Bourgeois A,
Skums P, Wan X, Zelikovsky A, editors. Bioinformatics Research and
Applications: 12th International Symposium, ISBRA 2016, Minsk, Belarus,
June 5-8, 2016, Proceedings. Cham: Springer International Publishing.
2016. p. 237–249. doi:10.1007/978-3-319-38782-6_20. https://doi.org/10.
1007/978-3-319-38782-6_20. Accessed 8 Nov 2017.

26. Alekseyev MA, Pevzner PA. Breakpoint graphs and ancestral genome
reconstructions. Genome Res. 2009;19(5):943–957.

27. Bosi E, Donati B, Galardini M, Brunetti S, Sagot MF, Lió P, Crescenzi P,
Fani R, Fondi M. MeDuSa: a multi-draft based scaffolder. Bioinformatics.
2015;31(15):2443. doi:10.1093/bioinformatics/btv171. http://dx.doi.org/
10.1093/bioinformatics/btv171.

28. Moran S, Wolfstahl V. Approximation Algorithms for Covering a Graph by
Vertex-Disjoint Paths of Maximum Total Weight. NETWORKS. 1990;20(5):4.

29. Dezs B, Jüttner A, Kovács P. LEMON - an Open Source C++ Graph
Template Library. Electron Notes Theor Comput Sci. 2011;264(5):23–45.
Available from: http://dx.doi.org/10.1016/j.entcs.2011.06.003. Accessed 8
Nov 2017.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-10
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-10
http://dx.doi.org/10.1186/2047-217X-2-10
http://dx.doi.org/10.1186/2047-217X-2-10
http://www.biomedcentral.com/1471-2105/15/126
http://www.biomedcentral.com/1471-2105/15/126
http://www.biomedcentral.com/1471-2105/15/211
http://www.biomedcentral.com/1471-2105/15/211
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html
http://schatzlab.cshl.edu/data/nanocorr/
http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/HGAP_Assembly/polished_assembly.fasta
http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/HGAP_Assembly/polished_assembly.fasta
http://datasets.pacb.com.s3.amazonaws.com/2013/Yeast/HGAP_Assembly/polished_assembly.fasta
ftp://ftp.cbcb.umd.edu/pub/data/PBcR//corrected/yeast.corrected.fasta.b z2
ftp://ftp.cbcb.umd.edu/pub/data/PBcR//corrected/yeast.corrected.fasta.b z2
http://dx.doi.org/10.1007/978-3-319-38782-6_20
https://doi.org/10.1007/978-3-319-38782-6_20
https://doi.org/10.1007/978-3-319-38782-6_20
http://dx.doi.org/10.1093/bioinformatics/btv171
http://dx.doi.org/10.1093/bioinformatics/btv171
http://dx.doi.org/10.1093/bioinformatics/btv171
http://dx.doi.org/10.1016/j.entcs.2011.06.003

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Synthetic data
	Real data
	S. cerevisiae W303
	S. aureus USA300

	Discussion
	Conclusion
	Methods
	Disassembling
	Long-read alignment
	Segment extraction

	Reassembling
	Graph model construction
	NP-hardness of the scaffolding problem
	The 2-approximation algorithm

	Abbreviations
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

