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in pan-cancer analysis
Claudia Cava1* , Gloria Bertoli1, Antonio Colaprico2,3, Catharina Olsen2,3, Gianluca Bontempi2,3

and Isabella Castiglioni1*

Abstract

Background: Modern high-throughput genomic technologies represent a comprehensive hallmark of molecular
changes in pan-cancer studies. Although different cancer gene signatures have been revealed, the mechanism of
tumourigenesis has yet to be completely understood. Pathways and networks are important tools to explain the
role of genes in functional genomic studies. However, few methods consider the functional non-equal roles of
genes in pathways and the complex gene-gene interactions in a network.

Results: We present a novel method in pan-cancer analysis that identifies de-regulated genes with a functional role
by integrating pathway and network data.
A pan-cancer analysis of 7158 tumour/normal samples from 16 cancer types identified 895 genes with a central role
in pathways and de-regulated in cancer.
Comparing our approach with 15 current tools that identify cancer driver genes, we found that 35.6% of the 895
genes identified by our method have been found as cancer driver genes with at least 2/15 tools.
Finally, we applied a machine learning algorithm on 16 independent GEO cancer datasets to validate the diagnostic
role of cancer driver genes for each cancer. We obtained a list of the top-ten cancer driver genes for each cancer
considered in this study.

Conclusions: Our analysis 1) confirmed that there are several known cancer driver genes in common among
different types of cancer, 2) highlighted that cancer driver genes are able to regulate crucial pathways.
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Background
Although an increasing number of disease biomarkers
have been identified through high-throughput data, their
reproducibility and overlap are poor. This poor reprodu-
cibility is possibly due to the fact that individual
biomarkers are often selected without considering their
metabolic role in terms of their cellular function.
Many studies have thus hypothesized that a more

reproducible method may be to analyze gene expression
profiles over functional pathways that express different cel-
lular functions (e.g. i.e. cell cycle, apoptosis, proliferation)

[1, 2]. Databases such as Gene Ontology [3], Reactome [4],
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[5], and Biocarta [6] describe the different cellular func-
tions (pathways) as exploited by a list of genes. However,
this functional pathway representation attributes the same
functional significance to each gene in the list without
considering the impact of gene interactions in performing
this function.
What kinds of connections are there among genes in

functional pathways? Some tools, such as GeneMania
[7], describe the biological relationships among the
cellular components, i.e. physical interactions, genetic
interactions, shared-protein functional domains, or the
co-localization of molecules. These connections identify
those gene regulatory networks that play crucial roles in
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many key biological processes, such as cell differenti-
ation, metabolism, cell cycles, and signal transduction.
Establishing the role of a gene within pathways and

networks facilitates a multi-layered description of its
functional role in both physiological and pathological
conditions, and enables the network drivers to be identi-
fied [8]. When a pathological process is ongoing, the
dynamics of pathways and networks are altered. Thus,
the integration of networks with pathways can help to
describe these dynamics and to identify the key network
drivers with a functional role in the onset and progres-
sion of a disease. A perturbation of the expression level
of a key network driver should have a larger impact on a
pathway function compared to a non-key network driver,
and on the network itself because of the connections be-
tween this gene and its downstream effectors.
Only a few methods have defined indexes that meas-

ure how central the role of a gene is in a functional
pathway in terms of biological networks [9, 10]. These
indexes could help to identify genes with key biological
relationships within a functional pathway [9, 10], and to
identify key network drivers. For example, in a graph
analysis of a biological network, the degree centrality
[9, 10] quantifies the number of interactions (edges)
connected to a gene (node).
Several studies have shown that the absence of muta-

tions in genes with a high degree centrality is vital for
organism survival [11]. Indeed, the degree centrality can
identify genes with a key role in the functional pathway
[7, 8]. Degree centrality has been used by Fang [9] in an
approach called “Gene Association Network-based
Pathway Analysis” (GANPA) in order to assign a weight
for each gene within pathways. The assignment of
weights for each gene in a pathway is based on to its
relative association with genes inside and outside the
pathway in a functional association network, based on
protein-protein interactions, co-annotations, and co-
expression. GANPA has also been proposed as a tool for
the Functional Category Score (FCS), where a weighted
gene is integrated with an expression change value to
detect pathways with significant expression changes.
Dong et al. [10] adopted a similar approach to

GANPA and developed a new tool for Over-
Representation Analysis (ORA) called "functional Link
Enrichment of Gene Ontology or gene sets" (LEGO).
The main differences between ORA and FCS are: 1)
FCS uses profiles of gene expression values, whereas
ORA only considers the genes of interest, 2) the stat-
istical test for FCS is based on the gene set, whereas
ORA uses the interesting genes [10]. The aim of both
GANPA and LEGO is to identify the relevant path-
ways of a particular condition.
The cancer research community refers to ‘cancer

driver’ genes as genes whose perturbation (in the

expression levels or in the sequence) confers a selective
advantage to tumour growth [12]. Cancer driver genes
need to be distinguished from ‘passenger’ genes, i.e.
those genes whose mutation does not give any fitness
advantage to the tumour [13]. In cancer, driver genes are
those that accumulate mutations, or those that are
differentially expressed in tumours vs normal samples
(differentially expressed genes) [14, 15]. Both cases could
lead to cancer initiation and development. Several
studies have demonstrated that driver genes and driver
mutations tend to accumulate in a limited number of
cellular pathways, in which these driver genes have a
central role [16–18].
Here, we propose an application of the GANPA/LEGO

approach for the integrative analysis of multi-networks
with multi-pathways with a novel purpose with respect
to previous studies [9, 10]. Our aim was to reveal those
network drivers that control key biological processes in
a pan-cancer study.
In our approach, the GANPA/LEGO method was also

extended by integrating biological multiplex networks.
We thus defined key cancer network drivers as those
cancer drivers that are simultaneously highly connected
in at least two interaction types.
From an analysis of 7158 tumour/normal samples of

16 cancer types, we identified 895 differentially
expressed genes with a central role in pathways and
networks. These genes are deregulated in cancer with a
reduced False Discovery Rate (FDR) compared to that
obtained by commonly used differential expression ana-
lyses. For each cancer type, we also obtained a list of
the top 10 cancer drivers able to classify normal versus
tumour samples, with a high performance in independ-
ent datasets.

Methods
The computational approach
We used a modified version of the GANPA/LEGO algo-
rithm [9, 10] to compute: 1) the degree centrality of
genes inside networks (dN), and 2) the degree centrality
of genes inside pathways (dP), as follows.
In the first step, given the gene i within the network N

with m genes, we calculated degree centrality diN as the
number of neighbor genes belonging to N to which the
gene i is directly linked.
In the second step, given gene i within pathway P

with k genes, we then calculated degree centrality
diP considering only network interactions among
gene i and the other genes in the networks belong-
ing to pathway P. In this step by integrating the
information of the network N within pathway P, we
obtained a selection of interacting genes according
to the network N.
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Then, we computed degree centrality expected diE by
assuming equal probability for the existence of edges be-
tween nodes (diN/m = diE/k, [9, 10]). Thus,

diE ¼ diN x k=m

We defined a gene as a ‘network driver’ in the pathway
P, when, in at least two networks involving gene i, its diP,
normalized to the size of the pathway (k), is higher than
diE, according to eq. 1:

diP=k > diE ð1Þ
The hypothesis is that if one gene is functionally

linked (according to the functional networks) with more
genes in the pathway than expected, its role is function-
ally central in that pathway.
Figure 1 shows the proposed procedure. The code is

made available in the StarBioTrek package (http://biocon-
ductor.org/packages/release/bioc/html/StarBioTrek.html).

Pathways and networks
Using the KEGGREST [19] and StarBioTrek [20] pack-
ages, we downloaded 307 pathways from the KEGG
database [5], which includes lists of genes grouped by
functional role (e.g. cell cycle, apoptosis, proliferation).
Different types of validated gene-gene or protein-protein
networks, which include physical interaction, genetic
interaction, shared protein domains, co-localization, and

functional reaction interactions, were downloaded using
SpidermiR [21].

Differentially expressed genes
We applied our approach to cancer datasets obtained
from the Cancer Genome Atlas (TCGA) [22]. We used
the Illumina HiSeq RNAseqv2 of 7158 tumour/normal
samples from 16 cancer types (see Table 1). We used the
TCGAbiolinks package [23] and the TCGA Workflow
[24] to download and process Level 3 TCGA gene expres-
sion data with platform RNAseqv2. The processing steps
that were applied involve within-lane normalization pro-
cedures to adjust for GC-content effects on read counts
and between-lane normalization procedures to adjust for
distributional differences between lanes using the EDASeq
package [25] as reported in [23, 24].
For each cancer type, we performed a differential

expression analysis (DEA) between two classes, normal
vs tumoural, using TCGAbiolinks [23, 24], identifying
differentially expressed genes (DEGs) (logFC > 1, logFC
< −1, FDR < 0.01) [23, 24].

Application of our computational approach to the
identification of cancer-specific drivers
We applied the computational approach described above
to the study of key network drivers in cancer. For each
cancer type, we computed dN, dP, and diE of DEGs and
selected cancer-specific network drivers accordance with

Fig. 1 The computational approach. The first step involves a network N (e.g. physical interaction) of size m and for each gene, i in N the algorithm
calculates its degree centrality, DC (diN). The second step involves a list of functional pathways (e.g. pathway P) and for each gene i, the DC (dip) is
calculated using the information on interacting genes from N. For the assumption of equal probability for existing edges between nodes, the algorithm
calculates the expected DC of gene i in the pathway P. If the DC observed for the gene i (dip) is higher than expected (dip_expected), i could be a potential
driver in the pathway P
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(Eq. 1), which are DEGs with high degree centrality in
networks with a functional role in the onset and pro-
gression of cancer.
In order to visualize the results obtained for each net-

work and all possible combinations between different
networks, we constructed a Venn diagram [26].
For each cancer type, we computed the number of

cancer driver DEGs shared with all network drivers. We
compared FDR, which measures the probability that a
gene is a false positive DEG, between DEGs obtained by
DEA and our cancer-specific network driver DEGs ob-
tained in accordance with (Eq. 1) for each cancer type.

Benchmarking validation
To verify our method, we compared our results and
those obtained by other well-validated computational
methods used to identify cancer driver genes, such as
ActiveDriver [27], Dendrix [28], MDPFinder [29], Simon
[30], NetBox [31], OncodriveFM [32], MutsigCV [33],
MeMo [34], CoMDP [35], DawnRank [36], DriverNet
[37], e-Driver [38], iPAC [39], MSEA [40], and Oncodri-
veCLUST [41].
We applied DriverDB [42] to obtain results from all

these algorithms and the cancer datasets considered by
our computation approach.

In silico validation
In silico validation analysis using our cancer drivers was
performed using independent datasets. For each cancer,
gene expression data were obtained from the GEO data-
base (see Table 2). GEO datasets were analyzed using

MoonlightR [43]. The processing steps included a
normalization procedure (quantile analysis) and a log
transformation using GEO2R as performed in [44].
We developed a Random Forest (RF) classification

model using R-package [45]. The model was used to
classify the considered tumour versus normal samples
using the gene expression levels of our cancer driver
genes.
Receiver Operating Characteristic (ROC) curves and

Area Under Curve (AUC) were estimated for each gene
belonging to the cancer-specific driver DEGs by a cross-
validation method (k-fold cross-validation, k = 10). We
adopted the following parameters: mtry (number of vari-
ables randomly sampled as candidates at each split) =
sqrt(p), p being the number of variables in the matrix of
data; ntree (number of trees grown) = 500. We then cre-
ated a list of the top ten cancer drivers with the best
AUC performance for each cancer type.

Results
Network driver genes
We applied our method for each functional network
considered for 307 KEGG functional pathways (Fig. 2).
The network that includes genes with genetic interaction
found the lowest number of potential gene drivers, (50
genes). On the other hand, the network that includes
proteins with shared protein domains found the highest
number of potential driver genes, (1922 genes). Further-
more, our algorithm found 468 potential genes drivers
for co-localization, 1402 for physical interaction, and
974 for functional reaction interactions.

Table 1 Cancer types and number of samples for tumoural and normal tissues from TCGA database

Cancer Type TCGA ID Data No. Tumoural samples No. Normal samples

Bladder Urothelial Carcinoma BLCA 408 19

Breast invasive carcinoma cancer BRCA 1097 114

Colon adenocarcinoma COAD 286 41

Esophageal carcinoma ESCA 184 11

Head and Neck squamous cell carcinoma HNSC 520 44

Kidney Chromophobe KICH 66 25

Kidney renal clear cell carcinoma KIRC 533 72

Kidney renal papillary cell carcinoma KIRP 290 32

Liver hepatocellular carcinoma LIHC 371 50

Lung adenocarcinoma LUAD 515 59

Lung squamous cell carcinoma LUSC 503 51

Prostate adenocarcinoma PRAD 497 52

Rectum adenocarcinoma READ 94 10

Stomach adenocarcinoma STAD 415 35

Thyroid carcinoma THCA 505 59

Uterine Corpus Endometrial Carcinoma UCEC 176 24
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Fig. 2 For each pathway (x axis), the following results are shown: the number of genes (y axis) in the original KEGG data (blue line), genes with a
direct interaction (red line, a co-localization, CO; b shared protein domain, SHP; c genetic interaction, GI; d physical interaction, PI; and e functional
reaction interactions, FRI) and the results of our computational method (green line, potential driver genes)

Table 2 Independent datasets with number of tumoural and normal samples for each cancer type

Cancer Type GEO ID Data No. Tumoural samples No. Normal samples

Bladder Urothelial Carcinoma GSE13507 165 10

Breast invasive carcinoma cancer GSE39004 61 47

Colon adenocarcinoma GSE41657 25 12

Esophageal carcinoma GSE20347 17 17

Head and Neck squamous cell carcinoma GSE6631 22 22

Kidney Chromophobe GSE15641 6 23

Kidney renal clear cell carcinoma GSE15641 32 23

Kidney renal papillary cell carcinoma GSE15641 11 23

Liver hepatocellular carcinoma GSE45267 46 41

Lung adenocarcinoma GSE10072 58 49

Lung squamous cell carcinoma GSE33479 14 27

Prostate adenocarcinoma GSE6919 81 90

Rectum adenocarcinoma GSE20842 65 65

Stomach adenocarcinoma GSE2685 10 10

Thyroid carcinoma GSE33630 60 45

Uterine Corpus Endometrial Carcinoma GSE10072 53 11
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Additional file 1 shows the potential driver genes for
each pathway and network.
To focus on the network driver genes, we con-

structed a Venn diagram in which we plotted the list
of potential gene drivers (y axis) and selected net-
works/intersecting networks (x axis) (Fig. 3). The
results obtained by our method applied to the differ-
ent networks highlighted 1322 common genes in at
least two networks (Additional file 2).
As shown in Fig. 3 we obtained 102 network driver

genes that were present in at least four networks, and
there were no genes in any of the five networks
considered.

Cancer-specific driver DEGs
For each cancer type, with our approach we found the
number of DEGs obtained by DEA from TCGA data
(Table 3). For each cancer type we identified from all the
DEGs the number of cancer-specific driver genes (cancer
drivers with high degree centrality) (Table 3). We found
895 cancer-specific driver DEGs, in common among net-
work drivers (1322) and DEGs (Table 3), i.e. 67% of all
network driver genes. Additional file 3 shows the list of
895 genes.
It should be noted that our computational approach

found cancer driver DEGs with lower FDRs than that
obtained by only DEA (Fig. 4).
In order to highlight the number of cancer driver

DEGs with high degree centrality in common between

two different cancer types, we generated the heat map
shown in Fig. 5.
Bladder urothelial carcinoma has 134 key cancer driver

DEGs in common with lung squamous cell carcinoma,
196, 151 and 140 in common between lung squamous
cell carcinoma and uterine corpus endometrial carcin-
oma, lung adenocarcinoma and uterine corpus endomet-
rial carcinoma, and breast invasive carcinoma cancer
and uterine corpus endometrial carcinoma, respectively.
The heat map in Fig. 5 shows that lung squamous cell

carcinoma had the highest number of cancer-specific
driver DEGs with high-degree centrality (399), while
prostate adenocarcinoma had the lowest number (113).

Benchmarking validation
A good overlap (319 genes out of 895, 35.6%) was found
between our computational approach and the other
well-validated computational methods considered in this
study (Additional file 4). 10%, 6.8%, 3.2%, 1.9% and 1.1%
was the percentage of overlap with three, four, five, six
and seven methods, respectively (Table 4).
Other tools provided a better overlap with two of the

other well-validated computational methods. The per-
centage of overlapping ranged from about 20% (iPAC),
50% (CoMDP and MSEA), to 90% (MDPFinder and
MeMo) with a mean of 76%. CoMDP, MSEA, MDPFin-
der and MeMo found in total 264 genes of the 319
obtained by our method. Thus, our method was able to
find 55 genes out of 319 (17.2%), which had not been

Fig. 3 Potential driver genes obtained by our algorithm for each network. CO: co-localization, SHP: shared protein domain, GI: genetic interaction,
PI: physical interaction, and FRI: functional reaction interactions. Driver genes found in at least two networks are shown in red
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found using these four tools, and 32 genes out of 895
(3.6%) which had not been found using the other 15 tools
(ALDH3B1, BIRC5, CFB, CLPS, COX7A2, COX7B,
DNA2, GABARAPL1, GADD45B, GAS1,GNG2, GNG7,
GNRH1, GSTT1, IDO1, LSM7, LTC4S, NAIP, PAFAH1B3,
PIP5KL1, PNP, POLD4, PPP1R1B, PPP1R3E,PRIM2,

PSME2, RFXANK, RPA3, RPP25, TUBA1A, VAMP2 and
VAMP8). Although some of the other tools were able to
find new cancer driver genes (MSEA found 83, CoMDP
6), the two tools that obtained the best overlap (MDPFin-
der and MeMo) were not able to discover new cancer
driver genes.

Table 3 In each cancer type, the table shows the number of differentially expressed genes (DEGs) obtained by differential
expression analysis from TCGA data, and for those genes the table shows the number of cancer driver DEGs and % of cancer driver
DEGs with respect to 1322 driver genes

Cancer Type TCGA ID Data DEGs Cancer driver DEGs # cancer driver DEGs/# of driver genes (%)

Bladder Urothelial Carcinoma BLCA 2937 217 16%

Breast invasive carcinoma cancer BRCA 3390 249 19%

Colon adenocarcinoma COAD 3788 289 22%

Esophageal carcinoma ESCA 2525 229 17%

Head and Neck squamous cell carcinoma HNSC 2973 225 17%

Kidney Chromophobe KICH 4355 330 25%

Kidney renal clear cell carcinoma KIRC 3618 307 23%

Kidney renal papillary cell carcinoma KIRP 3748 294 22%

Liver hepatocellular carcinoma LIHC 3043 238 18%

Lung adenocarcinoma LUAD 3498 257 19%

Lung squamous cell carcinoma LUSC 4984 399 30%

Prostate adenocarcinoma PRAD 1860 113 8%

Rectum adenocarcinoma READ 3628 273 20%

Stomach adenocarcinoma STAD 2622 200 15%

Thyroid carcinoma THCA 1994 130 9%

Uterine Corpus Endometrial Carcinoma UCEC 4183 332 25%

Fig. 4 False Discovery Rate (FDR) of differentially expressed genes and cancer drivers obtained by our approach (red) and by gene expression
analysis (light blue) for each cancer type
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In silico validation
Using independent GEO datasets, we calculated the
performance of our method in the classification of can-
cer versus normal samples, for each cancer type (Fig. 6).
ROC curves and AUC values are shown for the top ten

cancer-specific driver DEGs (with high-degree central-
ity) with the highest AUC performance. The genes
TAP1 and FEN1 achieved the best AUC performance in
bladder urothelial carcinoma (AUC = 0.928 and AUC =
0.903), CA4 and RRM2 were the best predictors in
breast invasive carcinoma cancer (AUC = 0.89 and
AUC = 0.88), ACADM and CD22 in colon adenocarcin-
oma (AUC = 1), ALDH6A1, GLA and MCM3 in
esophageal carcinoma (AUC = 1), GAD1 and PLIN1 in
head and neck squamous cell carcinoma (AUC = 0.83,
and AUC = 0.83).
The best performances were obtained in kidney

chromophobe, kidney renal clear cell carcinoma and
kidney renal papillary cell carcinoma datasets. Top
ten genes for these cancers almost always obtained
AUC = 1 (Fig. 6). In kidney chromophobe, the mean
AUC for the genes, ranked between 11 and 50, was

Fig. 5 Cancer driver genes shared between two different cancer types

Table 4 Number of driver genes shared in common between our
driver genes and the other tools. Genes in common with at least
two, three, four, five, six and seven different methods are shown

Methods # of common genes/# of our cancer driver DEGs Percentage

2/15 319/895 35.6%

3/15 90/895 10%

4/15 61/895 6.8%

5/15 29/895 3.2%

6/15 17/895 1.9%

7/15 10/895 1.1%
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0.96 and for those genes, ranked between 51 and 100,
the AUC was 0.83. In kidney renal clear cell carcin-
oma mean AUC for the genes with a rank between
11 and 50 was 0.97, and for those ranked between 51
and 100, the AUC was 0.91. In kidney renal papillary
cell carcinoma, the mean AUC for the genes ranked
between the 11th and the 50th position was 0.96, and
for those ranked between the fifty-one and the cent
position was 0.87 (Table 5).
CA4 and HMOX1 achieved the best AUC perform-

ance (AUC = 0.9 and AUC = 0.89) in liver hepatocellular

carcinoma, LTC4S and NEUROD1 in lung adenocarcin-
oma (AUC = 0.998 and AUC = 0.994), FANCA and
ARG2 in lung squamous cell carcinoma (AUC = 0.992
and AUC = 0.956).
The lowest AUC performance was achieved in prostate

adenocarcinoma with AKR1B1 and CA12 (AUC = 0.659
and AUC = 0.651). The low performance in this dataset
may be due to the low number of DEGs (1860,Table 3)
obtained in DEA. Furthermore, the major issue in inves-
tigating this cancer was the low number of normal
tissues for a comparison with tumour tissues in TCGA
data (52 normal tissues).
PAFAH1B3 and AHCYL2 achieved the best AUC per-

formance in rectum adenocarcinoma (AUC = 0.992),
AKR1C4 and DNA2 in stomach adenocarcinoma
(AUC = 0.983 and AUC = 0.98), GALE and SLC4A4 in
thyroid carcinoma (AUC = 0.956 and AUC = 0.935);
BRIP1 and GLI2 in uterine corpus endometrial
carcinoma (AUC = 0.949).
PAFAH1B3 has been proposed as a driver cancer gene

[46], while AHCYL2, which is highly expressed in the

Fig. 6 ROC Curves and AUC values for the top ten driver cancer-specific genes

Table 5 Mean AUC for genes ranked between 11 and 50 and
from 51 to 100 for kidney chromophobe, kidney renal clear cell
carcinoma and kidney renal papillary cell carcinoma

11–50 51–100

Kidney chromophobe Mean AUC = 0.96 Mean AUC = 0.83

Kidney renal clear cell carcinoma Mean AUC = 0.97 Mean AUC = 0.91

Kidney renal papillary cell
carcinoma

Mean AUC = 0.96 Mean AUC = 0.87
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gastrointestinal tract [47], has been found to be
highly downregulated in the gene expression profiling
of colorectal tumour [48]. Despite being expressed
specifically in the liver and stomach [47], AKR1C4
has been proposed as a possible target for cancer
therapy in these tumours [49]. DNA2 nuclease has a
role in the mechanism of double strand break repair
and its mutation has been reported in gastric and
colorectal carcinomas [50]. In malignant thyroid
nodules, a different expression of GALE has been
reported [51], while SLC4A4 has been included in a
15-gene profile proposed as diagnostic biomarkers of
thyroid tumour [52].

Discussion
The main limitation of current tools that analyze
pathways, such as KEGG or Biocarta, is that they attri-
bute the same role to each gene within a pathway in
accomplishing the cellular function, without taking into
account the effect of multiple gene interactions in per-
forming that function.
Our approach considers, for what we believe is the

first time, the integration of biological multiplex
networks (such as physical interaction, genetic inter-
action, shared protein domains, co-localization, and
functional reaction interactions) in pathways. Our
method is based on a well-validated approach (the
GANPA/LEGO method), based on the hypothesis that
if one gene is functionally connected in the pathway
with more genes than those expected (according to
the functional networks), its role is functionally cen-
tral in that pathway. Our approach is therefore an ex-
tension of the GANPA/LEGO method that defines
key driver genes if they are highly connected in at
least two interaction types simultaneously. We used
this concept to reveal the gene drivers for multi path-
ways and networks, and developed a novel method
for pan-cancer analysis. On the other hand, GANPA/
LEGO [9, 10] was applied for expression-based gene
set enrichment analysis. GANPA/LEGO attributes a
weight for each gene in a pathway, based on the de-
gree centrality index and its association with other
genes inside and outside the pathway, according to
the functional network. Weighted genes in pathways
are then used to detect pathways with a significant
expression change. To sum up, the aim of the two
approaches is different, however the greatest differ-
ence of our approach is the multilayer analysis.
Since previous studies have shown that the absence of

mutations in genes with a high degree centrality is vital
for the organism survival [18], we found a list of 1322
network genes highly connected in at least two networks
for each pathway, and we studied their behavior in 16
different types of cancer.

Biological role of the key cancer driver DEGs
Our method was effective. Indeed, 67% (895/1322 genes)
of the driver genes that we obtained were deregulated in
at least one cancer type in TCGA data (Table 3). Our
analysis identified several known cancer driver genes
(Additional file 3), such as KRAS, PIK3CA, BRCA,
BCL2, which regulate crucial pathways involved in apop-
tosis (i.e., BCL2, BAX, BCL2L1/11), hypoxia and energy
metabolism (i.e., GNG4/7, ADCY5/7/8/9), angiogenesis
(i.e., HLA-G/F, FGF5) and proliferation (i.e., BRIP1,
BRCA1, TOPBP1, BLM) [13, 15]. Our method also re-
vealed a lower probability of finding false positive DEGs
than the DEG-based method alone, as demonstrated by
the results shown in Fig. 4.
Of the 102 driver genes present in at least four net-

works (Fig. 3), we found that PSMA, PSMB, and PSMD
were the cancer driver genes with a crucial role in the
proteasome pathway (with also RPN1/2, PSMA3/5/6/7,
PSMB2/3/4/8/9, PSMD2/3/4/7/11/12/14). Proteasome
degradation is a crucial mechanism controlling abun-
dance, protein aging and the activity of important pro-
tein regulators of cellular signal transduction including a
variety of cellular proto-oncogenes [53]. Many preclin-
ical studies have shown that proteasome inhibitors can
induce apoptosis in cancer cell lines and murine models
of cancer [54]. Unfortunately, however, chemoresistance
to proteasome inhibitors can occur thus blocking its
pharmacological activity [54]. Our approach could be
useful to study driver genes of this pathway and to show
how their deregulation in cancer can influence the entire
pathway, thus suggesting a potential target of interven-
tion to prevent and overcome chemoresistance.
In addition, among 102 genes, we found some genes

belonging to POL and Period families (i.e. POLM,
POLR3K, POLR2K) [55, 56], confirming the central role
of DNA replication and the circadian rhythm in tumour-
igenesis [57], respectively.
Of the 895 genes, we found some genes of the mito-

chondrial respiration process (i.e., COX6A1, COX7A2).
Mitochondrial energy metabolism is a well-known process
that is altered in tumors [58] and among our 102 genes
we have found several genes belonging to this pathway
(i.e., GNGT1/2/11, GNG2). Energy metabolism has a high
impact on other processes [59], such as apoptosis (BCL2,
BCL2L1, BCL2L11), ROS production (i.e., COX5A) and
cell cycle control (i.e., MCM protein family, RFC2/4/5).
Signal transduction genes (i.e., ADCY4/7/8/9,) are also in

the list of our 102 genes, which also includes cancer stem
cell signaling genes (i.e., WNT7A, GLI1/2/3, NOTCH2/3/
4, ALDH1A3). Genome instability and DNA damage repair
genes (i.e., XRCC protein family, PARP family member,
FANC protein members), included in the list of our 102
genes, are among the genes that are altered in several
cancers [60, 61].
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Looking for those genes with a role in the hall-
marks of cancer [62], we generated Fig. 7, in which
each circle represents one of the hallmark functions
altered in cancer. The roles of genes in the hallmarks
of cancer were obtained from KEGG and Reactome
databases [5, 62, 63].
The list of cancer driver DEGs for each cancer also en-

abled us to highlight a series of pathways with a known
cancer-specific role. Fig. 8 shows the cancer-specific
pathways enriched by cancer driver DEGs for each can-
cer type considered in this study.
Our method identified 32 cancer driver DEGs which

were found by none of the other 15 tools. These genes
have important potential roles in metabolism (AL
DH3B1, COX7A2, COX7B, GSTT1, IDO1, LSM7,
LTC4S, PAFAH1B3, PNP, RPP25, TUBA1A), apoptosis
(BIRC5, GADD45B), immune response (CFB, IDO1),
DNA repair (DNA2), signal transduction (GAS1,GNG2,
GNRH1, PPP1R1B) and proliferation (POLD4, PRIM2,
PSME2, RPA3).

ALDH3B1 is an enzyme involved in the metabolism of
endogenous and exogenous aldehydes and plays a crit-
ical role in maintaining cellular homeostasis [64]. ALDH
proteins seem to have different, but not completely
understood, roles in cancer. ALDH3B1 also acts against
cellular oxidative stress by detoxifying aldehydes derived
from ethanol metabolism and lipid peroxidation [64].
COX7A2 and COX7B, involved in energy metabolism,
are components of the mitochondrial respiratory chain
[65]. A correlation has been hypothesized between alter-
ations in mitochondrial morphology and the reduced ex-
pression of COX7A2 in esophageal adenocarcinoma
patients [65]. GSTT1 is involved in the metabolism of
glutathione by catalyzing the detoxification of poten-
tial carcinogens [66]. Polymorphisms in this gene are
associated with different types of cancer (e.g. oral, breast)
[67, 68]. IDO1 is a catabolic enzyme involved in the path-
ways of tryptophan metabolism and plays a role in im-
mune suppression [69] The increased expression of IDO1
in ovarian, endometrial and colorectal cancers has been

Fig. 7 Cancer driver genes and cancer hallmarks obtained from KEGG and Reactome databases [5, 58, 59]
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associated with poor survival outcomes [69]. In addition,
based on their immunosuppressive functions, IDO1 is be-
coming a potential target for drug discovery in cancer im-
munotherapy [70]. BIRC5 and GADD45B are involved in
apoptosis, one of the most important hallmarks of cancer.
They are known diagnostic, prognostic and therapeutic
biomarkers in many tumours, such as gynecological, squa-
mous cell carcinoma, and renal cell carcinoma [71–76].
POLD4, PRIM2, PSME2, and RPA3 are involved in cellu-
lar proliferation and genomic stability. Altered expression
in these genes is associated with several tumours [77–81].
Overall, our approach detects both well-known cancer

genes, as well as potential novel candidates.

Comparison with other tools
Several approaches have been described to reveal cancer
driver genes, but few methods have considered how the
functional networks are affected by gene deregulation in
cancer and have demonstrated how the integrative ana-
lysis of pathways and networks can be used effectively to
identify key pathway patterns in cancer.
We compared our results with those obtained, in at

least two methods, by 15 current different approaches

and we found that almost 36.5% of our genes have been
obtained by other methods. This thus suggests the reli-
ability of our approach.
What makes our approach unique is its ability to iden-

tify the common/distinct biological processes involved in
different cancer types. The above 15 algorithms mainly
deal with the design of a static pathway by integrating
genomic data, while our method enabled us to combine
functional networks, based on multiple sources, with
pathways and gene expression information.
We grouped 15 current tools into three groups,

based on: 1) mutation profiles, 2) mutation profiles in
functional pathways, and 3) integration of multi-
omics data (Fig. 9).
The first group includes ActiveDriver [27], Oncodrive-

CLUST [41], e-Driver [38], OncodriveFM [32] and Simon
[30]. With these tools cancer drivers were defined as 1)
genes with unexpected mutation rates in phosphorylation-
specific regions (ActiveDriver), 2) proteins with higher-
than-expected mutation rates regardless of the protein
regions (OncodriveCLUST), 3) proteins with somatic
missense mutations in different protein functional regions,
such as domains and intrinsically disordered regions (e-

Fig. 8 Cancer specific pathways enriched by cancer driver DEGs for each cancer
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Driver), 4) genes analyzing the impact of mutations on the
protein function (OncodriveFM and Simon). With respect
to the above mentioned tools, our algorithm creates func-
tional interactions between gene drivers and pathways.
The integration of this information enables the genes to
be selected that have a central role in biological processes
and the generation of relationship among them.
The second group includes Dendrix [28] and CoMDP

[35], two software tools that use an alternative approach
to identify cancer driver genes: they examine mutations
in the context of functional pathways. Compared to the
tools in this group, our algorithm creates more func-
tional interactions within pathways in order to obtain
only a limited number of genes in the pathways that are
highly connected.
The third group combines multi-omics data to over-

come the mutational heterogeneity of cancer. This group
includes MutsigCV [33], MDPFinder [29], DriverNet
[37], DawnRank [36], iPAC [39], MSEA [40], NetBox
[31] and MeMo [34]. MutsigCV was applied to exome
sequences and gene expression levels, while MDPFinder
is an integrative model of mutation and expression data
used to identify biologically relevant gene sets. DriverNet
associates the presence of a mutated gene with its influ-
ence on the gene expression levels of its known interact-
ing genes. DawnRank detects personalized molecular
drivers ranking potential driver genes on the basis of
their impact on the overall differential expression of
their downstream genes in the molecular interaction

network. iPAC identifies driver genes with frequent
copy-number alterations and corresponding changes in
expression that are collectively enriched with respect to
biological processes. MSEA integrates summary-level
disease association data, functional genomics (such as
expression quantitative trait loci, eQTLs, and ENCODE
annotations), pathways, and gene networks to obtain
disease-associated gene subnetworks and key regulatory
genes. NetBox integrates the information of networks
with sequence mutations and DNA copy number alter-
ations. The underlying hypothesis of the NetBox tool is
that gene networks are constituted by functional modules
(sets of connected genes) critical for cancer hallmarks.
The alterations of different combinations of genes can in-
fluence each module. NetBox identifies candidate driver
mutations from perturbed modules. Similarly to NetBox,
MeMo identifies candidate driver networks in cancers by
focusing on modules that are recurrently altered and that
exhibit patterns of mutually exclusive genetic alterations
across multiple patients. Unlike Netbox, MeMo uses gene
expression in addition to somatic mutations and copy
numbers.
Compared to our approach, in the definition of can-

cer drivers, none of the existing methods are able to
integrate different networks, pathways and gene ex-
pression in order to create a relationship among
them. Our multi-layer profiles are able to extract for
each driver, the information on the involved multi-
pathways and multi-networks on regulatory pattern.

Fig. 9 Comparison of different approaches used in our method and in 15 tools. GE: gene expression, CNA: copy number alteration, eQTL:
expression quantitative trait loci

Cava et al. BMC Genomics  (2018) 19:25 Page 13 of 16



To date the integration of multi-layer profiles has
never been used to identify cancer driver genes.
Furthermore, the majority of the available methods

use mutation data to detect cancer drivers, however this
feature does not clarify the related molecular mecha-
nisms. For example, mutations can exert very diverse
effects, such as inducing a premature stop codon, redu-
cing the dosage of mRNA transcripts or affecting the
coding region of a gene, thus impacting on the protein
function. However this does not necessarily mean that
all abnormal genes are involved in the development of
cancer. In fact, many aberrations have only mild or neu-
tral effects, and the real drivers, i.e. those that promote
the cancer phenotype, are only a minority.

Conclusions
Gene signatures are often not reproducible in the sense
that the inclusion or exclusion of a few patients can lead
to different sets of selected genes which are difficult to
interpret in a biological context. It is thus crucial to
identify a limited number of genes that are central to the
correct biological processes and which, if altered, can
lead to pathological conditions.
To identify these genes, we have proposed an approach

that integrates knowledge on the functional pathways and
multiple gene-gene (protein-protein) interactions into
gene selection algorithms. The challenge is to obtain more
stable biomarker signatures, which are also more easily in-
terpretable from a biological perspective.
The study of networks and pathways can also provide

further hypotheses of the mechanisms of driver genes.
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