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Abstract

Background: Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive
species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant
pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the
genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q’s genomic signatures that
may contribute to the highly invasive nature of this emerging insect pest.

Results: The genomes of both species share similarity in syntenic blocks, but have significant divergence in the
gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q
and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi.
The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont
genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome
may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to
the gene loss is a shared ancestral trait among hemipteran insects.

Conclusions: The expansion of detoxification genes families, such as P450s, may contribute to the development of
insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species’ invasions into
intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss
and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our
understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions.
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Background
The sweetpotato whitefly, Bemisia tabaci, consists of a
group of cryptic sibling species [1] that contains some of
the world’s most damaging agricultural pests, and are
also considered among the world’s worst invasive species
(Global Invasive Species Database: http://www.issg.org/
database/welcome/) [2]. This impact on global agricul-
ture is likely due to their broad host range (reported to
feed on over 900 plant species) and transmit plant dis-
eases (vectoring over 100 plant viruses) [3–6]. Within

the cryptic species group, Bemisia Middle East-Asia
Minor 1 (MEAM1, or ‘B’) and Bemisia Mediterranean
(MED, or ‘Q’) are the two most extensively studied, and
they have emerged as a comparative model for research
into biological habitat invasion [1, 5–7], virus-vector
interaction [4], symbiosis-host interaction and haplodip-
loid sex determination [8, 9]. Although both MEAM1/B
and MED/Q are highly invasive, the two subspecies pre-
fer different hosts, and also differ in their responses to
virus-infected plants [10, 11] and capacity to vector
plant viruses [7, 12]. The success of MEAM1/B as an
invasive species may be related to its high ratio of
diploid female to haploid male progeny, a competitive re-
productive strategy that allows numerical displacement of
native Bemisia species [5]. In contrast, MED/Q shows high
levels of resistance to many classes of synthetic insecticides,
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providing a different strategy in survival within agricultural
and other highly managed landscapes [7].
Bemisia and other phloem-feeding hemipterans rely

heavily upon obligate bacterial endosymbionts in order
to provide the essential amino acids and vitamins lacking
in nutritionally incomplete plant sap [13–15]. All known
Bemisia cryptic species have co-evolved with the intra-
cellular primary endosymbiont, Candidatus Portiera
aleyrodidarum. Portiera is transmitted maternally, and
complements host’s unbalanced diets [16, 17]. Whiteflies
also harbor secondary symbionts that are not strictly
required for host survival and reproduction, but can
exert a variety of effects on their whitefly hosts, including
developmental time and fecundity [18, 19], susceptibility to
insecticides [20], and modified vector competency [21–23].
Bemisia-bacteria symbiosis has evolved into an inter-
dependent biosynthetic pathways for supplying required
enzymatic components to metabolic pathways via comple-
mentation. The adaptive changes in host immune pathways
and pathogen detection, and the mechanisms by which
endosymbiotic bacteria evade these defenses, remains
poorly understood. Moreover, variation in endosymbiont
communities within Bemisia is associated with distinct host
haplotypes, and these endosymbiont communities may
influence the competency of Bemisia subspecies to vector
different plant viruses [23].
Motivated by the invasive nature and economic impacts

on agricultural crop production, draft genome assemblies
have recently been completed for MEAM1/B [24] and
MED/Q [25]. Genome sequences of MEAM1/B provide in-
sights into evolutionary and adaptive mechanisms by which
the whitefly has become such a formidable threat to global
food security. Specifically, this was predicted based on the
mining of gene families putatively involved in insecticide re-
sistance, xenobiotic detoxification, virus transmission, and
horizontally transferred genes [24]. Our previously pub-
lished draft MED/Q genome contained assembly and anno-
tation information [25], but within the current study we
take a whole genome approach to comprehensively com-
pare the divergence in gene sequences and contents
between MED/Q and MEAM1/B. These analyses focus on
characterizing the degree and nature of horizontal gene
transfer resulting from co-evolution with endosymbionts,
as well as the genomic changes which may contribute to
the selective advantages of MED/Q and MEAM1/B within
the context of an invasive agricultural pest species. Add-
itionally, predicted adaptations of detoxification observed
via lineage-specific expansions and contractions are func-
tionally validated for potential roles in insecticide tolerance
in MED/Q. This research is important for understanding
the possible role of functional diversification of recent gene
family expansions may have on adaptive capacity among
crop insect pests, as well as evolutionary processes that
increase relative fitness of invasive insect populations.

Results
Genome comparison between the two invasive B. tabaci
cryptic species
Results of comparison between genomes predicted that
16,523 (79%) of the genes in the MED/Q genome share
similarity with 10,421 (66%) of genes in MEAM1/B
(Additional files 1 and 2). In addition, mapping of reads
from a MED/Q 500 bp insert size library (PE100) to
MED/Q and MEAM1/B genomes, using SOAPaligner/
soap2 demonstrated a difference in proportion of reads
that aligned (Additional file 3: Table S1). Specifically, the
proportion of MED/Q reads that mapped to MED/Q
(79.2%; 69.55% for paired alignment ratio, plus 9.65% for
singled alignment ratio), was greater compared to the
proportion that mapped to MEAM1/B (56%; 26.63%,
plus 30.04%) sequencing reads from MED/Q mapping
to. To study the syntenic blocks between these two ge-
nomes, an alignment of MED/Q and MEAM1/B draft
genome assemblies was performed using LastZ [26]. An
estimated 77.94% of the MED/Q and 83.22% of the
MEAM1/B genomes were aligned into syntenic blocks
(Additional file 4: Table S2). This showed that on aver-
age 5.26% of nucleotide sequence across the conserved
regions of the MED/Q genome to which reads were
mapped comprised substitutions when compared to
MEAM1/B (Additional file 4: Table S2). A total span of
2.91% of these aligned read lengths of both the MED/Q
and MEAM1/B genome were indels. In summary, the
per-nucleotide sequence divergence between MED/Q
and MEAM1/B was estimated at 8.17% in MED/Q and
8.19% in MEAM1/B (Additional file 4: Table S2).
A total of 10 scaffolds in MEAM1/B with the greatest

lengths were picked in order to provide visual exemplars of
the predicted syntenic blocks (Additional file 5: Figure S1),
and indicated that additional intervening non-homologous
sequence residing within the MED/Q between syntenic
regions. These analyses also demonstrated the compara-
tively fragmented nature of the MED/Q assembly and the
capacity to estimate order and orientation of MED/Q scaf-
folds when using the MEAM1/B assembly as a reference.
Comparison of the percent divergence among the coding
sequences of orthologous 7794 genes in MED/Q and 7202
in MEAM1/B (Additional file 6: Table S3). Among these,
4052 pairs were putatively single copy (1:1) orthologs.
Evidence of possible purifying or positive selection was
estimated rates of nonsynonymous (Ka) and synonymous
(Ks) substitutions between MED/Q and MEAM1/B in
4052 pairs one-to-one ortholog pairs. Among these, a Ka
and a Ks rate could be calculated for 2985 ortholog pairs
(Additional file 7), where the resulting mean values of Ka,
Ks, and Ka/Ks were 0.031, 0.237 and 0.236, respectively. A
total of 59 orthologous pairs had a Ka/Ks ratio > 1, and
were interpreted as possible signs of positive selections
within a given CDS, (Additional file 8), and functional
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annotations demonstrated the significant enrichment of
gene products involved in DNA replication, proteasome
and hematopoietic cell lineage processes (Additional files 9
and 10).

Genome-based phylogeny and gene phylogenies
The evolutionary trajectory of MED/Q was investigated
using a genome-based phylogenetic analysis pipeline car-
ried out using 222 single-copy orthologous genes across
the genomes of 14 insect species that used Daphnia
pulex as an outgroup (Additional file 11: Figure S2). This
resulted in the estimated mean divergence time of 95.6
million years between MED/Q and MEAM1/B across all
222 aligned orthologs (range 42.9 to 168.5 million years).
Expansion of the gene sets under consideration pre-
dicted that 1925 orthologous gene families are specific
to MEAM1/B in MED/Q (Additional file 12), in which,
887 are specific to all other 15 species (Additional file 13).
These orthologous gene families showed putative anno-
tations in membrane (GO: 0016020), transport (GO:
0006810), oxidoreductase activity (GO: 0016491) and
receptor activities (GO: 0004872) among others
(Additional files 14 and 15: Tables S4 and S5). Evidence
for adaptive evolution was detected using the positively
selected genes in the MED/Q and MEAM1/B lineage when
compared to other phloem feeding insects (Acyrthosiphon
pisum, Nilaparvata lugens and Diaphorina citri). From
these analyses, 142 candidate positively selected genes were
identified in MED/Q, which showed putative functional
annotations for protein phosphorylation (GO: 0006468),
protein kinase (GO: 0004672) and intracellular signal
transduction activities (GO: 0035556) (Additional file 16;
Additional file 18: Table S6). Moreover, 70 candidates
mostly involved in signal transduction (GO: 0007165), ion
channel activity (GO: 0005216, GO: 0006811) and
acetylcholine-activated cation-selective channel activity
(GO: 0004889) were shared in MED/Q and MEAM1/B
branch (Additional file 17; Additional file 18: Table S6).

Expansion and contraction of gene families
A total of 2943 gene families in MED/Q showed putative
gene family member expansions when compared across the
breath of species in the genomic phylogeny, of which the
number of members within 20 of these gene families (20 of
2943; 0.7%) were significantly different (p ≤ 0.05). The
largest copy number expansions occurring in gene families
where members were assigned functional annotations as
essential for membrane and transmembrane transport
(Additional file 19: Table S7 and Additional file 20: Figure
S3). Additionally, comparisons between MED/Q and
MEAM1/B predicted that 32 of 722 gene families (32 of
755; 4.6%) show significant size expansions (p ≤ 0.05)
(Additional file 20: Figure S3). Besides membrane and
transmembrane transport function, these gene families

under expansion in the MED/Q and MEAM1/B branch
are associated with oxidation-reduction processes and
monooxygenase activity (Additional file 21: Table S8). The
number of gene families involved in metabolism and
detoxification were similar between MED/Q and
MEAM1/B (Fig. 1a). When expanding to scope of these
comparisons, the number of MED/Q genes within the
UDP glycosyltransferases (UGTs; n = 63), carboxyl/choline
esterases (COE; n = 51), and ATP-binding cassettes trans-
porters (ABC; n = 59) was not significantly different from
those found in other phloem- or blood-feeding arthro-
pods. In contrast, the cytochrome monooxygenase P450
detoxification gene family was significantly expanded in
MED/Q and MEAM1/B (Fig. 1a). These expansions have
produced 153 predicted MED/Q CYP genes, with the
most expansions occurring in the CYP3 and CYP4 clades;
this was greater compared to the number predicted in any
other arthropod genome that was analyzed (Fig. 1b).
Putative reductions in the number of members in

1936 gene families were predicted in MED/Q, in which
12 gene families (12 of 1936; 0.6%) were significantly
changed (p ≤ 0.05). These 12 gene families were primar-
ily annotated as being involved in RNA binding, RNA-
directed DNA polymerase activity and RNA-dependent
DNA replication (e.g., difference in transposon compo-
nent of the genomes), and serine-type endopeptidase
activity (Additional file 22: Table S9). Within the MED/
Q and MEAM1/B branch, 10 gene families were signifi-
cantly contracted (p ≤ 0.05), and were mainly annotated
as having involvement in functions similar to that pre-
dicted in MED/Q (Additional file 23: Table S10). Further
inspection of gene annotation information showed that
genes in the immune deficiency (IMD) pathway were
absent from the MED/Q genome when compared to the
genome of the hemipteran insect N. lugens (Fig. 2;
Additional file 24: Table S11).

In silico metagenomic analysis of MED/Q endosymbiosis
The bacterial metagenome of insects may contribute an im-
portant role in the overall fitness and viability of insects,
such that many hemipterans have evolved specialized struc-
tures that house endosymbiotic bacteria called bacteriocytes.
Although genomes are available for both the primary MED/
Q endosymbiont, Ca. Portiera aleyrodidarum (CP003867,
CP003835 and CP007563) and secondary endosymbiont,
Hamiltonella (AJLH00000000, AJLH02000000) [13, 17], the
lack of a corresponding whitefly genome sequence has pre-
cluded prior investigations into interactions with respect to
metabolic and gene pathway partitioning. We used a meta-
genomics approach to re-assemble the complete genomes of
Portiera (0.35 Mb) and Hamiltonella (1.8 Mb) from filtered
Illumina reads generated from shotgun sequencing libraries.
An approach that used a comparison of MED/Q and

endosymbiont gene models with functional annotations
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suggesting their involvement in amino acid biosynthesis
to reconstruct the corresponding enzymatic pathways.
The results of these comparative analyses revealed an
interdependent relationship between MED/Q and Portiera
biosynthetic pathways. Specifically, there were 47 MED/
Q- and 45 Portiera–encoded enzymes involved in amino
acid biosynthesis, and moreover the intact pathway was
predicted to require the activities of enzymes encoded by

both genomes. Pathway analyses predicted that enzymatic
contributions from both host and symbiont genomes are
needed to produce ten essential amino acids; Arg, His, Ile,
Leu, Lys, Met, Phe, Try Thr, and Val (Fig. 3). While MED/
Q encodes enzymes that contribute precursor substrates
for Trp, Phe and Thr synthesis, Portiera encodes key
enzymes required to complete the synthesis of these amino
acids. Conversely, Portiera provides intermediates required
by MED/Q encoded portions of the corresponding path-
ways that synthesize Arg, His, Ile, Leu, Lys, Met, Tyr, and
Val (Fig. 3a). Our analyses of analogous amino acid biosyn-
thesis pathways also found that not only MED/Q, but also
its Hamiltonella endosymbiont, are fully capable of synthe-
sizing Cys, Lys, Pro, and Thr (Additional file 25: Figure S4).
Comparative genomic pathway analyses also showed that
MED/Q lacks enzymes required to synthesize five B-class
vitamins; biotin, folate, NAD, riboflavin, and vitamin B6,
such the Hamiltonella genome was predicted to encode
enzymes necessary for the biosynthesis of these B vitamins
(Fig. 4; Additional files 26 and 27: Tables S12 and S13).
We used a phylogenetic approach to test the hypothesis

that horizontal gene transfer (HGT) was involved in the
gain of certain amino acid biosynthetic pathways. Our re-
sults suggest that the MED/Q genome has likely inte-
grated genes derived from the endosymbiotic bacteria
Portiera. The pipeline we used identified 11 putative HGT
events based on phylogenetic clustering of MED/Q genes
with bacterial counterparts (Additional file 28: Figure S5).
In 10 of these 11 predicted HGT events, the clusters of
MED/Q encoded genes were most closely related to
bacterial orthologs. In the other instance, the MED/Q
gene for argininosuccinate synthase was at the base of a
bacterial-origin clade and adjacent to a second insect-
derived clade (Additional file 28: Figure S5). Functional
annotations suggest that six HGT events (those involving
argH, 2 dapF paralogs, lysA, dapB, and E3.1.3.15B) are
likely involved in the complementation of Arg, His, and
Lys biosynthetic pathways (Fig. 3a). Six MED/Q genes
involved in these 11 putative HGT events contained
introns and four had a 5′-untranslated region (5′-UTR),
in spite of the fact that their closest evolutionary relation-
ships were to prokaryotic orthologs (Additional file 29:
Table S14). Comparisons between amino-acid synthesis
pathways in host-endosymbiont relationships (MED/Q-
Portiera, A. pisum-Buchnera and N. lugens-yeast-like)
suggest that MED/Q endosymbionts play an essential role
in the production of seven essential amino acids (Fig. 3b).
By comparison, aphid- and planthopper-endosymbiont
systems primarily encode transaminases (Additional file 30:
Table S15), and provide either substrates or intermediates
involved in the regulation of amino acid synthesis. While
aphid and planthopper endosymbionts have a role in
glycolysis and the pentose phosphate pathway, Portiera
lacks a detectable role in either pathway (Fig. 3a, c).

Fig. 1 Expansion of gene families associated with metabolism and
detoxification in MED/Q genome. a Number of detoxification-related
genes in the genomes of 12 selected insects (*denotes herbivorous
insects) annotated as UDP glycosyltransferases (UGT), glutathione
S-transferase (GST), ATP-binding cassette (ABC) transporter, and,
carboxyl/choline esterases (COE). b Neighbor-joining phylogeny of the
cytochrome P450 monooxygenase genes between BEMTA (red) and
ACYPI (black). Four insect CYP clades indicated as follows: CYP2 (green),
CYP3 (blue green), CYP4 (pink), and the mitochondrial clade (blue).
Predicted MED/Q-specific expansions within the CYP gene family are
indicated (orange boxes). Q-type Bemisia tabaci (MED/Q), B-type Bemisia
tabaci (MEAM1/B), Acyrthosiphon pisum (ACYPI), Nilaparvata lugens
(NILLU), Rhodnius prolixus (RHOPR), Pediculus humanus (PEDHU),
Anopheles gambiae (ANOGA), Drosophila melanogaster (DROME), Apis
mellifera (APIME), Nasonia vitripennis (NASVI), Tribolium castaneum (TRICA)
and Bombyx mori (BOMMO)
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Functional validation of MED/Q genes encoding
detoxification enzymes
Nine cytochrome CYP450 (CYP304G2, CYP402C9,
CYP4R2, CYP4G69, CYP6CX4, CYP6DB3, CYP6DV6,
CYP6DW2 and CYP6EM1) and three GST genes
(BTGSTM1, BTGSTD6 and BTGSTD9) were confirmed
as being expressed in MED/Q (Fig. 5), and selected for
the functional validation via RNAi knockdown. The
involvement of genes encoding nine CYP450s and three
GSTs in imidacloprid resistance was validated using in
vivo dietary RNAi. The results showed that all of the
nine P450 genes and three GST genes were significantly
decreased after feeding dsRNA in 24 h, but the RNAi
efficiency and the duration of effective knockdown of
these genes by RNAi were different, such as for
CYP402C9, CYP6DB3, CYP6DV6, CYP6EM1 and
GSTD6 (Additional file 31: Figure S6).
The susceptibility of B. tabaci controls and RNAi

knockdown individuals to 0.2-mM imidacloprid was
documented. In CYP4 subfamily, the median survival
rate of dsEGFP (enhanced green fluorescent protein)
controls was 63%. In contrast, the survival rate of CYP4
subfamily knockouts, including CYP304G2, CYP402C9,
CYP4CR2, and CYP4G69, was 63, 59, 63, and 47%,
respectively (Fig. 5b). Imidacloprid bioassays showed
that while the survival of B. tabaci CYP304G2 and
CYP4CR2 RNAi knockdown individuals did not differ
from the controls, survival of those from CY402C9 and
CYP4G69 knockdown groups were significantly lower
using Log-rank analysis. For the CYP6 subfamily experi-
ments, the median survival rate of CYP6CX4, CYP6DB3,
CYP6DV6, CYP6DW2, and CYP6EM1 knockouts was
59, 47, 59, 63, and 41%, respectively (Fig. 5d). Log-rank
analysis revealed that the silencing of CYP6CX4,

CYP6DB3, CYP6DV6, and CYP6EM1 significantly
decreased survivorship, while silencing of CYP6DW2
did not affect survival rate. Among the GSTs that were
tested, the median survival rate of GSTM1, GSTD9, and
GSTD6 knockdown individuals was 59, 59, and 72%
(Fig. 5f ), with the corresponding imidacloprid exposed
B. tabaci showing a significantly decrease in survivorship
for groups within the GSTM1 and GSTD9 knockdown
treatments.

Discussion
Species in the Bemisia complex have a high reproductive
rate, broad host plant range, and have adapted to a wide
range of habitats. The level of standing genetic and
genomic variation among Bemisia likely contribute to their
capacity to rapidly develop insecticide resistance traits and
adapt to novel habitats during biological invasions [24, 27].
The evolutionary history of Bemisia has likely altered the
genome architecture via random processes (i.e. mutation,
drift) and multiple adaptive mutations [28]. In addition,
previous reports at the transcriptome level estimated that
the average CDS divergence between ortholog transcripts
of MEAM1/B and MED/Q was 0.83% [29], which is
approximately two-fold higher than comparisons between
human and chimpanzee (0.45%) [30]. While at the DNA
level, the divergence is measured by dividing the number of
substitutions by the number of base pairs compared for a
given sequence [31]. In this study syntenic regions com-
prising 513 Mb were identified between MED/Q and
MEAM1/B. Within these regions, 8.17% divergence was
calculated (5.26% due to base substitutions and was an
additional 2.91% difference due to indels), which is also
approximately two-fold higher than the 5% divergence at
the DNA region between human and chimpanzee [32].

Fig. 2 Predicted orthologues associated with immune deficiency (IMD) within hemipterans. Schematic diagram illustrates the IMD signaling and
the corresponding responses. The table shows the number of genes encoding each insect genome
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Furthermore, the number of nucleotide substitutions that
change amino acids (Ka) and the number of substitutions
that do not (Ks) were calculated, and the ratio used as a
measure to infer the impacts of directional selection on
protein coding sequences [33, 34]. Among the 4052 pairs
of coding sequences compared between MED/Q and
MEAM1/B, the average Ka/Ks ratio is 0.236, which was

closed to the estimates provide in a previous study (0.225)
[29] and similar to the average Ka/Ks ratios between
coding region from rat and mouse (0.19) and of human
and chimpanzee (0.22) [30, 35]. Of the 2985 B. tabaci
orthologous pairs for which Ka and Ks could be calculated,
59 have Ka/Ks > 1, suggesting the impact of positive selec-
tion on these genes. The potential adaptive significance of

Fig. 3 Comparative analysis of amino-acid biosynthesis and provisioning mechanisms in B. tabaci, A. pisum and N. lugens. a Unique amino acid biosynthetic
and supply mechanisms putatively related to the adaptation of MED/Q. Green and yellow areas denote bacteriocytes and endosymbiont cells (with respect
to the filtered and annotated Portiera genome of MED/Q, PRJNA299729), respectively. Essential amino acids are represented in pink and non-essential amino
acids in black; Portiera genes are in blue boxes. The Enzyme Commission numbers (EC) or enzyme names used correspond to those in the Kyoto
Encyclopedia of Genes and Genomes (KEGG). MED/Q genes are indicated in red boxes. Black dotted lines represent transport processes between MED/Q and
Portiera, and red dotted lines represent processes associated with MED/Q that occur within Portiera bacteriocytes. Candidate horizontally-transferred genes
(HTGs) are highlighted in yellow text; white boxes with black text represent unidentified genes. b Comparisons of amino acid biosynthesis
in the host-symbiont bacterial systems of B. tabaci-Portiera, A. pisum-Buchnera, and N. lugens-yeast-like organism. Abbreviations: Bt-Bemisia
tabaci, Ap-Acyrthosiphon pisum, Nl-Nilaparvata lugens, Pa-Portiera, Ba-Buchnera, Yt-yeast-like. The notation Bt (Ap, Nl, Pa, Ba, or Yt) means
that MED/Q alone can complete the amino acid biosynthesis. The notation Bt-Pa (Ap-Ba or Nl-Yt) means that both MED/Q and at least
two of its endosymbionts are required to complete the amino acid biosynthetic pathway. c Comparison of key substrates or intermediate
products of the host-endosymbiont systems of B. tabaci-Portiera, A. pisum-Buchnera and N. lugens-yeast-like symbiont, illustrating that
phosphoenolpyruvic acid (PEP), erythrose-4P, pyruvate, ornithine, and the precursor of histidine synthesis (PRPP) are important for amino
acid synthesis. Pyruvate and PEP are produced by glycolysis and erythrose-4P by the pentose phosphate pathway. D-ribose-5P is the substrate for PRPP
synthesis, and D-ribose-5P was converted based on D-glyceraldehyde 3-phosphate, also a product of glycolysis. Black arrows with dotted lines represent
transport processes between MED/Q and Portiera
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directional selection at these loci with respect altered gene
function and impacts on speciation and adaptive evolution
of the whitefly remain unknown. Predictions of functional
consequences of these predicted non-synonymous changes
to these genes enriched for function in DNA replication,
proteasome and hematopoietic cell lineage processes were
not investigated due to difficulties in doing so without de-
tailed experimentation. More importantly, this study shows
no evidence of positive selection between orthologous pairs
of cytochrome P450s from MED/Q and MEAM1/B, accord-
ing to the corresponding Ka/Ks values between species.
Evolutionary processes can lead to the functional

diversification of duplicated gene family members, such
that temporal and spatial variation results in stage- or
tissue-specific gene expression patterns and derived
functions [36]. When assessing copy number variation
across gene family members with annotation as metabol-
ism and detoxification both MED/Q and MEAM1/B
genomes show relative parity, with the exception an in-
crease and decrease respectively in cytochrome P450
and UGT members within MED/Q (Fig. 1a). An
increased number of P450s in the CYP3 and CYP4 clades
was previously shown in the genomes of T. castaneum
genome [37], MEAM1/B [24], and analogously here for
MED/Q (Fig. 1). Interestingly, our results show that the
CYP3 and CYP4 gene families have undergone a further
expansion in MED/Q compared to MEAM1/B. Previous
experimental evidence demonstrates that both CYP3 and
CYP4 gene family members function in the detoxification
of xenobiotics, and are in many instances involved in the
evolution of detoxification based insecticide resistance

mechanisms among arthropod species [38–42]. The
expansion in copy number within these detoxifying CYP3
and CYP4 gene families in MED/Q and MEAM1/B
genomes might suggest that evolutionary adaptive pro-
cesses in the shared histories of whitely may have selected
for this phenomenon. Furthermore, a larger repertoire of
P450s among B. tabaci might also suggest their increased
breathe of xenobiotic detoxification capacity, and thus the
potential to rapidly adapt to chemical insecticide expo-
sures, and may contribute to the detoxification of host
plant defenses required for a broad host range. Although
circumstantial, it has been previously shown that P450
genes in Bemisia could be induced under various condi-
tions, including changes in host plants, as well as being
upregulated in insecticide-resistant strains [43]. Since
these genes are also constitutively expressed under normal
conditions [44], it is germane to suggest they are either
primed for rapid response to stress or involved in cellular
homeostasis. Although neonicotinoid insecticides are
effective against phloem-sucking insects, including white-
flies, aphids, and thrips, high levels of resistance have been
documented in the field for B. tabaci populations worldwide
[45–47]. Based on previous studies that showed some P450s
and GSTs are overexpressed in neonicotinoid-resistant
Bemisia [44, 48–53], this study functionally validated nine
CYP450s and three GSTs by RNAi-mediated knockdown.
Subsequent bioassays demonstrate that the suppression of a
CYP6 gene, CYP6EM1, significantly increased the suscep-
tibility of B. tabaci to imidacloprid, indicating a potential
role in the resistance mechanism for the neonicotinoid
insecticides. Secondly, both MEAM1/B and MED/Q have

Fig. 4 Pathways encoded by Candidatus hamiltonella for vitamin biosynthesis. Independence and complementarity in the vitamin synthesis
pathways of MED/Q (red box) and Hamiltonella (blue box). Hamiltonella genes are highlighted in blue boxes with names corresponding to its
genome (PRJNA299727), green boxes denote candidate genes encoded by both MED/Q and Hamiltonella, while white boxes indicate genes that
do not have a match in either genome
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successfully become established in invasive geographic
ranges, especially in China where the introduction of
MED/Q has led to the displacement of the formerly dom-
inant invasive MEAM1/B from many localities [7, 54].
The expression level of detoxification genes was previ-
ously shown to be higher in invasive MED/Q [44], but any
potential relationship with increased adaptive capacity
with this invaded range remains unknown.
Endosymbiosis between host eukaryotic cells and intra-

cellular microorganisms involves a series of adaptive
changes, involving gene loss or gain resulting in comple-
mentation across one or more biosynthetic pathway. The
most ancient of these is likely can be argued to be the
acquisition of environmental bacteria and subsequent HGT
that led to the current mitochondrion and the nuclear-
encoded mitochondrial components of the ATP biosyn-
thesis pathway. Insects contain an array of intracellular
bacteria and fungi, a proportion of which have formed mu-
tualistic relationships with their hosts; such partnership

appear particularly common in the order Hemiptera [55,
56]. The impact of these symbiotic relationships on the
metabolic capacity of host genomes are just starting to be
revealed through whole-genome analyses [57]. All Bemisia
species host the primary endosymbiont Portiera aleyrodi-
darum [58] and an array of species-specific secondary
endosymbionts: Arsenophonus spp. (Enterobacteriales),
Wolbachia spp. (Rickettsiales), “Candidatus Hamiltonella
defensa” (Enterobacteriales), “Candidatus Hemipteriphilus
asiaticus”, “Candidatus Cardinium hertigii” (Bacteroidales),
“Candidatus Fritschea bemisiae” (Chlamydiales) and
Rickettsia spp. (Rickettsiales) [59–62]. Previous studies have
suggested the potential for the metabolic complementarity
between Bemisia and Portiera, and between Bemisia and
Hamiltonella [16, 17]. Transcriptome-based analysis of
MEAM1/B that compared both bacteriocytes and the
whole-body samples reported that the host genome may
contribute enzymes that complement or duplicate
Portiera–encoded pathways, and that Hamiltonella might

Fig. 5 Functional validation of detoxification enzymes using dietary RNAi. The genomic structure of CYP4s (CYP304G2, CYP402C9, CYP4CR2 and
CYP4G69), CYP6s (CYP6CX4, CYP6DB3, CYP6DV6, CYP6DW2 and CYP6EM1), and GSTs (GSTD6, GSTD9 and GSTM1) are respectively shown in panels (a),
(c), and (e). Images from gel electrophoresis of PCR and qRT-PCR products are displayed within the inset pictures. Plots of survival rates of CYP4,
CYP6, and GST knockouts when exposed to 0.2 mM imidacloprid are documented in (b), (d), and (f), respectively (* p < 0.05; ** p < 0.01). Control
treatments include non-insecticide (−, buffer, EGFP and genes), vehicle (+, buffer), and control gene (+, EGFP). Buffer are an aqueous artificial diet
solution containing 5% yeast extract and 30% sucrose (wt/vol)
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contribute multiple cofactors and the pathway for producing
the essential amino acid Lys [16]. Analysis of Portiera gen-
ome predicted a lack of genes essential for the biosynthesis
of certain amino acids, which was supported by congruent
findings from a transcriptome-based approach [13, 63]. Our
work provides the first assessment of gene reduction and
metabolic pathway complementation in MED/Q-symbiont
relationships. Our comparative genome approach suggests
that Portiera encodes pathways that synthesize of 10 essen-
tial amino acids (Fig. 3) and that Hamiltonella contributes
B-vitamins (Fig. 4), none of which can be produced by
MED/Q, the host along. The metabolic/nutritional contribu-
tions of Portiera and Hamiltonella to MED/Q allow host to
survive/thrive on nutrient deficient diets (phloem sap).
The presence of numerous metabolic pathways that

require gene products from both the host and endosym-
bionts suggests a strong obligate symbiosis. Such com-
plementarity likely could evolve through gene reduction
(loss) in either the host or endosymbionts following a
relaxation of selective constraints when redundant
copies are present, or can also occur through HGT. For
instance, enzymes involved in carotenoid biosynthesis
were derived from fungal genes integrated into the A. pisum
genome [64]. HGT in the citrus mealybug, Planococcus citri,
also contribute to functions absent in its endosymbionts,
which evolved a different system of amino acid synthesis
[65]. The fact that enzymes require from both MED/Q and
Portiera in order to attain functional 11 different biosyn-
thetic pathways suggests that pathway complementarity may
be an initial step in the development of obligatory endosym-
biotic relationships, or a consequence of the random evolu-
tionary events that created an inseparable and co-dependent
metabolic system.
Modifications to the insect immune system are necessity

to facilitate the residency of previously free-living extracel-
lular bacteria, where the host no longer recognized the
bacteria as pathogenic agents. In contrast, the acceptance
of foreign bacteria by the host, or evasion of host defenses
by the bacteria, is essential for any intracellular symbiosis.
Normal infections of D. melanogaster by Gram-negative
bacteria activates the IMD pathway [66]. Since the obligate
endosymbionts of both Bemisia and A. pisum are Gram-
negative bacteria [66, 67], the loss of IMD pathway
components in MED/Q and MEAM1/B genomes may be
more than coincidental. The loss of IMD pathway is
predicted to facilitate the acquisition of endosymbiotic
bacteria [68]. We estimated that the divergence of
Bemisia, A. pisum, D. citri, and N. lugens occurred 286
million years ago (MYA) (Additional file 11: Figure S2),
which is consistent with other research dating the diver-
gence of Auchenorrhyncha (containing N. lugens) and
Sternorrhyncha (containing A. pisum, Bemisia, and
phylloxera) to 290 MYA [69]. These evolutionary events
and recent studies suggest that the ancestors of Bemisia

and A. pisum acquired their obligate endosymbionts after
separating from the ancestral group containing N.
lugens, a split that may have involved a loss-of-
function event in the IMD pathway of the former
group. The absence of a functioning IMD pathway in
MED/Q may also have contributed to the subsequent
acquisition of Hamiltonella and other facultative
endosymbionts that have been detected in members
of the Bemisia complex, but additional research into
the diverse aspects of these relationships is required.

Conclusions
The expansion of detoxification genes families like P450s
are observed in B. tabaci MED/Q and MEAM1/B genomes,
which is suggestive of an evolutionary-driven adaptive
response in the history of the whitefly lineage. Regardless of
these unknown past events, the larger repertoire of detoxifi-
cation functionalities among variant P450 might suggest an
increased capacity to respond to and survive exposures to
chemical insecticides as well as xenobiotic host plant
defenses. Both of these aspects may further facilitate the
invasive abilities observed for MED/Q and MEAM1/B,
whereby both have invaded novel geographic ranges and
ecological niches. In support of this hypothesis that the
expansion of metabolic resistance genes in the MED/Q
genome could contribute to observed chemical insecticide
resistance traits in the population, conventional gene expres-
sion analysis and RNAi-mediated functional validation dem-
onstrated the role of P450s in B. tabaci resistance to the
neonicotinoid insecticide, imidacloprid. The analysis of
Bemisia MED/Q genome also uncovered the biochemical
basis for the nutrient/nutritional partitioning between
MED/Q host and endosymbionts, which involves the com-
plementation and horizontal transfer of pathway compo-
nents (enzymes) between genomes. A reduction in the IMD
immune system in MED/Q also suggests host adaptations
that lead to acceptance of intracellular bacterial may be a
key process that likely has facilitated the development of the
relationship. of Bemisia and their symbionts. More import-
antly, this MED/Q genomic resource provides a foundation
for future ‘pan-genomic’ comparisons of across the cryptic
Bemisia spp., such as between invasive vs. non-invasive, in-
vasive vs invasive, and native vs. exotic strain. Undoubtedly,
the current genomic resources will likely open new avenues
of research into whitefly biology, ecology and evolution, and
could facilitate the development of new strategies for the
management of this severe agricultural species.

Methods
Identification and analysis of the orthologous genes
Data from two recently published B.tabaci genomes data
set, MEAM1/B, http://www.whiteflygenomics.org/cgi-bin/
bta/index.cgi, v1, [24] and MED/Q, http://gigadb.org/data-
set/view/id/100286/token/etFfO6xzVU8Iv5Kk [24] were
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downloaded. In order to study the syntenic blocks
between these two sequences, an alignment of MED/Q
and MEAD1/B draft assemblies in fasta format was
performed using LastZ [26]. To compare the level of
coding sequence divergence between these two species,
we analyzed the gene coding sequence variance between
possible orthologous genes identified using TreeFam [70].
This involved as following steps, which has been widely
used to identify orthologous genes: Firstly, protein
sequences of these two species were compared by blast
with the E-value threshold 1e-7. Secondly, high-scoring seg-
ment pairs (HSPs) of each protein pair were concatenated
by solar [71]. H-scores were computed based on Bit-scores
and used to evaluate the similarity among genes. Finally,
gene family members were predicted by clustering of hom-
ologous gene sequences using Hcluster_sg (version 0.5.0)
[72, 73]. To compare the genomics difference among
MED/Q and other insects, we further collected 13 other
insects and 1 crustacean genome data sets: A. pisum, R.
prolixus, B. mori, D. plexippus, N. vitripennis, T. castaneum,
P. humanus, D. melanogaster, A. gambiae, and D. pulex
(ftp.ensemblgenomes.org/); A. mellifera, N. lugens,C. flori-
danus and D. citri (ftp.ncbi.nih.gov). Then we identified
and analyzed their orthologous genes using above methods.

Phylogenetic tree reconstruction and divergence
time estimation
The coding sequences of single-copy gene families con-
served among MED/Q and other 15 species were extracted,
translated into amino acid sequences, and aligned by the
program MUSCLE (MUSCLE, RRID:SCR_011812) [74].
The individual sequence alignments were then concatenated
into one supermatrix. PhyML (PhyML, RRID:SCR_014629)
[75, 76] was applied to construct the phylogenetic tree under
a GTR+ gamma model for nucleotide sequence evolution.
aLRT values were taken to assess the branch reliability in
PhyML. The same set of codon sequences at position 1 was
used for phylogenetic tree construction and estimation of
the divergence time. The PAML mcmctree program
(PAML, RRID:SCR_014932) (PAML version 4.5) [77, 78]
was used to determine divergence times with the approxi-
mate likelihood calculation method and the correlated
molecular clock and REV substitution model.

Detection of positively selected genes and
fast-evolving genes
We calculated Ka/Ks ratios for all single copy orthologs
of five phloem feeding insects (B. tabaci MED/Q and
MEAM1/B, A. pisum, N. lugens and D. citri). For the
CDS region, pair-wise alignments were generated for the
single copy orthologous gene pairs based upon trans-
lated protein sequences, and then back translated to
DNA sequences for subsequent analysis. Alignment
quality was essential for estimating purifying/fast

evolving genes and positively selected genes. Thus ortho-
logous genes were first aligned by PRANK [79], which is
considerably conservative for inferring positive selection.
Gblocks [80] was used to remove ambiguously aligned
blocks within PRANK alignments and employed ‘codeml’
in the PAML package with the free-ratio model to esti-
mate Ka, Ks, and Ka/Ks ratios on different branches.
The differences in mean Ka/Ks ratios for single-copy
genes between MED/Q and each of the other species
were compared using paired Wilcoxon rank sum tests.
Genes that showed values of Ka/Ks higher than 1 along
the branch leading to MED/Q were reanalyzed using the
codon based branch-site tests implemented in PAML
(PAML, RRID:SCR_014932). The branch-site model
allowed ω to vary both among sites in the protein and
across branches, and was used to detect episodic positive
selection. To detect the fast-evolving genes between
MED/Q and MEAM1/B, we employed ‘KaksCaculator’
with YN model to estimate Ka, Ks, and Ka/Ks ratios
between gene pairs.

Gene family expansion and contraction
Gene family expansion and contraction analysis were
performed using the software CAFE 2.1. In CAFE [81],
a random birth and death model was used to predict
gene gain and loss among gene families across the
species-specific phylogenetic tree. Fisher’s exact test
(p-value < 0.01) was used to test for over-represented
functional categories (GO terms) among the expanded
genes and the remainder of non-expanded genes across
the genome.
Detoxification enzymes within the putatively ex-

panded cytochrome P450 monooxygenase (CYP450)
gene family were identified using a homology-based
strategy that used reference D. melanogaster, A.
pisum, A. gambiae, and A. mellifera gene models
downloaded from (NCBI, http://www.ncbi.nlm.nih.-
gov/). First, we identified the detoxifying enzyme
genes in MED/Q gene models by querying our gene
set and scaffolds data with orthologous sequences
using the BLASTx algorithm (E-value ≤10− 5). The
genomics segments with hits were linked by the Solar
software, and parsed using Genewise software for
gene predictions to enable the identification of full-
length coding sequences. The resultant sequences
were filtered in searches against the non-redundant
(nr) and Interpro databases. After filtering false-
positive matching sequences, the genes were manually
corrected using the MED/Q transcriptome (mainly to
P450 and UGT manual annotation), and phylogenetic
trees were constructed using MEGA6.0 [82]. A similar
method was applied to identify homologous genes in
other selected insects.
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The immunity related genes in MED/Q were identified
by combining the results from motif- and homology-
based strategies, as previously described [83]. This
comparison was accomplished by downloading the query
sequences available in ImmunoDB [84], and from the
NCBI database for the six insects D. melanogaster, A.
gambiae, A. aegypt, A. mellifera, C. quinquefasciatus and
A. pisum. For the motif-based search, MAFFT [85] was
used to align multiple protein sequences followed by the
software HMMER 3.0 that was used to build models
against which MED/Q sequences, and these models
were used a queries to searched downloaded sequence
databases using tBLASTn with hits linked using the
Solar software. Genewise software [86] was used to
improve the gene predictions and to obtain full-length gene
sequences. The resultant MED/Q sequences were edited
manually and merged into a combined dataset of putative
immune-related genes. The immune-related genes of A.
pisum and N. lugens were used for comparisons with white-
fly genes obtained using a similar approach.

In silico metagenomic analysis of MED/Q endosymbiosis
To improve the B. tabaci MED/Q-associated Hamiltonella
draft genome (AJLH00000000), sequencing data from 16
Illumina paired-end read libraries, ranging from 170 bp to
40 kb (44 lanes), from the MED/Q genome-sequencing
project were used. Four sequences were selected as refer-
ences to filter candidate reads using SOAPaligner (Version:
2.21). These sequences included a previous draft of the
Hamiltonella genome (372 scaffolds; AJLH00000000), the
pea aphid Hamiltonella genome (CP001277), the Yersinia
pestis CO92 complete genome (AL590842), and the
Serratia plymuthica AS9 genome (CP002773). The SOAPa-
ligner parameters were “-v 5” for the short insert size library
(< 1 kb) data and “-v 3 -R” for the large insert size library
(> 1 kb) data. SOAPdenovo (version 2.04) was used for
genome assembly, using the parameters “-u -d 1 -F -K 45”
on the above 170 bp to 40 k bp data. Gap filling was
performed after scaffold construction, and a super-scaffold
was obtained using the paired-end reads on > 500 bp
scaffolds to reduce the scaffold number. Then, the Unique
Genome Profile (UGP) pipeline was applied to link the scaf-
folds using BAC sequences from MED/Q. Briefly, 1) the
flanking 20 kb sequences of each scaffold were removed,
and then unique tags (31-mer) were constructed; 2) the
BAC sequences (< 150 kb) were used as queries in BLASTn
searches against the unique genomic tags; and 3) BACs that
had more than two hits were filtered, and then used to
construct link relationships to connect larger scaffolds. In
addition, the genome of the MED/Q-associated primary
endosymbiont Portiera was filtered and assembled (as
described above) together with four previously reported
Portiera genome reference sequences obtained from B.

tabaci B and Q genome (GenBank: CP003708, CP003868,
CP003867 and CP003835).
Genes were predicted for the finished Hamiltonella

and Portiera genomes using Glimmer v3.02 (protein-
coding genes), tRNAscan-SE (tRNAs) and RNAmmer
v1.2 (rRNA). The putative coding sequences were anno-
tated using BLASYp similarity searches that showed
consensus to the NR database (20121005). The E-value
cutoff ≤10− 5 and a minimum match percentage of 40%
were used to filter results. Protein domain searches were
conducted using InterProScan v4.8, available at the Pfam
database, and the resulting coding sequences were used
to search the KEGG database (http://www.genome.jp/
tools/kaas/).
The amino acid synthesis-related genes in the MED/Q

genome were searched against the NR database, under
the scenario that they were not of insect origin. The
genes identified in this way were used to construct a
phylogenetic tree. To confirm that the HTGs identified
were not contaminants associated with bacterial
sequences in the libraries, hits were required to satisfy at
least one of the two following conditions: 1) the HTGs
were located on scaffolds that included coding regions
homologous to other insects; and 2) the HTGs’ tran-
scripts should be present in alignments to a current
transcriptome database (after manual corrections) and
also as corresponding genes encoded by the genome.

Quantitative real-time PCR
Total RNAs were extracted from 30 to 40 B. tabaci
adults (mixed sexes, female: male = 1: 1) per strain
using a TRIzol reagent following the manufacturer’s
protocol (Thermo-Fisher, Wilmington, DE, USA). The
total RNA was resuspended in the nuclease-free water
and quantified with a Nanodrop 2000 spectrophotom-
eter (Thermo-Fisher, Wilmington, DE, USA). Subse-
quently, the first-strand cDNAs were synthesized
using the PrimeScript® RT reagent Kit (Takara
Biotech, Tokyo, Japan) with gDNA Eraser according
to the manufacturer’s protocol. Reverse transcription
was performed on 1.0 μg of each RNA sample. Syn-
thesis of P450 and GST genes dsRNA and application
of RNAi to insect were carried out according to pub-
lished protocols. In addition, dsRNAs were prepared
using the T7 RiboMAX Express RNAi system and
protocols (Promega, Madison, WI, USA).
A total 120 adults (three biological replicates, n = 40)

were subjected to qRT-PCR analysis. Nine cytochrome
CYP450 and three GST sequences were selected from
this MED/Q genomic sequencing project. Full length
primers were designed to analysis the quality of genomic
genes annotation, and qRT-PCR primers were designed
to amplify a 85- to 250-bp fragment at annealing
temperature of 60 °C (Additional file 32: Table S16). The
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amplification efficiency of these q-PCR primers are
95–105%. The 20-μl reaction mixture consisted of
1.0-μl of 300-ng cDNA (3 times diluted), 10.0-μl of
the SYBR® Green Real-time PCR Master Mix with
ROX (Thermo-Fisher, Wilmington, DE, USA), and
0.6-μl of each primer. qPCR was conducted with the
ABI 7500 system by the following protocol: 15 min of
activation at 95 °C followed by 40 cycles of 10 s at
95 °C, 30 s at 60 °C, and 30s at 72 °C. A 3-fold dilu-
tion series of the whitefly cDNA was constructed the
relative standard curve to calculate the amplification
efficiency of the 12 genes. Elongation factor 1 alpha
subunit (EF1-α) of B. tabaci were used as reference
gene [87]. The RNA interference efficiency in CYP450
and GST genes expression, normalized to reference
gene, were calculated using the 2-△△Ct method [88].

In vivo dietary RNA interference in B. tabaci
Dietary RNAi was carried out in a feeding chamber
consisting of a glass tube (20 mm in diameter ×
50 mm long that was open at both ends), which was
covered at the top end by one layer of Parafilm mem-
brane (Alcan Packaging, Chicago, IL, USA) [49]. A
0.2-mL portion of diet solution containing 5% yeast
extract and 30% sucrose (wt/vol) was placed on the
outer surface of the Parafilm and was covered with
another layer to encase the solution between the Par-
afilms. Whiteflies were released into the other end of
the tube. Then the tube was sealed with a black cot-
ton plug and covered with a shade cloth. The end of
the tube with a Parafilm membrane was facing a light
source that was approximately 20-cm away. This diet-
ary RNAi system was used to investigate the impact
of detoxification enzymes on the susceptibility of
adult B. tabaci to imidacloprid insecticide. Control
treatments included non-insecticide (−, buffer, EGFP
and genes), vehicle (+, buffer), and control gene (+, EGFP).
Buffer was an aqueous solution of artificial diet con-
taining 5% yeast extract and 30% sucrose (wt/vol).
Treatments used the same artificial diet solution
mixed with dsRNAs of P450s and GSTs (0.5-μg/μL)
[49]. dsRNAs were synthesized in vitro using a T7
RiboMAX Express RNAi system following the manu-
facturer’s protocol (Promega, P1700, USA). In the
insecticide toxicity assay, B. tabaci adults were fed on
both treatment and control diets containing 0.2-mM
imidacloprid. Mortality pt?>was assessed after 2 h of
feeding. Newly emerged adults (24 h within hatching,
mix sexed) were introduced into the feeding chamber,
and placed in an environmental chamber at 25 °C, a photo-
period of L14: D10, and 80% RH. Survival data were ana-
lyzed with log-rank test using SPSS (SPSS for Windows, Rel.
17.0.0 2009. Chicago: SPSS Inc.).
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