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Abstract

Background: Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes
tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal
transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic
changes have been described in CRC, the mechanism is still poorly understood.

Results: Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer
Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in
glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which
included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in
78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and
deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1)
involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a
strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC.

Conclusions: Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for
rapid proliferation, survival, and metastases of CRC cells.
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Background
In 2012, an estimated 1.36 million people were diag-
nosed with colorectal cancer (CRC), including 746,300
men and 614,300 women. The mortality rate of CRC is
reported to be approximately half of its global incidence.
In the same year, 694,000 people died from CRC [1],

making it the third most common cancer and fourth
most common cause of death worldwide [2].
The stage of CRC plays a significant role in survival of

patients. More than 60% of patients are diagnosed at late
stage of CRC (III-IV) and approximately 25% of them
display metastatic disease [3, 4]. Development of new
drugs and targeted therapies has dramatically improved
the survival of these patients over the last decade [5].
However, the survival outcome in patients with meta-
static or stage IV CRC still remains poor [6, 7]. For in-
stance, the 5-year relative survival rate for patients with
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metastatic CRC is about 11%, while that for patients
with stage III CRC ranges from 53% to 89% (https://
www.cancer.org). CRC is characterized by severe genetic
alterations, including microsatellite instability (MSI), epi-
genetic changes such as DNA methylation (CpG Island
Methylator Phenotype [CIMP]), and chromosomal in-
stability (CIN), which are associated with the develop-
ment of the disease and its aggressive behavior [8, 9].
Thus, identification of the distinct molecular genetic
changes related to CRC progression and metastasis is
extremely important.
A number of studies have demonstrated that

epithelial-mesenchymal transition (EMT) is involved in
CRC carcinogenesis and metastasis [10, 11]. EMT is the
conversion of epithelial cells into cells with a mesenchy-
mal phenotype, which is accompanied by a decrease in
cell-cell cohesion and fundamental reorganization of the
cytoskeleton. Consequences include enhanced migratory
as well as invasive capacity and resistance to apoptosis
[12, 13]. Based on the biological context, three types of
EMT have been described as follows: type I observed in
embryogenesis [14], type II involved in tissue repair and
fibrosis [15], and type III seen in metastatic transform-
ation of cancer cells [16]. A hallmark feature of EMT is
the downregulation of E-cadherin, a cell-cell adhesion
molecule localized on the surface of epithelial cells [17].
E-cadherin is a well-known tumor suppressor protein
and loss of its expression in tumor cells is associated with
increased tumor invasiveness and metastasis [18, 19]. In
CRC, EMT is characterized by decreased E-cadherin ex-
pression and nuclear accumulation of β-catenin, which is
an essential protein for correct positioning and function
of one [20, 21]. Loss of epithelial and gain of dedifferen-
tiated mesenchyme-like phenotype enable CRC cells to
develop invasive and metastatic growth characteristics
[22]. The switch from cytoplasmic to nuclear accumula-
tion of β-catenin is a central mechanism related to EMT
in CRC [21]. This process may be mediated by the loss-of-
function mutations in the adenomatous polyposis coli
(APC) tumor suppressor gene or mutations that result in
β-catenin stabilization [23]. In the nucleus, β-catenin asso-
ciates with DNA-binding proteins of the T-cell factor/
lymphoid enhancer factor (TCF/Lef) family, leading to a
constitutive activation of Wnt/β-catenin signaling target
genes, c-Myc [24] and CCND1 [25]. Moreover, β-catenin
triggers the expression of other genes such as MMP7
[26, 27], FN [28], CD44 [29], and UPAR [30] involved
in invasive cell growth. Except for this mechanism,
there are at least ten known signaling pathways and
many molecules associated with EMT in CRC [31].
Metabolic reprogramming characterized by upregu-

lated glycolysis is another crucial feature of cancer. It
provides cancer cells with energy and metabolites essen-
tial for active cell division, large-scale biosynthesis,

invasion, and metastasis [32–34]. Increased glycolysis
has been suggested as an essential component of the
malignant phenotype and hallmark of invasive cancers
[35]. In CRC, redirection of glucose metabolism is pro-
moted by deregulation of key components involved in
glucose transport (GLUT-1) [36], metabolism (hexoki-
nases [HK1, HK2], pyruvate kinase M2 [PKM2], lac-
tate dehydrogenase A [LDHA], aldolase A [ALDOA],
etc.) [37–39], as well as metabolic regulation [40–42].
In addition, variation in the representation of alterna-
tive spliced transcripts related to energy metabolism
seems to be associated with the prevalence of aerobic
glycolysis in cancer cells [43, 44]. EMT in tumors re-
quires the distinct metabolic adaptations for survival,
rapid proliferation, and metastasis. However, meta-
bolic changes observed upon EMT induction are un-
common for various cancer types [45–47]. Recent
studies showed that the glycolytic enzymes aldolase B
(ALDOB), PKM2, and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) play a role in EMT and me-
tastasis in CRC [48, 49].
In this work, using CrossHub software we analyzed

RNA-Seq data from The Cancer Genome Atlas (TCGA)
project to estimate the association between the expres-
sion of genes participating in EMT and glycolysis in
CRC. Hexokinase 3 (HK3) was found to exhibit signifi-
cant correlation with a set of genes involved in EMT.
Thus, we focused on the investigation of HK3 gene ex-
pression in CRC samples and its association with EMT.

Methods
Bioinformatic analysis
Using CrossHub software [50], we have analyzed The Can-
cer Genome Atlas (TCGA, https://cancergenome.nih.gov)
project RNA-Seq dataset derived from CRC. The dataset
contained 287 tumor samples including 26 paired ones.
The selection of genes participating in glycolysis and EMT
was performed using Gene Ontology database and “glyco-
lytic process” and “epithelial to mesenchymal transition” as
keywords. A set of 132 genes was selected for further
analysis.
The correlation analysis between the expressions of

target genes was performed using Spearman’s rank cor-
relation coefficients (rs). We carried out two tests: one
for paired samples and other for pool of tumor samples.
Spearman’s rank correlation coefficients were calculated
between (1) fold change values, the ratio of CPM (counts
per million) in tumor sample to CPM in conditional
normal tissue, (paired samples) and (2) CPM values (pool
of tumor samples). Before calculating correlation coeffi-
cients, dropping points (no more than 5%) were elimi-
nated using approximate generalized linear model. We
focused on the genes with concordant results in paired
and pooled tests.
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Tissue samples
In total, 78 paired CRC samples, including tumor and
adjacent morphologically normal tissues (conditional
normal tissue), were collected from patients in Herzen
Moscow Cancer Research Institute - branch of National
Medical Research Radiological Center, Ministry of
Health of Russian Federation (Moscow, Russia). The
sample information is presented in Table 1. Samples
were obtained after surgical resection prior to radiation
or chemotherapy and were stored in liquid nitrogen.
The diagnosis was verified by histopathology, and only
samples with 70% or more tumor cells were used in the
study. The morphological classification of the tumor was
performed according to the WHO Classification of
Tumours of the Digestive System (WHO/IARC Classifi-
cation of Tumours, 4th Edition, 2010) and verified ac-
cording to the American Joint Committee on Cancer
(AJCC) staging system (AJCC Cancer Staging Manual,
8th Edition, 2017). Samples were collected in accordance
with the guidelines issued by The Ethics committee of
Herzen Moscow Cancer Research Institute. Written in-
formed consent was obtained from all patients.

RNA isolation and reverse transcription
Nitrogen-frozen tissues were homogenized using a Mikro-
Dismembrator S (Sartorius, Germany). Total RNA was
isolated using the RNeasy Mini Kit (Qiagen, Germany) ac-
cording to manufacturer’s instructions. Purified RNA was
quantified using NanoDrop 1000 (NanoDrop Technolo-
gies Inc., USA) and the RNA quality measured with the
RNA Integrity Number (RIN) method on Agilent RNA
Bioanalyzer 2100 (Agilent Technologies, USA). All RNA
samples were treated with RNase-free DNase I (Thermo
Fisher Scientific, USA). Reverse transcription was

performed from 1 μg of total RNA using M-MuLV reverse
transcriptase (Thermo Fisher Scientific) and random hex-
amer primers (Evrogen, Russia). Negative control samples
were included in each set of reactions. Reactions were
heated at 70 °C for 5 min to melt the secondary structure
of mRNA, followed by immediate cooling on ice. Samples
were further incubated at 25 °C for 5 min, followed by
treatment with M-MuLV reverse transcriptase at 25 °C for
10 min. Then the reaction tubes were incubated at 42 °C
for 1 h. Following the incubation, samples were diluted to
48 μL in nuclease-free water and stored at − 20 °C.

Quantitative polymerase chain reaction (qPCR)
Quantitative polymerase chain reaction was performed
using commercial primer-probe sets for target genes
(HK3: Hs01092850_m1,VASN: Hs01936449_s1, GREM1:
Hs01879841_s1, TGFB3: Hs01086000_m1, TGFB1:
Hs00998133_m1, LOXL3: Hs01046941_g1, HGF:
Hs00300159_m1, SNAI2: Hs00161904_m1, FAM101B:
Hs00823804_m1, SFRP2: Hs00293258_m1, FLNA:
Hs00924645_m1, WWTR1: Hs00210007_m1, SFRP1:
Hs00610060_m1, GLIPR2: Hs01555479_m1, NFATC1:
Hs00542675_m1, TWIST1: Hs01675818_s1, COL1A1:
Hs00164004_m1, ZEB2: Hs00207691_m1, VIM:
Hs00958111_m1, TP53: Hs01034249_m1, SPP1:
Hs00959010_m1, RARRES1: Hs00894859_m1) from
TaqMan Gene Expression Assays (Thermo Fisher Scien-
tific). Primers and probes for reference genes, GUSB and
RPN1, were designed earlier [51]. The reactions were
carried out on AB 7500 Real-Time PCR System (Thermo
Fisher Scientific) as previously described [52]. Each reac-
tion was repeated three times.
QPCR data were analyzed using relative quantification

or ΔΔCt-method as previously described [44, 52]. Rela-
tive mRNA level of the genes was calculated using ATG
program compatible with relative quantification software
(Thermo Fisher Scientific) [52]. Given the variability of
mRNA level of the reference gene, an mRNA level
change of at least two-fold was considered as significant.

Statistical analysis
Statistical analysis was performed using SPSS 10 soft-
ware (SPSS Inc., USA). The Wilcoxon/Mann-Whitney
and Kruskal-Wallis tests were applied to analyze differ-
ences in mRNA expression of target genes in CRC sam-
ples. Spearman’s rank correlation coefficient (rs) was
used for revealing correlations. A value of p ≤ 0.05 was
considered statistically significant.

Results
Preliminary correlation analysis of gene expression based
on TCGA project data
We identified a number of genes that showed high cor-
relations between each other in CRC with the false

Table 1 Clinicopathologic characteristics of the tumors

Characteristic Total, n

Gender

Male 46

Female 32

Age (years)

≤ 60 26

> 60 52

Clinical stage

I 2

II 28

III 31

IV 17

Distant metastases (Stage IV)

Negative 4

Positive 13
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discovery rate (FDR) ≤ 0.05. In the heat maps, these
genes formed a significant correlation module (Add-
itional file 1: Table S1 and Additional file 2: Table S2).
Only one glycolytic gene, HK3, was presented in this
module. A significantly strong correlation was observed
between HK3 gene and 16 EMT-related genes (VASN,
GREM1, TGFB3, TGFB1, LOXL3, HGF, SNAI2,
FAM101B, SFRP2, FLNA, WWTR1, SFRP1, GLIPR2,
NFATC1, TWIST1, and COL1A1), both in paired as well
as pool of tumor samples. In addition, literature data ana-
lysis revealed several genes that are involved in EMT
process. Preliminary calculation of correlation coefficients
between the expression of these genes and HK3 was car-
ried out using CrossHub software and RNA-Seq data from
TCGA project as described above. The results obtained
are shown in Additional file 3: Table S3 (available only for
26 paired CRC samples). A significant correlation was re-
ported between the change in expression of HK3 gene and
five additional genes (ZEB2, VIM, TP53, SPP1, and
RARRES1) involved in EMT. Thus, HK3 and a set of 21
EMT-related genes were selected for further assessment
by qPCR.

Upregulation of HK3 gene expression in CRC
Using qPCR, we quantified the expression of HK3 gene
in 78 paired CRC samples. HK3 mRNA level was upreg-
ulated from 2 to 12-fold in 41% (32/78, p < 0.01) CRC
samples as compared with that in conditional normal
tissue (Fig. 1). Over two-fold decrease in the expression
of HK3 gene was determined in 14% (11/78) of cases.
The mean value of relative mRNA level was 1.7. HK3
overexpression was not correlated with CRC progression
stage.
In addition, we verified the expression of all selected

EMT-related genes using qPCR. Deregulation in the ex-
pression of 11 genes (COL1A1, TWIST1, NFATC1,
GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1,
and RARRES1) was detected in CRC (Table 2). A signifi-
cant increase (p < 0.05) in the mRNA level of COL1A1,

TWIST1, CREM1, and SPP1 genes was observed in most
examined samples. Moreover, NFATC1, GLIPR2, SFPR1,
FLNA, SFRP2, ZEB2, and RARRES1 genes were down-
regulated by over two-fold (p < 0.05) in more than 40%
of CRC cases.

Correlation study between HK3 and EMT-related genes in
CRC
In order to determine the correlation between HK3 and
EMT-related genes, Spearman’s rank correlation coeffi-
cients were calculated. The results observed are shown
in Table 3. We found a significantly strong correlation
(> 0.5 or < − 0.5, p < 0.05) between HK3 mRNA
level and expression of seven of 21 examined genes
(ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and
COL1A1) in CRC. Generally, HK3 gene expression was
positively correlated with almost all tested genes at mod-
erate or weak levels. A negative correlation was detected
between HK3 and TP53 genes only.

Discussion
In the 1920s, Otto Warburg and co-workers observed
the altered energy metabolism in proliferating tumor
cells. These cells were shown to exhibit increased gly-
colysis with lactate secretion even in the presence of
oxygen — a phenomenon known as the “Warburg ef-
fect” [53]. Increased glucose metabolism, now consid-
ered as a hallmark of cancer, is thought to be essential
for tumor cell growth, survival, proliferation, and long-
term maintenance [54]. The first step of glycolysis is
catalyzed by hexokinases (HKs). There are four HK iso-
enzymes encoded by separate genes, HK1, HK2, HK3,
and HK4 (or GCK) [55]. HKs phosphorylate glucose to
glucose 6-phosphate using ATP molecule as the phos-
phoryl donor [56]. HKs are the first rate-limiting en-
zymes of glycolysis. Alterations in their expression
promote changes in glucose flux. Overexpression of
HK1 and HK2 genes was reported in many tumors

Fig. 1 Relative mRNA level of HK3 gene in colorectal cancer (qPCR data). The mRNA level of HK3 was normalized by those of two reference
genes, GUSB and RPN1. Data were presented according to CRC progression stage
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including colorectal, prostate, breast, lung, gastrointes-
tinal, and pancreatic cancers [39, 57–61]. In particular,
HK2 expression was suggested to be responsible for ac-
celerated glycolysis in cancer cells [62]. Nevertheless, ac-
tivities of both HK1 and HK2 are essential for their

survival [63]. Association of HK4 expression with
tumorigenesis is still unclear. However, polymorphisms
in HK4 and HK2 affect the risk and clinical outcome
in pancreatic cancer [64, 65]. A recent study reported
functional role of HK3 in acute promyelocytic
leukemia [66, 67]. No other studies have described
the role of HK3 in human cancers. This is the first
study to report HK3 upregulation in CRC and its po-
tential association with EMT.
The loss of E-cadherin expression during EMT is a

major event in cancer. Downregulation of E-cadherin is
mediated by a series of transcription repressors, includ-
ing proteins of the SNAIL superfamily (SNAI1, SNAI2,
and SNAI3) and ZEB family (ZEB1 and ZEB2),
forkhead-box protein FOXC2, factors E47 and KLF8,
and TWIST bHLH proteins (TWIST1 and TWIST2)
[68]. Upregulation of major EMT transcription factors
such as TWIST1, ZEB1, ZEB2, SNAI1, and SNAI2 has
been observed in many tumors [69–77]. We showed an
increased expression of TWIST1 gene in CRC, as re-
ported in a previous study [78]. Furthermore, overex-
pression of TWIST1 was demonstrated to promote
migration and invasion of CRC cells and induce EMT.
Although no significant upregulation in SNAI2 mRNA
level was observed in this work, SNAI2 protein expres-
sion was earlier shown to be upregulated in colorectal
tumors [77]. Shioiri and co-authors demonstrated the
localization of overexpressed SNAI2 protein in the cyto-
plasm, wherein its gene-repressive function is absent
[79]. We also reported downregulation of ZEB2 gene in
more than half of CRC samples, while its overexpression
was observed at the invasion front of CRC in another
study [80]. However, ZEB2 protein promotes EMT pro-
gression through direct suppression of the transcription
of genes involved in epithelial dedifferentiation [81, 82].
Thus, ZEB2 overexpression may not be generally ob-
served after EMT and may not always correlate with the
mesenchymal phenotype [83]. In addition, we found sig-
nificant positive correlations between the expression of
HK3 and TWIST1, SNAI2, and ZEB2 genes in CRC. The
association of HK3 with important EMT inducers may
indicate its involvement in EMT in colorectal cancer.
The genes TGFB1 and TGFB3 encode signaling pro-

teins, transforming growth factor-beta 1 and 3 (TGFβ1
and TGFβ3). These are secreted ligands of specific TGFβ
membrane receptors that play an essential role during
differentiation, proliferation, and embryonic develop-
ment in normal tissues. In general, the binding of the
ligand to its receptor initiates phosphorylation of pro-
teins belonging to the SMAD family. Activated SMAD
proteins assemble into complexes with transcription fac-
tors to directly regulate gene expression [84]. Many
studies have demonstrated the involvement of TGFβs in
EMT during normal development and pathological

Table 2 Frequency and mRNA level changes of eleven EMT-related
genes in CRC

Gene Frequency of mRNA level changes, % Median of mRNA
level changes, n-fold↑ ↓

COL1A1 79.5 (62/78) 5 (4/78) 5.5 ↑

TWIST1 67 (52/78) 4 (3/78) 2.9 ↑

NFATC1 9 (7/78) 50 (39/78) 1.6 ↓

GLIPR2 0 (0/78) 74 (58/78) 3.1 ↓

SFPR1 4 (3/78) 82 (64/78) 15.9 ↓

FLNA 15 (12/78) 44 (34/78) 1.8 ↓

GREM1 53 (41/78) 20.5 (16/78) 1.5 ↑

SFRP2 23 (18/78) 46 (36/78) 2.2 ↓

ZEB2 3 (2/78) 55 (43/78) 2.1 ↓

SPP1 76 (59/78) 5 (4/78) 7.9 ↑

RARRES1 9 (7/78) 63 (49/78) 2.2 ↓

Note: QPCR data. ↓/↑: mRNA level decrease/increase

Table 3 Results of Spearman’s correlation analysis between the
mRNA levels of HK3 and EMT-related genes

Gene Correlation coefficient, rs

ZEB2 0.62*

VIM 0.49*

VASN 0.33*

GREM1 0.51*

LOXL3 0.39*

HGF 0.20

TP53 −0.47*

TGFB3 0.57*

TGFB1 0.59*

SNAI2 0.58*

SPP1 0.44*

RARRES1 0.35*

SFRP2 0.39*

FLNA 0.12

WWTR1 0.15

SFRP1 0.29

GLIPR2 0.23

NFATC1 0.42*

TWIST1 0.52*

COL1A1 0.53*

FAM101B 0.48*

*- p < 0.05
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processes [85–88]. Alterations in the components of
TGFβ pathway are often observed during CRC progres-
sion. Approximately 40–50% of all CRC cases display
mutational inactivation of this signaling pathway [89,
90]. Although TGFβ pathway exhibits a tumor-
suppressive role, increased level of TGFβ1 in plasma of
patients with CRC was associated with the development
of metastasis [91]. Moreover, elevated TGFβ1 level has
been reported to increase the metastasis capability of
CRC cells and inhibition of TGFβ receptor 1 resulted in
metastasis formation in animal model [92]. No signifi-
cant change in the expression of TGFB1 and TGFB3
genes in CRC was observed in our study. However, these
genes demonstrated a strong positive correlation with
HK3 mRNA level.
We observed a significant upregulation in GREM1

and COL1A1 gene expression in CRC. A positive cor-
relation was observed between these genes and HK3.
GREM1 gene encodes a member of the BMP antag-
onist family and is known as a mediator of EMT in
non-cancerous pathologies and cancer [93–96].
GREM1 was shown to be involved in the migration
of CRC cells in vitro and in silico [97]. However, a
few studies have demonstrated an association between
GREM1 expression and overall survival of CRC pa-
tients [98, 99]. COL1A1 gene encodes for alpha 1
type I collagen, a target protein for TGFβ1 transcrip-
tion factor. Type I collagen is associated with EMT in
normal and cancer tissues [100–102]. It may downregulate
E-cadherin and β-catenin and promote EMT-like pheno-
type in CRC cells [103]. In the study by Zou and co-
workers, overexpression of COL1A1 gene was observed in
tissues and serum samples of patients with CRC. The
serum level of COL1A1 correlated with the staging and
poor survival rate of CRC [104].
It should to be noted that TP53 gene encodes a tumor

suppressor protein, p53. One of the most important
functions of p53 is the activation of apoptosis. TP53 is
frequently mutated in human cancers, and over 50% of
all tumors display somatic mutations in TP53 gene
[105]. Loss of p53 activity is also associated with EMT
phenotype. It has been shown that downregulation of
p53 promotes proliferation, EMT-mediated migration,
and invasion of CRC cells [106]. In addition, p53 was re-
cently found to be involved in cancer cell metabolism
[107, 108]. p53 displays an ability to suppress glycolysis
and stimulate oxidative phosphorylation through tran-
scriptional regulation of several glycolysis-related genes
[109–111]. We observed a significant negative correl-
ation between mRNA levels of HK3 and TP53 genes.
Thus, HK3 gene could be a potential p53 target and sup-
pression of p53 may not only contribute to increased
glycolysis but also provide some advantages for EMT in
CRC cells. It is interesting that the upregulation of HK3

expression was observed in breast cancer samples with
TP53 mutations, as per TCGA data [112]. In this study,
CRC samples were not tested for TP53 mutations, but
could also be positive for ones.

Conclusions
We showed the upregulation of HK3 gene in CRC and
confirmed its involvement in tumorigenesis. Expression
of HK3 gene significantly correlated with mRNA levels
of important EMT transcriptional factors (ZEB2, TGFB3,
TGFB1, SNAI2, and TWIST1) and components (GREM1
and COL1A1). Thus, our study suggests that HK3 may
participate in EMT process and that its upregulation
could be one of the crucial changes for adaptation of
glucose metabolism to EMT in CRC.
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