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Abstract

Background: Estimation of species trees from multiple genes is complicated by processes such as incomplete
lineage sorting, gene duplication and loss, and horizontal gene transfer, that result in gene trees that differ from each
other and from the species phylogeny. Methods to estimate species trees in the presence of gene tree discord due to
incomplete lineage sorting have been developed and proved to be statistically consistent when gene tree discord is
due only to incomplete lineage sorting and every gene tree includes the full set of species.

Results: We establish statistical consistency of certain coalescent-based species tree estimation methods under
some models of taxon deletion from genes. We also evaluate the impact of missing data on four species tree
estimation methods (ASTRAL-II, ASTRID, MP-EST, and SVDquartets) using simulated datasets with varying levels of
incomplete lineage sorting, gene tree estimation error, and degrees/patterns of missing data.

Conclusions: All the species tree estimation methods improved in accuracy as the number of genes increased and
often produced highly accurate species trees even when the amount of missing data was large. These results
together indicate that accurate species tree estimation is possible under a variety of conditions, even when there are
substantial amounts of missing data.

Keywords: Species tree, Multi-species coalescent, Missing data, Incomplete lineage sorting, ASTRAL, ASTRID, MP-EST,
SVDquartets

Background
The estimation of a species phylogeny from multiple loci
is confounded by biological processes, such as horizon-
tal gene transfer and incomplete lineage sorting, that
cause individual gene tree topologies to differ from each
other [1]. While some of these processes require phy-
logenetic networks for proper modeling of the species
phylogeny, other processes, including incomplete lineage
sorting (ILS) and gene duplication and loss, are still con-
sistent with a species tree. Estimating species trees in the
presence of gene tree heterogeneity is challenging.
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ILS, which is modeled by the well-studied multi-species
coalescent (MSC) model [1–3], is considered to be a major
cause for this discordance [4], and the subject of sub-
stantial study in recent years. Many methods have been
developed to estimate the species tree in the presence of
ILS in a statistically consistent manner, which means that
as the amount of data increases, the unrooted species tree
topology estimated by the method converges in probabil-
ity to the true unrooted species tree topology. Examples
of methods for species tree estimation that are statisti-
cally consistent under the MSC model include ASTRAL-I
[5] and its improved version ASTRAL-II [6], ASTRID [7],
*BEAST [8], BEST [9], the population tree in BUCKy [10],
GLASS [11], METAL [12], MP-EST [13], NJst [14], SMRT
[15], SNAPP [16], STAR [17], STEAC [17], and STEM
[18]. Some of these methods (e.g., ASTRAL-I, ASTRID,
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BUCKy-pop, and NJst) estimate just the species tree
topology but not the branch lengths in coalescent units,
while others (e.g., ASTRAL-II, BEST, *BEAST, and MP-
EST) also estimate the branch lengths. In this paper, we
will refer to all methods that have been proven to be sta-
tistically consistent under the MSC model as “coalescent-
based” species tree estimation methods.

One of the key assumptions in the proofs of statisti-
cal consistency for standard methods is that every gene
is present in every species. This assumption is unrealistic
for many empirical datasets (e.g., the plant transcriptome
dataset studied in [19], the landfowl ultra-conserved ele-
ments (UCE) dataset studied in [20], and the iguanian
lizard UCE dataset studied in [21]), where many genes are
not present for some species (and so are “incomplete”).
There are multiple causes for incomplete genes (more
commonly referred to as “missing data”). For example,
while some genes are universal, others have more recent
origins and so may only occupy certain clades in the tree.
Genes can also be lost (as modeled by gene birth-death
or duplication/loss scenarios). The selection of primers
used to assemble the datasets can fail to detect some
genes in distantly related species, or whole genomes can
have poorly assembled regions if coverage is insufficient;
these factors can result in the gene not being included in
the assembled data for a particular species. Furthermore,
some species trees are constructed by taking gene trees
from prior publications, which can have somewhat differ-
ent species sets. For these and other reasons, missing data
occur frequently in large-scale phylogenomic datasets (as
discussed in [21–24]). Therefore, the statistical proper-
ties of species tree estimation methods when not all genes
are present in all the species are important methodolog-
ical considerations in phylogenomics. The most basic of
these questions is whether a method remains statistically
consistent when gene trees can be incomplete. Yet, it is
unknown whether coalescent-based species tree estima-
tion methods are statistically consistent under the MSC
model in the presence of missing data.

Methods
This study evaluates the statistical consistency of species
tree estimation methods under two models of taxon dele-
tion, and also provides an experimental evaluation of
several leading methods on simulated datasets where taxa
are deleted under these two models.

Theoretical framework
We explore the statistical consistency of species tree esti-
mation methods under two models of taxon deletion. The
first is a simple i.i.d. model of missing data (denoted Miid)
where every species is missing from every gene with the
same probability p > 0. The second is a more general
class of models where, for some constant k, each subset

of k species has non-zero probability of being present
in the data for a randomly selected gene. We refer to
this as the “full subset coverage” model (denoted Mfsc).
The Mfsc model includes the simpler i.i.d. model as a
special case but also includes the models of taxon dele-
tion considered in [7, 23–25]. In this study, we focus on
coalescent-based species tree methods that compute sum-
mary statistics for subsets of the taxon set and then use
those summary statistics to estimate the species tree. We
show that whenever these calculated summary statistics
are not impacted by deleting species outside the subset
of interest, then the coalescent-based species tree estima-
tion method will be statistically consistent under models
of taxon deletion. Taxon-deletion models under which
coalescent-based species tree estimation methods cannot
be statistically consistent are also discussed.

Multi-Species Coalescent The multi-species coalescent
is a population genetics model that describes the evolu-
tion of individual genes within a population-level species
tree [26]. Specifically, a species tree T = (T , �) with
topology T and branch lengths � is given (but unknown)
on a set of n taxa, X = {xi}n

i=1, where the branch lengths
are denominated in “coalescent units”. In models with a
population size parameter and time between speciation
events, coalescent units are units of time that are normal-
ized by population size. This species tree then parameter-
izes a probability density function for a random variable
G(T ) defined over all possible gene trees on X .

The generation of a random gene tree occurs by mod-
elling the time since ancestral coalescence as though it
were a forward-time Markov process: at every leaf of the
species tree T a lineage begins and grows backward in
time. As each lineage grows, it will eventually reach a spe-
ciation event in the species tree. At that point, it enters a
common population with the lineage(s) from the neigh-
boring branch and they continue to grow backward in
time as distinct lineages. Once they are in a common pop-
ulation they are eligible to coalesce into a common lineage,
and that happens according to a Poisson process with con-
stant hazard rate λ. Namely, for any pair of lineages i and j
in a common population, the time τij until their ancestral
coalescence has an exponential distribution:

τij ∼ fλ(τij) = λe−λτij

Likewise, in a population with k distinct, uncoalesced
lineages, the time until the next coalescent event is the
first one out of the

(k
2
)

pairwise processes, and thus also
has exponential distribution with rate

(k
2
)
λ:

τk→k−1 ∼ f (τ ) = k(k − 1)

2
λe− k(k−1)

2 λτ

In this way, the lineages grow and coalesce until all lin-
eages have coalesced into a single one, at which point the



Nute et al. BMC Genomics 2018, 19(Suppl 5):286 Page 3 of 95

process is complete and the lineages have formed a binary
gene tree.

For a gene tree g ∼ G(T ), an additional assumption
can be made regarding a sequence evolution model that
may generate a set of sequences sg = {

sg1, . . . , sgn
}

(one
sequence for each taxon in X ). Let the leaf set of gene
tree g be denoted as L(g). Given a collection of genes
g1, . . . , gm ∼ G(T ), the coalescent-based species tree esti-
mation problem is the challenge of estimating the species
tree topology T (typically in its unrooted form) from the
input data, which may include the gene trees (usually
unrooted), the accompanying sequences, or both.

Thus, coalescent-based species tree estimation methods
can work with a variety of different types of inputs. Usu-
ally such methods assume that the estimation of gene trees
given sequence data can be done in a statistically consis-
tent manner, which is true in the case of the most common
models [27]. In this paper, we will consider the input data
I to include, broadly, the gene trees themselves (one per
gene) with or without branch lengths, or the multiple
sequence alignments (one per gene), or both, depending
on the method. In either case, it is natural to consider the
input data I as being potentially restricted to a subset X ′
of the taxa by considering, respectively, the subtrees of
each gene tree restricted to the leaves corresponding to
taxa in X ′, or the multiple sequence alignment of only the
sequences corresponding to taxa in X ′. We will refer occa-
sionally to this restricted data as I|X ′ . In contexts where
the number of genes may vary and is indexed by m, the
input data I on m genes are correspondingly indexed as Im.

In what follows, all trees (whether gene trees or species
trees) are assumed to be binary (i.e., fully resolved)
trees with leaves labeled by elements from a set X
of species.

Tuple-based methods We will establish properties
about statistical consistency in the presence of missing
data for a class of coalescent-based species tree estima-
tion methods that we collectively refer to as “tuple-based
methods”. Many coalescent-based species tree estimation
methods that have been proven to be statistically consis-
tent under the MSC model are tuple-based.

A coalescent-based method is said to be “tuple-based”
if there is some � ∈ Z≥2 such that the method oper-
ates by computing a set of real-valued summary statistics
from the input I for every subset of � species, and then
uses these summary statistics (and no other information)
to compute the species tree. Furthermore a tuple-based
method is called an �-tuple-based method (or more sim-
ply an �-tuple method) to reflect the specific value of �

on which it bases its summary statistics. We write each
tuple-based method as a pair (F , α), with F the function
that computes the set of summary statistics from I and
α the function that computes a species tree given F(I).

Also, the set of summary statistics computed by an �-
tuple method includes one statistic for every tree topology
(possibly rooted) on every subset of � species.

Since a “tree” on two species is just a path, the 2-tuple
methods compute pairwise distances for every pair of
species. Examples of 2-tuple methods include NJst and
ASTRID, which operate by computing the “average intern-
ode distance” between every pair of species. Other 2-tuple
methods include GLASS [11] and its variants (e.g., [28]),
METAL [12], STAR [17], and STEAC [17], which also
compute pairwise distances between every pair of species
but use a different technique to do the calculation. 2-tuple
methods then compute a tree on the matrix of pairwise
distances, using methods such as Neighbor Joining (NJ)
[29] or FastME [30]; thus, NJ and FastME serve as the
function α in the 2-tuple method.

MP-EST and SMRT are 3-tuple methods. MP-EST
requires rooted gene trees (and so depends on the strict
molecular clock when used with sequence data), and
uses the frequency of each rooted 3-leaf tree t induced
in the input set of gene trees as the summary statis-
tic for t. It then seeks the model species tree (topology
and branch lengths) that is most likely to produce the
observed distribution of rooted 3-leaf gene tree frequen-
cies. SMRT is a site-based method that estimates rooted
3-leaf trees from the concatenated gene sequence align-
ments, and so depends on the strict molecular clock.
SMRT then combines the rooted 3-leaf trees into a
tree on the full set of taxa using the modified mincut
supertree algorithm [31]. SMRT can be seen as a 3-tuple
method by assigning support of 1 to the rooted 3-leaf
trees it computes and assigning support of 0 to all other
3-leaf trees.

In contrast to 3-tuple methods (e.g., MP-EST and
SMRT), 4-tuple methods operate on unrooted gene trees.
For example, ASTRAL-1 [5] and ASTRAL-2 [6] are 4-
tuple methods that use the frequency of quartet tree t
induced in the input gene trees as the real-valued support
for t and combines these quartet trees into a species tree
using a quartet amalgamation method. The population
tree in BUCKy [10] (called BUCKy-pop in [32]) computes
a single quartet tree for every four leaves using Bayesian
concordance factors, and then combines those quartet
trees into a species tree. BUCKy-pop is statistically con-
sistent under the MSC model if there are no missing data,
and can be seen as a 4-tuple method by using 1 or 0 as
the real-valued support for each quartet tree (i.e., 1 for the
quartet trees it computes, and 0 for all others). In other
words, ASTRAL and BUCKY-pop compute a species
tree by applying some quartet amalgamation method to
the set of quartet trees, weighted by their support val-
ues. For these 4-tuple methods, α is the quartet amal-
gamation technique used to construct the species tree
topology T.



Nute et al. BMC Genomics 2018, 19(Suppl 5):286 Page 4 of 95

The number of summary statistics that each type of
method computes depends on the value of � and the num-
ber n of species: 2-tuple methods compute

(n
2
)

summary
statistics (one for each pair of species), 3-tuple methods
compute 3

(n
3
)

summary statistics (one for each rooted 3-
leaf tree), and 4-tuple methods compute 3

(n
4
)

summary
statistics (one for each unrooted 4-leaf tree).

The proofs of statistical consistency for tuple-based
methods have the following basic steps: first, they show
that as the number m of genes increases, the vector of
summary statistics computed by F on input data Im con-
verges in probability to a constant vector (which we will
refer to as F0). Second, they show that α(F0) = T , where
T is the topology of the true species tree. Third, they show
that there is some δ > 0 so that whenever L∞(F1, F0) < δ

then α(F1) = α(F0) = T (here L∞ is the infinity-norm,
i.e. the maximum absolute difference of individual vector
components). It follows that the algorithm A = (F , α) is
statistically consistent under the MSC. Therefore, when
we refer to a statistically consistent �-tuple method, we
will assume that these properties hold for the method
when there are no missing data, and then study the impact
of missing data on the method.

Proofs of statistical consistency for many coalescent-
based methods typically require several extra conditions.
For example, the current proofs of statistical consistency
of MP-EST, STEM, STAR, and SMRT implicitly or explic-
itly assume that sequences evolve under the strict molec-
ular clock. Similarly, the proofs of statistical consistency
for nearly all methods that operate by combining gene
trees require completely correct gene trees (see [33] for
an exception to this rule), and it is unknown whether any
standard coalescent-based methods that estimate species
trees by combining gene trees are statistically consistent
in the presence of gene tree estimation error [33]. Another
complication in the proofs of statistical consistency is the
typical requirement that α provide an exact solution to an
optimization problem (e.g., finding the species tree that
maximizes some optimization criterion with respect to
the input gene data). This is generally not an issue for 2-
tuple methods, which use methods like neighbor joining
[29] to compute trees from distance matrices, but can be a
problem for 3-tuple and 4-tuple methods. For example, 4-
tuple methods tend to have two steps, where the first step
computes a set of quartet trees (using F) and the second
step computes a tree from the set of quartet trees using α.
Since quartet tree compatibility is NP-hard [34], quartet
amalgamation methods are typically heuristics that have
no guarantees (the dynamic programming algorithms in
ASTRAL and [35] are two of the few exceptions to this),
and may not even be guaranteed to return a tree T when
given its set of quartet trees. Thus, statistical consistency
of coalescent-based methods is complicated, even when
there are no missing data.

Experimental study
We present an empirical study using a large collection of
simulated datasets and four species tree estimation meth-
ods: ASTRAL-II, ASTRID, MP-EST, and SVDquartets.
Three of these (ASTRAL-II, ASTRID, and MP-EST) are
“summary methods” (i.e., methods that compute species
trees by combining gene trees) that are statistically con-
sistent under the MSC model when there are no missing
data. The fourth is SVDquartets, a popular “site-based”
method that computes the species tree directly from gene
sequence alignments, but which has not yet been proven
to be statistically consistent.

This simulation study examines how two different mod-
els of missing data, the Miid model and a “clade-based”
model (a subfamily of the Mfsc model, and denoted
Mclade), affect the amount of data required to recover the
true species tree with high probability. The selection of
these two taxon deletion models reflects conditions that
can occur in biological studies. The Miid model reflects
conditions where genes collected from prior studies are
used, and each collection of genes can be based on a set of
species that may only contain a subset of all species under
consideration. The Miid also addresses the case where
gene assembly is poor due to low coverage, so that genes
are randomly missing from some genomes. The Mclade
model reflects conditions where genes naturally occupy
only a clade within the tree, because the gene is “born” at
the root of the clade (this is the same as the “SMIDgen”
model described in [36]).

Simulated datasets The 26-taxon, 1000-gene simulated
datasets (without missing data) were obtained from [24].
This collection of datasets included model conditions
defined by species tree height (10M, 2M, or 500K) and
speciation rate (10−7 or 10−6). As the population size was
fixed across all model conditions, species tree height cor-
responds to the level of ILS, with shorter species trees
having greater levels of ILS. Speciation rates of 10−7 and
10−6 correspond to deep and recent speciation, respec-
tively. Each of these six model conditions has 20 replicate
datasets. The Robinson-Foulds (RF) distance [37] between
the true species and the true gene trees averaged over all
gene trees (referred to here as the simply the “average dis-
tance” or AD) was computed to approximate the level of
ILS for different model conditions. For model conditions
with deep speciation, the AD averaged across all 20 repli-
cates was 14, 47, and 75% for species tree heights of 10M,
2M, and 500K, respectively. The average AD values under
recent speciation were slightly lower and are provided in
Additional file 1.

Generation of missing data The simulated datasets
described above have no missing data; therefore, we
deleted taxa from the genes and re-estimated gene trees



Nute et al. BMC Genomics 2018, 19(Suppl 5):286 Page 5 of 95

to create datasets with missing data for this study. We
first considered an Miid model of missing data for which
every species is missing from every gene with the same
probability p > 0. Specifically, datasets with p = 0.30
and p = 0.60 were created as follows. For each taxon, a
vector p of length 1000 (the number of genes) was cre-
ated and populated with random samples drawn from a
uniform distribution over the interval [ 0, 1). Entries in
the vector that were smaller than 0.30 became 0 (i.e., the
taxon was missing and hence deleted from the true gene
tree and gene alignment) and otherwise became 1 (i.e., the
taxon was present in the true gene tree and gene align-
ment). This process was simply repeated for p = 0.60.
As expected, the average amount of missing data across
all datasets for p = 0.30 and p = 0.60 was 30 and 60%,
respectively.

We also considered the Mclade model of missing data
(Fig. 1). Specifically, we identified clades in the true
species tree with between 5 and 24 taxa (out of the origi-
nal 26 taxa). Then for each of the 1000 genes, one of these
previously identified clades was selected at random from
a uniform distribution, and taxa outside of this clade were
deleted from the gene alignment. Based on the selection
of clades, 8 to 80% of taxa were deleted from genes with
clade-based missing data, and the mean (± standard devi-
ation) fraction of taxa missing per gene with clade-based
missing data was 62±5%. Notably, this protocol automati-
cally deleted the outgroup taxon from the gene alignment,
so that it was not possible to reconstruct a species tree on
the full set of taxa from the resulting gene trees. Therefore,
genes both with and without clade-based missing data
were sampled to create datasets with varying percentages
of incomplete genes. The mean (± standard deviation)
percentage of missing data was 34 ± 3 and 59 ± 5 when 55
and 95% of the 1000 genes were incomplete.

Gene tree estimation Taxa were deleted from both the
true gene trees and the true gene sequence alignments.
Gene trees were estimated on alignments with and with-
out missing data using a single run of RAxML v8.2.8
(GTRGAMMA model), and nearly 500,000 gene trees
were estimated for this study.

Species tree estimation We studied the performance of
four methods for species tree estimation: three gene tree
summary methods (ASTRAL v4.10.5, ASTRID v1.1, MP-
EST v1.5) and one site-based method (SVDquartets using
PAUP* v4a154). Species trees were estimated using sum-
mary methods on both true and estimated gene trees,
specifically taking the first 50, 200, or 1000 genes for each
dataset. Of the three summary methods, only MP-EST
requires rooted genes. To root each gene tree, we used the
outgroup if it was available; otherwise, we used the mid-
point of the longest leaf-to-leaf path with Dendropy v4.3.0

Fig. 1 Clade-based missing data. A true species tree on seven species
(labeled A-G) and five true gene sequence alignments (colored red,
yellow, green, blue, and purple) are shown in this schematic. The red,
green, and blue genes have no missing data. The yellow and purple
genes have clade-based missing data, created by selecting a clade in
the true species tree at random and then deleting taxa outside of the
clade from the true gene tree (not shown) and the true gene
sequence alignment. For the yellow gene, the clade containing A, B,
and C is selected from the true species tree, and hence, species D, E, F,
and G are deleted from the yellow gene. Similarly, for the purple gene,
the clade containing D, E, F, and G is selected from the true species
tree, and hence, species A, B, and C are deleted from the purple gene

[38]. The best pseudo-likelihood scoring species tree was
taken from ten independent runs of MP-EST. Gene align-
ments had been generated without insertions/deletions,
and thus SVDquartets was run on the true gene align-
ments by concatenating the first 50, 200, or 1000 gene
sequence alignments for each dataset. SVDquartets com-
pleted on all but one dataset (see Additional file 1, for
details). All four methods were run in default modes
(although see comment above regarding the use of ten
independent runs of MP-EST). We report species tree
error using the normalized RF error rate.

Results
We present the theoretical results, establishing statisti-
cal consistency (or failure to be statistically consistent),
for different species tree estimation methods. We then
present the results of our performance study.

New theoretical results
Extension of tuple-based methods to missing data
These tuple-based methods are defined and described
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assuming the input (e.g., gene trees or sequence align-
ments) has no missing data, and the statistics or the algo-
rithm may not be fully defined if not all taxa are present.
For example, for a given gene tree, the topology for quartet
ijkl does not exist if one or more of the species is missing
from the gene. Intuitively, if the method would have called
for the calculation of a statistic on a particular set of taxa
for a particular gene, it is not possible to calculate this if
any taxon in the set is not present, so that gene should be
excluded for purposes of that statistic. Thus, the natural
extension of a tuple-based method (F , α) to inputs with
missing data (i.e., when species are missing from genes) is
as follows:

Definition 1 Let A = (F , α) be an �-tuple species tree
estimation method. The natural extension of A computes
the summary statistics for a given set B of � species based
only on those genes that contain all the species in B.

Type 1 and Type 2 �-tuple methods Since the set of
summary statistics includes a real number for every tree t
on � species, we will let Ft(I) denote the summary statis-
tic computed by the function F for tree t given input I.
For a set B of � species drawn from the full set X of
species, let I|B denote the input set I restricted to B; thus,
all species in X \ B are deleted entirely from the input.
Then tuple-based methods can be characterized further
depending on how they behave on such inputs. Specif-
ically, we will partition �-tuple methods (F , α) into two
categories:

• Type 1: For all inputs I, all sets B of � species from X ,
and all trees q on B, Fq(I) = Fq (I|B).

• Type 2: There is at least one input I, one set B of �

species, and one tree q on B such that
Fq(I) �= Fq (I|B).

Thus, a Type 1 �-tuple method has the property that
deleting taxa from outside a set B does not impact the
summary statistics it computes for any tree on B. Note that
taxon deletion impacts both Type 1 and Type 2 methods,
in that if enough taxa are deleted from enough genes then
accuracy must decrease. As we will see, Type 1 methods
are easier to analyze than Type 2 methods, and in particu-
lar it is easy to prove that a Type 1 method remains statis-
tically consistent in the presence of missing data for some
models of random taxon deletion. Most coalescent-based
species tree estimation methods are Type 1 tuple-based
methods; for example, ASTRAL, GLASS, METAL, MP-
EST, STEAC, and SVDquartets are all Type 1 tuple-based
methods. ASTRID, NJst, and STAR are Type 2 methods.

Taxon-Deletion Models Let T be a species tree on a
set X of n species, with X = {xi}n

i=1, and let m gene
trees evolve within T under the multi-species coalescent

model. We denote the set of gene trees by T = {Ti}m
i=1 and

the set of genes by G = {
gi

}m
i=1. To model taxon deletion,

we let gi denote an arbitrary gene and Yi = [Yi1, . . . , Yin]
denote a random n-dimensional vector where

Yij = I{xj is present in gi} (1)

Here each individual Yij is a binary random variable that
represents whether a species xj is present for a random
gene gi.

Exchangeability For the following lemma, we will
assume that if gene tree Ti is generated before taxon dele-
tion model Yi, then the post-deletion tree T∗

i = Ti|Yi is
obtained by taking the subtree of Ti restricted to the set
of leaves

{
xj|Yij = 1

}
(i.e., the set of leaves corresponding

to taxa that have not been marked for deletion by Yi). If
Yi is generated before Ti, then T∗

i is obtained by taking
the same subtree T |Yi of the species tree T , and simu-
lating a gene tree within this species subtree under the
multi-species coalescent.

Lemma 2 If Ti and Yi are independent, the two vari-
ables are exchangeable and the distribution of T∗

i does not
depend on the order of events.

Proof If Yi is generated first, then the conditional dis-
tribution of T∗

i is equal to the distribution of gene trees
under the multi-species coalescent on T |Yi, by defini-
tion. If Ti is generated first, then the pruning operations
described above mean that T∗

i will lie entirely within the
subtree T |Yi. It remains to show that the probability of any
given pattern of coalescence on the remaining branches
is identical to the MSC under T |Yi. This follows from
the memoryless property of coalescence under the MSC
model: the probability of any two lineages originating
within T |Yi coalescing at any given point is not dependent
on either lineage’s coalescent history.

It should be noted by this model description, taxa are
absent or present independently of the generation of the
gene data, including tree topology and sequence evolu-
tion, and the two processes are exchangeable. Also, as is
the case with the general multi-species coalescent model,
gene trees evolve under a process that is i.i.d. with respect
to one another. We will now define the three models for
taxon deletion that were briefly described earlier: the Miid ,
the Mfsc, and the Mclade models.

The i.i.d. Model (Miid) Miid is a family of models
parameterized by p, with 0 < p < 1, where p is the
probability that a random gene is present in a random
species. For Miid for parameter p, we assume that Yij ∼
Bernoulli(p) for all genes i and all taxa j, and that Yij and
Ykj are independent for k �= i.
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The Full Subset Coverage Model (Mfsc) Mfsc is a family
of models parameterized by an integer k ≥ 2. We assume
that the taxon deletion process is i.i.d. across genes and
furthermore that it is independent of the gene tree ran-
dom variable, but we do not assume that it is i.i.d. across
species. An Mfsc model for parameter k satisfies the prop-
erty that for any subset B of at most k species there is a
strictly positive probability pB (that can depend on B) so
that given a random gene, every member of B is present
in the data for that gene with probability pB. Since the
number of taxon sets of size at most k is finite, p∗ =
min

{
pB : B ⊆ X , |B| ≤ k

}
> 0; hence, every taxon subset

of size at most k appears in a random gene with proba-
bility at least p∗. Note that every Miid model satisfies the
property of being an Mfsc model for every k.

The Clade-Based Model (Mclade) Every clade c in the
species tree (including the clade containing all the species)
has a strictly positive probability pc of being selected, so
that

∑
c pc = 1. Then, for each gene, a clade is selected

(under the above model), and all the species outside of the
clade are deleted. Because clade selection is done on the
species tree, the presence/absence of taxa is independent
of the gene tree topology, and every subset has a strictly
positive probability of appearing as a subset of the leaf-
set of a random gene. Hence, the Mclade model of missing
data falls under the Mfsc model. This model is based on
pure gene birth model, where a gene is born on a branch
in the species tree and then does not die; hence, the gene
does not exist for taxa outside of the clade below the edge
on which the gene was born, but appears at every leaf in
the clade.

Comparison to previous models of missing data Sev-
eral prior studies of the impact of missing data on phy-
logenomic analysis have been performed under the Miid
model; this model is referred to as R in [23] and as
the “random allocation” model in [25]. Xi et al. [23]
considered the G model, where missing data are con-
centrated in a subset of randomly chosen genes, and
then taxa are deleted under an i.i.d. process from these
genes. Xi et al. [23] also studied the S model, where
missing data are allowed only in a subset of randomly
chosen ingroup species, and that the genes are deleted
from the selected species under an i.i.d. process. Note
that the S and G models are Mfsc models. Other Mfsc
models have been studied in [7, 24]. The Mclade model
has been studied in [39] and used to explore supertree
methods when there is no gene tree heterogeneity
[36, 40–42].

Results under an adversary model We provide results
under an adversary model of taxon deletion, showing that
statistical consistency cannot be in general guaranteed

under arbitrary models of missing data. We then pro-
vide results under the Miid and Mfsc models of taxon
deletion.

Theorem 3 Let taxon deletion be dependent on gene tree
topology. There exists a dependency structure under which
no method is statistically consistent.

Proof Let T and T ′ be two species trees with different
unrooted tree topologies; note that the unrooted topol-
ogy for T ′ appears with strictly positive probability under
the MSC for species tree T . For each gene gi (with true
gene tree topology ti), consider the dependency structure
where all taxa are present in the data for gi with probabil-
ity 1 if the topology of ti is identical to T ′, and all taxa are
absent with probability 1 otherwise. Thus, data for gene
gi is observed if and only if ti has the same topology as
T ′; in other words, the model species tree topology is not
identifiable under this dependency structure. Hence, the
distribution of observed gene data is not unique to the
model species tree.

The identifiability condition (that the sampling distri-
bution of observed data be uniquely determined by the
model being estimated) is a natural precondition of any
proof of statistical consistency for any method. That is,
if two distinct parameter values yield identical data, an
algorithm can return only one and will thus by neces-
sity fail on some part of the parameter space. In par-
ticular, we have shown that two different model species
trees that have different topologies define the same dis-
tribution of observed data (e.g., gene tree topologies)
under this dependency structure. Therefore, it is not
possible to have a statistically consistent method for
species tree topology estimation under this dependency
structure.

Therefore, Theorem 3 demonstrates that a dependence
between gene tree topology and taxon presence can
quickly unravel statistical consistency guarantees in the
absence of additional assumptions.

Results for Type 1 methods under Mfsc We now discuss
the statistical consistency guarantees of Type 1 tuple-
based methods. As we will see, most of the tuple-based
methods remain statistically consistent even in the pres-
ence of missing data, as long as the process that generates
the missing taxa is well behaved (e.g., not generated by an
adversary that biases the method towards the wrong tree).

Let A = (F , α) be a Type 1 �-tuple method that satisfies
the following properties:

• (i) For all model species trees T = (T , �), as the
number m of genes increases, F(Im)

p−→ F0, where
F0 is a constant vector parameterized by T .
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• (ii) There exists δ > 0 such that for all vectors of
summary statistics F1 satisfying L∞ (F1, F0) < δ,
α(F1) = α(F0) = T .

Theorem 4 Let A = (F , α) be a Type 1 �-tuple species
tree estimation method satisfying the two properties (i) and
(ii) above, and assume that the number of species is at
least �. The natural extension of A is statistically consis-
tent under Mfsc with parameter k ≥ �, and thus also under
Miid for any parameter p.

Proof Let T = (T , �) be the model species tree, Im be
the input dataset containing m genes, and C be the num-
ber of summary statistics computed by algorithm A =
(F , α) on input Im. Since A = (F , α) satisfies condition (i)
when there are no missing data, then as the number of
genes m increases, F(Im)

p−→ F0, where F0 is a vector of
constants. We will denote the ith summary statistic com-
puted on input Im by Fi(Im) and the ith component of F0 by
F0i . We write F(Im) = (

F1
(
Im|x1

)
, . . . , FC

(
Im|xC

))
, where

xi denotes a particular set of � taxa. In other words, since
A satisfies condition (i) when there are no missing data,
for all i = 1, . . . , C there exist a constant F0i such that
Fi(Im|xi)

p−→ F0i as m → ∞. Since the data for each gene
are independent of all others, to prove statistical consis-
tency under the Mfsc model we merely require that Im|xi
include an infinite number of genes as m → ∞. Under the
Mfsc model, Pr

[
xi ⊆ L(g)

]
> 0 for every gene g (where

L(g) denotes the set of species for gene g). Hence, by the
Borel-Cantelli lemma, the number of genes that include
all � taxa in xi will also approach infinity. Thus Im|xi will
include an infinite number of genes, and F

(
Im|xi

) p−→ F0i .
By the definition of the natural extension of A, α does not
change under deleted taxa. Since A satisfies condition (ii),
∃δ > 0 such that ∀F1 with L∞ (F1, F0) < δ, α(F1) = T ,
and so the natural extension of A is statistically consis-
tent under Mfsc. Since Miid is a subset of Mfsc, it is also
statistically consistent under Miid .

Corollary 5 ASTRAL, METAL, MP-EST, and STEM are
statistically consistent under the MSC even when taxa
are deleted under an Mfsc model, provided that each is
run in exact mode (i.e., they find optimal solutions to
their respective optimization criteria) and that the condi-
tions necessary for statistical consistency when there are no
missing data are also present.

SVDquartets [43] is a popular species tree estimation
method that operates by computing quartet trees, and
then combines the quartet trees using a quartet amalga-
mation method. However, it is not yet established that
the quartet tree estimation method used in SVDquar-
tets is statistically consistent under the MSC, even when

there are no missing data, and so the statistical consis-
tency of SVDquartets under the MSC is still an open
problem. Although it is likely that the quartet tree esti-
mation method used by SVDquartets is statistically con-
sistent under the MSC, since there is no proof yet of
this assertion, we cannot infer anything about the sta-
tistical consistency of SVDquartets under more general
conditions.

Statistical consistency of versions of ASTRAL under
Mfsc ASTRAL-I [5] and its improved version, ASTRAL-
II [6] are coalescent-based methods for estimating species
trees that take unrooted gene trees as input, and return a
tree that minimizes the quartet tree distance to the input
gene trees. Each can be run in either exact mode or in a
heuristic setting. In the exact mode, each is guaranteed to
find an optimal tree – i.e., one that minimizes the quar-
tet tree distance to the input set of unrooted gene trees
–and is established to be statistically consistent under the
MSC when there are no missing data. The heuristic set-
tings operate by defining a set of “allowed bipartitions” (β
in this paper), which means that the search space can only
consider species trees that draw all their bipartitions from
β . The heuristic settings are also statistically consistent
under the MSC when there are no missing data, provided
that the set β contains all the bipartitions from the input
gene trees (which is guaranteed for both ASTRAL-I and
ASTRAL-II).

The important difference between ASTRAL-I and
ASTRAL-II is how the set β is defined, and ASTRAL-II
explicitly enlarges the set β compared to ASTRAL-I when
the input gene trees can be incomplete (i.e., when some
species are missing from some gene trees). Because the
search space is constrained using the input gene trees,
the two ASTRAL algorithms depends on the input in a
way that makes the analysis of their statistical guarantees
non-trivial.

We will show that although ASTRAL-I and ASTRAL-II
are statistically consistent under the Miid model, there are
some Mfsc models for which neither is statistically consis-
tent. We then present some modifications to ASTRAL-I
that differ from ASTRAL-I only in how the set β is
defined, and show that these modifications are statistically
consistent under many (but not all) Mfsc models.

Notation We let X denote the full set of species and
X ′ denote an arbitrary subset of X . Every tree t we con-
sider is assumed to be a binary unrooted tree with leaves
taken from a subset of X , and as earlier we denote the
leafset of t by L(t). Each edge of t defines a bipartition
of the set L(t) (denoted by B|B′, for some set B ⊆ X
and B′ = L(t) \ B) obtained by deleting the edge but not
its endpoints from t. We will refer to the set of all these
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bipartitions as Bip(t), and the set of halves of the biparti-
tions of t as the clades of t. (Note that the term “clades”
is normally used only in the context of rooted trees, but
we extend the term here to allow us to refer to halves of
bipartitions using the same term). We let TX (β) denote
the set of unrooted binary trees on leafset X that satisfy
Bip(t) ⊆ β . If β is not provided, then we assume the set
of unrooted binary trees is not constrained and we let TX
denote the set of all unrooted binary trees on leafset X .

We let Q(t) denote all 4-leaf homeomorphic subtrees of
t induced by a set of four leaves in t. Since we assume all
trees t are binary in this study, it follows that Q(t) contains
only binary quartet trees. LetQ be the set of all

(n
4
)

4-taxon
subsets of the taxon set X . Let q ∈ Q, let t be an arbitrary
(binary) tree topology on X , and let Top(q, t) denote the
induced homeomorphic quartet tree topology for quartet
q in t.

Definition 6 ASTRAL Optimization Problem
Input: Taxon set X = {xi}n

i=1, unrooted binary gene trees
t1, . . . , tm, and set β of allowed bipartitions of X

Output: Unrooted binary tree T where

T = arg max
t∈TX (β)

∑

q∈Q

m∑

i=1
I{Top(q,t)=Top(q,ti)}

ASTRAL-I and ASTRAL-II differ in how they define
the default set X of allowed bipartitions and they also
use slightly different dynamic programming techniques to
assemble the optimal tree from the bottom up. To run
ASTRAL-I or ASTRAL-II in exact mode, the set β is
defined to be all bipartitions onX . In the default version of
ASTRAL-I (referred to as the “heuristic version”), β is the
set of all bipartitions that appear in any gene tree. Hence,
when there are no missing data, then as the number of
genes increases, the set β will include all possible bipar-
titions on the taxon set with probability converging to 1
(and hence in particular the bipartitions in the true species
tree). However, when there are missing data, then proving
that the set X contains all the bipartitions in the species
tree takes some care. In particular, if every gene tree is
incomplete, then no bipartition in any gene tree is a bipar-
tition of the full set of taxa, and so this default setting will
not enable a statistically consistent estimation method.

Modifications to ASTRAL We will modify ASTRAL-I
by changing how it defines the set β of allowed biparti-
tions. Each of these modifications simply uses the input
set of gene trees to compute a set of additional biparti-
tions, which are then added to the default setting for β that
is computed by ASTRAL-I. Hence, these extra bipartitions
could also be added to ASTRAL-II.

Note that ASTRAL-I, ASTRAL-II, and hence also these
modifications, when run in heuristic mode, are different

from the species tree estimation methods described previ-
ously, in that α depends not only on the summary statistics
F(I) but also on the input data I. Therefore, we denote the
output of the function by α(F , I).

The first modification we present is the simplest: For
every clade C ⊂ X occurring in a gene tree, we add
the bipartition C|C′ where C′ = X \ C, to its set β .
(Note that since the trees in this problem are unrooted,
a clade and one half of a bipartition are equivalent con-
cepts). This is a trivial extension of the algorithm for
a model of incomplete genes and one that expands the
conditions under which the method is consistent, as we
will see below. We refer to this particular modification as
ASTRALmod1.

Theorem 7 (1) ASTRALmod1, ASTRAL-I, and ASTRAL-
II, all run in default heuristic mode, are statistically consis-
tent under the MSC for any Miid model of taxon deletion.
(2) ASTRAL-I is not statistically consistent under an Mfsc
model with parameter k if the number of species is greater
than k and ASTRAL-I is run in default heuristic mode.
(3) ASTRALmod1 is statistically consistent under any Mfsc
model of taxon deletion with parameter k if the number n
of species is at most 2k.

Proof (1) Let T be a model species tree on n species, and
consider taxon deletion under some Miid model. We will
show that there is non-zero probability that every biparti-
tion in the species tree appears in the set β (which defines
the search space) computed by ASTRAL-I in its default
setting. Since the search space computed by ASTRAL-I
is a subset of the search space computed by ASTRAL-
II and ASTRALmod1, the result will follow. Recall that
ASTRAL-I includes all bipartitions C|C′ in the set β that
appear in any input gene tree. Under the MSC model,
every bipartition appears in some gene tree with probabil-
ity increasing to 1 as the number of genes increases. Under
any Miid model, for every subset of taxa, the probability
that none of the taxa in the subset are deleted is strictly
greater than 0. Hence, under Miid , the set β of biparti-
tions allowed in the ASTRAL-I search space will converge
to the set of all possible bipartitions. Therefore, ASTRAL-
I is statistically consistent under Miid . Since the sets of
bipartitions computed by ASTRALmod1 and ASTRAL-II
contain the set of bipartitions computed by ASTRAL-
I, it follows that ASTRAL-II and ASTRALmod1 are also
statistically consistent under Miid .

(2) Now consider the Mfsc model with parameter k. Let
n > k, and let the taxon deletion process be such that
every gene has exactly k taxa (e.g., k taxa sampled uni-
formly, a valid model under Mfsc). When ASTRAL-I is run
in heuristic mode, it will compute a set β that contains
no bipartitions on the set X of species, and so cannot be
statistically consistent.
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(3) We show that ASTRALmod1 run in heuristic mode is
statistically consistent under any Mfsc model with param-
eter k when n ≤ 2k. Let C|C′ be an arbitrary bipartition
on X , and assume without loss of generality that |C| ≤ k.
Hence, under Miid, the probability that all the taxa in C
appear in a random gene tree is strictly positive. Under the
MSC, any bipartition on X appears in a random true gene
tree with strictly positive probability. Since this process is
independent from the removal of taxa, and since there is
non-zero probability that all members of a clade appear
in the gene tree, the probability is non-zero that the set C
appears as a clade in a random gene tree.

Hence, as the number m of gene trees increases, the
probability approaches 1 that C appears as a clade in at
least one gene tree. Thus the probability approaches 1 that
the set β computed by ASTRALmod1 will contain C|C′,
where C′ = X \C. Therefore, ASTRALmod1, run in heuris-
tic mode, will be statistically consistent under the Mfsc
model with parameter k, provided that the number n of
species is at most 2k.

Theorem 8 ASTRAL-I and ASTRALmod1, when run in
heuristic mode, are not statistically consistent under the
Mfsc class of models with parameter k, if the number of
species n > 2k.

Proof Consider a model of taxon deletion where every
gene tree has exactly k taxa, selected at random from the
full set of taxa. This model satisfies the conditions of the
Mfsc models with parameter k. Now assume k < �n/2�.

Let T be a caterpillar tree on a set X of n taxa. Then
T contains a clade B of size �n/2� whose complement
is at least as large; hence both B and X \ B have more
than k species. Hence, under this model of taxon dele-
tion, neither B nor X \ B will be in any gene tree. Hence,
the bipartition B|B′ (where B′ = X \ B) will not be in
β (the constraint on the search space) as computed by
ASTRAL-I and ASTRALmod1. Hence, neither ASTRAL-I
nor ASTRALmod1 can recover the true species tree under
this random taxon deletion model.

Although ASTRALmod1 is not statistically consistent
under some Mfsc models, it is possible that other modifi-
cations can be statistically consistent under Mfsc models.
In particular, suppose 	 is a species tree method that is
statistically consistent under the Mfsc model. Then the
simple approach of using 	 to estimate the species tree
and then adding its bipartitions to the set β suffices to
make ASTRAL consistent under the Mfsc model. We refer
to this as the ASTRAL+	 method, and summarize this
observation in the theorem below.

Theorem 9 Let 	 be a species tree estimation method
that is statistically consistent under the MSC when taxa

are deleted under the Mfsc model. Then ASTRAL+	, the
modification of ASTRAL-I obtained by adding the bipar-
titions of the species tree computed by 	 to the set β ,
is statistically consistent under the MSC when taxa are
deleted under the Mfsc model.

Statistical consistency of ASTRID and NJst under Miid
As noted earlier, ASTRID, NJst, and STAR are Type 2
methods, and the proofs we provided of statistical con-
sistency for Type 1 tuple-based methods do not apply to
these methods (or other Type 2 methods). We will show
ASTRID and NJst remain statistically consistent under
the Miid models of taxon deletion; however, the statisti-
cal consistency of these methods under more general Mfsc
models is unknown.

NJst and ASTRID are distance-based methods that use
the average topological “internode” distance between taxa
in the gene trees, where the internode distance between
two taxa xi and xj in a tree (denoted ρ(xi, xj)) is the num-
ber of individual nodes along the path from the leaves
corresponding to xi and xj. NJst and ASTRID are not Type
1 methods, because the internode distance for two taxa xi
and xj can be affected by the presence or absence of a third
taxon.

NJst and ASTRID are formally 2-tuple methods, and
each uses an algorithm to compute a tree given

(n
2
)

pair-
wise distances (collectively, the “distance matrix”). We
now state some well-known properties of distance meth-
ods for reference in the proof below. For a tree with
topology T = (V , E) on n taxa and edge weights le, e ∈ E,
if the distance for any two taxa j and k is equal to the
sum of the edge weights over edges in the shortest path
between leaves j and k, then neighbor joining will return a
tree with topology T, and the distance matrix is said to be
additive on the topology T. An equivalent definition of an
additive matrix is as follows:

Definition 10 Additivity and The Four Point Condition
A square matrix D =[ dij] is said to be additive if there
is a tree T with n leaves and non-negative branch lengths
so that dij is the total weighted path length between leaves
i and j. When such a tree T exists, we also say that D is
additive on the topology T. The Four Point Condition is
said to hold for a square matrix D if and only if for all sets
of four indices

{
i, j, k, l

}
, the median and maximum of the

three pairwise sums dij + dkl, dik + djl, dil + djk are equal.

It is also known that a matrix is additive if and only if it
satisfies the Four Point Condition [44]. Furthermore, if D
is additive and corresponds to an edge-weighting of tree T,
then for a given set of four indices {i, j, k, l}, dij + dkl <

dik+djl = dil+djk if and only if the quartet tree induced by
T on these four indices has an edge separating the leaves
for i, j from the leaves for k, l.
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Distance-based tree estimation methods operate by
computing trees from matrices of estimated distances.
If the “distance matrix” is additive, most distance-based
methods are guaranteed to return a tree topology that
can realize the additive matrix. Furthermore, if instead of
being given the additive matrix D as above we are given
D̂ = dij +εij, where εij is an unknown noise term such that
for all i, j ∈ S}, |εij| < 1

2 min{dab : a, b ∈ S}, then neighbor
joining applied to the matrix D̂ will also return the topol-
ogy T with probability 1 [45]. ASTRID is similar to NJst
in that it computes the same internode distance matrix
but then uses FastME to compute the species tree; since
FastME also has some error tolerance [46], ASTRID is also
guaranteed to return the species tree when the internode
distance matrix is close enough to the matrix D. There-
fore, to prove statistical consistency for both ASTRID and
NJst, it suffices to show that the average internode dis-
tance matrix computed from a set of input gene trees
converges to an additive matrix on the true topology as
the number of genes increases. This assertion has already
been established when there are no missing data [47, 48],
but not when taxa are deleted from the gene trees.

Theorem 11 Assume that taxa are absent from the data
for each gene according to the Miid model. Then NJst and
ASTRID are statistically consistent under the MSC.

We begin with a lemma that will be helpful for establish-
ing the proof. Note that since ρ

(
xi, xj

)
is undefined when

either of xi or xj is removed, the expectation of ρ
(
xi, xj

)

is formally undefined as long as the probability of either
being deleted is nonzero. We nonetheless use the nota-
tion E

[
ρ(xi, xj)

]
in the lemma and proofs below, which

will refer implicitly to the conditional expectation on the
event that neither xi nor xj is removed.

Lemma 12 Under the MSC and Miid, let a, b, c and d
be four taxa. Consider the event in the coalescent prob-
ability space, denoted as Eabcd, in which the lineages of
these taxa have entered a common population and no
pair have coalesced with one another. Denote the points
on each respective lineage in which they enter the com-
mon population as A, B, C, and D. Let Y be the random
variable representing the taxon deletion process. Then for
any two taxa {i, j} ⊂ {a, b, c, d} and respectively {I, J} ⊂
{A, B, C, D}:

E
[
ρ(i, j)|Eabcd

] = EY [ρ(i, I)|Eabcd]
+ EY

[
ρ(j, J)|Eabcd

] + K

where K is a constant that does not depend on the identities
of i and j.

Proof Consider any rooted gene tree g meeting the con-
dition of event E , and let G be the subtree of g sitting

between the points A, B, C and D and the root. Equiva-
lently, G is obtained by deleting the subtrees of g below
points A, B, C, and D. The topology of G in this model,
given that g ∈ E , is determined by a set of i.i.d. exponen-
tially distributed random variables corresponding to the
pairwise times-to-coalescence of all remaining lineages
concurrent with and including {A, B, C, D}. By De Finetti’s
theorem, the probability density function of G is unique
up to a permutation of the indices of the random vari-
ables. Thus for any {I, J} ⊂ {A, B, C, D}, since ρ(I, J) is
dependent only on the topology of G, the probability den-
sity of ρ(I, J) does not depend on the identity of I and
J so that E [ρ(I, J)|E] does not depend on I or J, and we
let the common value for these expectations be denoted
by K.

Proof of Theorem 11 Recall that ASTRID and NJst com-
pute a matrix of average internode distances (defined by
the summary statistics ρ(xi, xj)), and then NJst uses neigh-
bor joining and ASTRID uses FastME to compute a tree.
Since both neighbor joining and FastME return the tree
topology T when given a matrix that is sufficiently close
to an additive matrix corresponding to an edge-weighting
of tree T, to prove that these methods are statistically con-
sistent under the Miid missing data model, it suffices to
establish the following:

1. For a gene tree generated under the coalescent
process in the MSC followed by the removal of taxa
subject to Miid , the expected value of the summary
statistics ρ(xi, xj) for each pair of taxa xi, xj form an
additive matrix that defines the topology of the
species tree.

2. The statistics themselves converge to their
expectations as the number m of genes approaches
infinity.

The second property follows from the i.i.d. generation
of gene trees and the weak law of large numbers; hence,
we need only establish the first property.

Let G be a random gene tree on n taxa generated by the
MSC on species tree T , and let Yn ∼ Miid with probability
of deletion p. We will show that for an arbitrary set of four
taxa {x1, x2, xa, xb}, the expectations over G and Yn of the
internode distances are additive on the species tree, which
we check by confirming that they obey the Four Point
Condition for the species tree T . In what follows, we will
refer to this by saying that the expectations “obey the Four
Point Condition”, with the understanding that this is with
reference to the species tree T . Importantly, the event E
defined in Lemma 12 includes all cases in which the home-
omorphic quartet subtree topology in the gene tree does
not match that of the species tree, and implies that the
Four Point Condition holds in these cases. As a result, it
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suffices to show that the Four Point Condition holds when
the homeomorphic quartet subtree in G is identical to the
topology in the species tree, which we assume without loss
of generality has topology x1x2|xaxb (i.e., the species tree
and the gene tree G both have edges that separate x1, x2
from xa, xb). We will show this by induction on the num-
ber n of taxa, and begin with the smallest non-trivial case,
n = 4.

Base Step: n = 4. For n = 4 we can write the expected
values of the internode distances in closed form and check
the Four Point Condition directly:

E [ρ(x1, x2)] = 2 − p2

E [ρ(xa, xb)] = 2 − p2

E [ρ(x1, xa)] = 3(1 − p)(1 − p) + 2
(
p + p − p2) + 1

(
p2)

= 3 − 3p − 3p + 3p2 + 2p + 2p − 2p2 + p2

= 3 − 2p + 2p2

E [ρ(x2, xb)] = 3 − 2p + 2p2

Thus, to test that the Four Point Condition holds, we
have:

E [ρ(x1, x2)] + E [ρ(xa, xb)] = 4 − p2 − p2

= 4 − 2p2

E [ρ(x1, xa)] + E [ρ(x2, xb)] = 6 − 4p + 4(p2)
E [ρ(x2, xa)] + E [ρ(x1, xb)] = 6 − 4p + 4(p2)

Thus the Four Point Condition holds for n = 4.
Induction Step: Assume that for a set Sn =

{x1, x2, . . . , xn} of n taxa, the expected value of the matrix
D =[ ρ(xi, xj)] for a random gene tree Gn and taxon-
removal variable Yn is additive on the true species tree.
That is, for any set of n taxa under the MSC and Miid and
any quartet {a, b, c, d}, the Four Point Condition holds for
En

[
ρ(i, j)

]
, i, j ∈ {a, b, c, d}, a fact that we will use below

(here En denotes the expectation operator under n taxa for
notational clarity). We will now show that the same holds
for a set of size n + 1.

Let xn+1 be a new taxon and let G be generated under
the MSC on Sn ∪ {xn+1} with taxon-removal variable
Yn+1 = (Yn, yn+1) where yn+1 ∼ Bernoulli(p) in accor-
dance with Miid . Our approach will be to define three
cases, each of which have non-zero probability, and show
that regardless of the placement of xn+1 in the species tree,
the Four Point Condition holds on {x1, x2, xa, xb}.

Case 1: xn+1 is deleted from G (i.e. yn+1 = 1). In this
case the conditional values of En+1

[
ρ(x, x′)

]
for x �= x′,

x, x′ ∈ {x1, x2, xa, xb} are identical to the case with n taxa,
and thus by our assumption they obey the Four Point
Condition.

Case 2: xn+1 is not deleted and it coalesces (with some
other lineage) on a branch that is not on the homeomor-
phic quartet subtree of G for the quartet {x1, x2, xa, xb}.
In this case, the coalescence event for xn+1 does not add
to the internode distances along any of the branches con-
necting any two members of the quartet. As a result,

again the conditional values of E
[
ρ(x, x′)

]
for x �= x′,

x, x′ ∈ {
xi, xj, xk , xl

}
are identical to the case with n taxa,

where again they obey the Four Point Condition, by the
induction assumption.

Case 3: xn+1 is not deleted and coalesces directly with a
branch on the induced quartet subtree of G for the quartet
{x1, x2, xa, xb}. This case is non-trivial and requires some
analysis. For shorthand, we will refer to the homeomor-
phic quartet subtree of G restricted to {x1, x2, xa, xb} as
simply q. For a pair of taxa i, j ∈ Sn the value of the
expected internode distance in the presence of xn+1 is:

En+1
[
ρ(i, j)

] = En
[
ρ(i, j)

] + P(i, j) (2)

where P(i, j) denotes the probability that xn+1 coalesces on
a branch in the path from i to j, which would cause ρ(i, j)
to increase by 1. This quantity is non-trivial and depends
jointly on both the topology of G and the value of Yn.
However, since the first term obeys the Four Point Con-
dition by the induction hypothesis, the proof depends on
showing that P(i, j) does as well.

To do that, we will first partition the joint probability
space of the MSC and Miid , denoted as G and assign each
part of this partition to one of the five branches in the sub-
tree q, then show that for {i, j} ⊂ {x1, x2, xa, xb}, P(i, j) can
be expressed as the sum of probabilities assigned to the
branches between i and j. We will label the branches as b1,
b2, ba, and bb for the four outer branches and bm for the
middle branch.

Figure 2 describes the partition based on the branch
with which xn+1 coalesces (in each column) and the out-
come of the taxon-removal process (in each row). For
the illustrations in the header of each row, a branch rep-
resented with a dotted line represents the case that all
lineages coalescing along that branch other than xn+1 are
fully removed by the taxon-removal process. The posi-
tions of the relative taxa are given in the illustration in
the first row header, and all taxon-removal outcomes that
allow at least one ρ(i, j), i, j ∈ {x1, x2, xa, xb} to be mea-
sured are represented in the rows. The assignment is not
unique, as implied by the entries with offer two possibili-
ties, but for the proof either will work so we consider the
default to be the first branch listed.

For an event (G, Yn+1) ∈ G, denote the assignment of
(G, Yn+1) to branch be as (G, Yn+1) → be, and for that
branch let

pe = P ({(G, Yn+1) ∈ G|(G, Yn+1) → be}) .

In this way, for any pair of taxa i, j ∈ {x1, x2, xa, xb}, the
probability that ρ(i, j) is incremented by 1 in the presence
of xn+1 is given precisely by the sum of pe for set of edges
e between i and j in the quartet subtree q. This should be
apparent by visual inspection of the table. Thus, P(i, j) in
(2) is the sum of positive edge weights on the topology
x1x2|xaxb, which is also the species tree topology on these
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Fig. 2 Table of attachment branches for Theorem 11. Table of
attachment branches given the latent 5-taxon topology and set of
deleted taxa from q, assuming no other taxa coalesce closer to the
inner nodes, for Theorem 11. Branches (in rows) given by dotted lines
are pruned as a result of taxon deletion. The notation bx (for
x = a, b, 1, 2) refers to the branch of the quartet tree on leaves a, b, 1, 2
incident with leaf x, and bm refers to the middle branch of the quartet
tree

four taxa, and so is additive on the species tree. Hence,
it meets the Four Point Condition, completing the proof.

This proof was only provided under the Miid model of
taxon deletion because the independence of taxon dele-
tion (between taxa as well as from gene tree generation)
was used when we noted that

En+1
[
ρ(x, x′)

] = En
[
ρ(x, x′)

] + pxx′ (3)

in case 3. Independence implies that the marginal proba-
bility distribution of ρ(x, x′) for n taxa is identical to the
conditional distribution given the information that xn+1
has not been deleted.

While it is not strictly necessary for (3) to hold, coun-
terexamples can be difficult to construct, and thus it is
non-trivial to characterize conditions that may be weaker
than pure independence and still imply that ASTRID

and NJst are statistically consistent. It is an open ques-
tion whether ASTRID and NJst are statistically consis-
tent under any more general model (e.g., under the Mfsc
model). It is also an open question whether other Type 2
methods (e.g., STAR) are statistically consistent under the
Miid model of taxon deletion.

Results of the simulation study
The theoretical results above establish that various species
tree estimation methods are statistically consistent under
the MSC model in the presence of missing data under the
Miid model, and, in some cases, also under the Mfsc model.
Statistical consistency is a statement about performance
in the limit, as the amount of data increases, but does
not directly address performance on finite data. The ques-
tion we address in this simulation study is: “How quickly
does species tree error decrease as the number of genes
increases under models of missing data?”

We explored the performance of four species tree esti-
mation methods under two speciation models: one where
speciation was deep (toward the root) and the other where
speciation was recent (toward the leaves). The results for
datasets with deep speciation are shown here, and the
results for datasets with recent speciation are shown in the
Additional file 1. Nearly identical trends are observed for
the two speciation rates; however, species trees estimated
on datasets with recent speciation had somewhat reduced
error rates, that is, recent speciation was a less challenging
model condition.

We performed a sequence of experiments to evaluate
the impact of missing data on species tree estimation. Our
preliminary experiment evaluated the impact of missing
data on the inputs given to species tree estimation meth-
ods (i.e., gene tree estimation error, discordance between
true gene trees and the species tree, and the internode dis-
tance matrix computed by ASTRID). We then performed
experiments evaluating the impact of taxon deletion on
species tree estimation based on true gene trees (for the
summary methods) and the true alignment (for SVDquar-
tets). Our final experiment examines the impact of taxon
deletion under both models when summary methods are
given estimated gene trees rather than true gene trees.

Experiment 1: Evaluating the impact of taxon dele-
tion on inputs to species tree estimation methods We
first evaluated the impact of taxon deletion on gene tree
estimation error (GTEE), measured using the average
normalized RF distance between true gene trees and esti-
mated gene trees, and also on the ILS level, as measured
using AD values; see Fig. 3. Deleting taxa under the Miid
model had only a small impact on GTEE and AD levels: on
average, AD changed by at most 4% and GTEE changed
by at most 7%. However, deleting taxa under the Mclade
model resulted in a noticeable decrease for both GTEE and
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Fig. 3 Impact of missing data on AD and GTEE values. Average distance (or AD, defined as the normalized RF distance between the true species tree
and the true gene trees, averaged across all 1000 genes) and gene tree estimation error (or GTEE, defined as the normalized RF distance between
the true and the estimated gene trees, average across all 1000 genes) are shown for increasing amounts of missing data in panels (a-c) and (d-f),
respectively. Each column represents a different level of incomplete lineage sorting (ILS): panels (a) and (d) show datasets with low ILS, panels (b)
and (e) show datasets with high ILS, and panels (c) and (f) show datasets with very high ILS. Lines represent the average over 20 replicate datasets,
and filled regions indicate the standard error. Solid lines indicate the Miid model of missing data, and dashed lines indicate the Mclade model of
missing data. Note that datasets with 55% and 95% of genes with clade-based missing data had 34% and 59% total missing data, respectively.
Datasets shown here have deep speciation events and 1000 genes; results for datasets with recent speciation are shown in Additional file 1

AD values: on average, AD decreased by as much as 22%
(Fig. 3b, dashed line) and GTEE decreased by as much as
14% (Fig. 3e, dashed line).

We also explored the impact of taxon deletion on DA,
the internode distance matrix ASTRID computes from the
set of true gene trees given as input. Our theory estab-
lishes that as the number of genes increases, DA converges
to a matrix that is additive on the true species tree; how-
ever, the additive matrix it converges to depends on the
model of taxon deletion. In particular, under the clade-
based model of taxon deletion, the internode distance
matrix converges to a specific additive matrix DT , defined
by the true species tree with unit branch lengths; how-
ever, under the Miid model the internode distance matrix
converges to a different additive matrix (one that also fits
the model species trees, but with different edge lengths).
Therefore, the distance between DA and DT is a good
proxy for the deviation from additivity for the internode
distance matrix ASTRID calculates under the clade-based
model, but a poorer (albeit potentially useful) proxy under
the Miid model. Furthermore, since ASTRID is guaranteed
to return the true species tree if the input matrix is suffi-
ciently close to DT , proximity to DT may be predictive of
topological accuracy for the ASTRID species tree.

Our experiment explored these issues for both models
of missing data under three levels of ILS, three numbers

of genes, and with varying amounts of missing data, but
always for ASTRID applied to true gene trees. For each
model condition, we computed a distance between DT

and DA as follows:

‖E‖2 =
√∣∣DT

R − DA
R
∣∣2,

where MR denotes the restriction of matrix M to its upper
right triangle.

As shown in Fig. 4, deleting taxa under the Miid model
resulted in an increase in the distance between DA and
DT ; this is expected, since deleting taxa increases the
variance and pairwise distances between leaves are either
unchanged or are reduced. The impact of deleting taxa
under the clade-based missing data models is quite differ-
ent. First, taxon deletion typically reduced ‖E‖2; the only
exception was for 50 genes with high levels of taxon dele-
tion. Thus in general taxon deletion under clade-based
models made the estimated internode distance matrix
closer to additive.

Experiment 2: Data requirements under the Miid
model of taxon deletion We explored the performance
of methods under conditions in which the three summary
methods have been established to be statistically consis-
tent (i.e., when taxa were deleted under the Miid model
and when true gene trees were given as input). We also
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Fig. 4 Impact of missing data on the internode distance matrix used by ASTRID. This figure shows the distance (denoted ‖E‖2) between the additive
internode matrix DT computed using the true species tree with unit branch lengths and the internode distance matrix DA computed by ASTRID
using true gene trees, as a function of the amount of missing data; see the main text for additional details. Each column represents a different level
of incomplete lineage sorting (ILS): panel (a) shows datasets with low ILS, panel (b) shows datasets with high ILS, and panel (c) shows datasets with
very high ILS. Lines represent the average over 20 replicate datasets, and filled regions indicate the standard error. Line color indicates the number
of genes: datasets with 50, 200, and 1000 genes are shown in blue, orange, and green, respectively. Solid lines represent Miid model of missing data,
and dashed lines represent Mclade model of missing data. Note that datasets with 55 and 95% of genes with clade-based missing data had 34% and
59% total missing data, respectively. Datasets shown here have deep speciation events; results for datasets with estimated gene trees as well as
recent speciation are shown in Additional file 1

provided true sequence alignments to SVDquartets, and
so no species tree method had to handle estimation error
in the inputs that they were given.

As shown in Fig. 5, species tree error rates decreased as
the number of genes increases, under all ILS conditions.
Under the lowest level of ILS (14% AD), all three summary
methods had ∼10% or less error on average even when
datasets had 60% missing data and only 50 genes. When
ILS was high (47% AD), the summary methods required
200 genes to achieve an average error of less than 10%
when there was 0% or 30% missing data and required 1000
genes to achieve a similar level of accuracy on datasets
with 60% missing data. When datasets with the high-
est ILS condition (75% AD) had 60% missing data, all
three summary methods approached ∼20% error on aver-
age when given 1000 genes. Hence, the data requirement
for summary methods depended on both the percent-
age of missing data as well as other model conditions,
such as the level of ILS. This was also true for SVDquar-
tets. Although the error of species trees estimated by
SVDquartets decreased substantially when given increas-
ingly large numbers of genes, SVDquartets was much less
accurate than the three summary methods (when given
true genes) under all conditions, with largest differences
for the lowest level of ILS.

These trends show that the data requirements for the
summary methods are impacted by ILS level, so that accu-
rate species tree estimation under higher levels of ILS
requires a larger number of genes for all methods. This
is intuitively obvious, as higher ILS results in greater het-
erogeneity between true gene trees, so that more gene
trees are necessary to estimate the species tree (con-
versely, when there is no ILS, a single true gene tree
suffices to estimate the species tree). These results are
also consistent with [49], which examined the question

theoretically when there are no missing data, establish-
ing that the number of genes required by ASTRAL-II for
accuracy with high probability is inversely proportional
to the square of the length of the shortest branch in the
species tree.

Experiment 3: Data requirements under the Mclade
model of taxon deletion We explored the performance
of methods when taxa were deleted from genes under
the Mclade model of missing data. As with Experiment
2, we provided true gene trees as input to the summary
methods and true gene sequence alignments as input to
SVDquartets. Results in this experiment (Fig. 6) were
nearly identical to the results under the Miid model, except
that ASTRID had much lower error than the other meth-
ods (Fig. 6d-f). In fact, the accuracy of ASTRID sometimes
improved with increasing percentages of genes with clade-
based missing data; this was not true for increasing values
of p for the Miid model of missing data. The difference
between ASTRAL and ASTRID under the clade-based
model of taxon deletion is interesting and provocative.

Experiment 4: Data requirements given estimated
gene trees We explored the performance of species tree
estimation methods under both models of taxon dele-
tion, using estimated gene trees rather than true gene
trees for summary methods and true multiple sequence
alignments for SVDquartets. Hence, the results for the
summary methods were different for this experiment
than for the previous two experiments, while the results
for SVDquartets were the same as for the previous two
experiments.

Results on estimated gene trees are shown in Fig. 7
for the Miid taxon deletion model and Fig. 8 for the
clade-based taxon deletion model. Overall these results
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Fig. 5 Species tree error for the Miid model of missing data. Species tree error (measured by the RF error rate) is shown for different species tree
estimation methods for increasing numbers of genes. Each column represents a different level of incomplete lineage sorting (ILS): panels (a), (d), (g),
and (j) show datasets with low ILS, panels (b), (e), (h), and (k) show datasets with high ILS, and panels (c), (f), (i), and (l) show datasets with very high
ILS. Each row represents a different species tree estimation method: panels (a)-(c) show ASTRAL, panels (d)-(f) show ASTRID, panels (g)-(i) show
MP-EST, and panels (j)-(l) show SVDquartets. Lines represent the average over 20 replicate datasets, and filled regions indicate the standard error.
Line color indicates the percentage of missing data: datasets with 0%, 30%, and 60% random missing data are shown in blue, orange, and green,
respectively. Solid lines indicate that species tree estimation methods were given true gene trees, and dashed lines indicate that species tree
estimation methods were given estimated gene trees. Note that SVDquartets was given the true multiple sequence alignment. Datasets shown
here have deep speciation events; results for datasets with recent speciation are shown in Additional file 1

are largely similar to the results when species tree meth-
ods are given true gene trees (i.e., compare to Figs. 5 and
6). For example, error rates dropped as the number of
genes increased and error rates increased with the level
of ILS. Unsurprisingly, overall accuracy was reduced for

summary methods when given estimated as opposed to
true gene trees under both models. Also, the relative per-
formance between methods was largely the same as when
using true gene trees, with a few differences. On true gene
trees all three summary methods had very close accuracy,
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Fig. 6 Species tree estimation error for the Mclade model of missing data. Species tree error (measured by the RF error rate) is shown for different
species tree estimation methods for increasing numbers of genes. Each column represents a different level of incomplete lineage sorting (ILS):
panels (a), (d), (g), and (j) show datasets with low ILS, panels (b), (e), (h), and (k) show datasets with high ILS, and panels (c), (f), (i), and (l) show
datasets with very high ILS. Each row represents a different species tree estimation method: panels (a)-(c) show ASTRAL, panels (d)-(f) show ASTRID,
panels (g)-(i) show MP-EST, and panels (j)-(l) show SVDquartets. Lines represent the average over 20 replicate datasets, and filled regions indicate
the standard error. Line color indicates the percentage of missing data: datasets with 0%, 30%, and 60% clade-based missing data are shown in blue,
orange, and green, respectively. Solid lines indicate that species tree estimation methods were given true gene trees, and dashed lines indicate that
species tree estimation methods were given estimated gene trees. Note that SVDquartets was given the true multiple sequence alignment.
Datasets shown here have deep speciation events; results for datasets with recent speciation are shown in Additional file 1

but on estimated gene trees, ASTRAL and ASTRID were
generally more accurate than MP-EST, with ASTRID hav-
ing a clear advantage over ASTRAL under clade-based
missing data. The gap between SVDquartets and the sum-
mary methods also narrowed, so that although SVDquar-
tets remained less accurate than ASTRAL and ASTRID,
on occasion it matched or exceeded the accuracy of MP-
EST for large enough numbers of genes (e.g., see Fig. 7h).

Discussion
Our study provides theoretical results, establishing con-
sistency of summary methods under some models of
taxon deletion, as well as new experimental results. The
theoretical results are novel, and to our knowledge are the
first such results.

The results of our simulation study can be compared
to prior simulation studies [7, 23–25] that also examined
the impact of missing data on coalescent-based species
tree estimation methods using simulated datasets with
gene tree heterogeneity due to ILS. These studies differed
in terms of species tree estimation methods, models of
missing data, and other conditions, including ILS levels,
sequence evolution models, deviation from a strict molec-
ular clock, and gene tree estimation error; our study is
closest to [24] in that we evaluated the same species tree
estimation methods.

All these simulation studies found that good species
tree accuracy could be obtained for the better meth-
ods when enough genes were available; however, some
of these prior studies explored conditions that may have
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Fig. 7 Comparison of species tree estimation methods given estimated gene trees for the Miid model of missing data. Species tree estimation error
(measured by the RF error rate) is shown for species trees estimated by giving increasing numbers of genes as inputs to ASTRAL (blue), ASTRID
(orange), MP-EST (green), and SVDquartets (red). All three summary methods were given estimated gene trees, and SVDquartets was given the true
multiple sequence alignment. Each column represents a different level of incomplete lineage sorting (ILS): panels (a), (d), and (g) show datasets with
low ILS, panels (b), (e), and (h) show datasets with high ILS, and panels (c), (f), and (i) show datasets with very high ILS. Each row represents a
different percentage of missing data: panels (a)-(c) show datasets with 0% missing data, panels (d)-(f) show datasets with 30% random missing data,
and panels (g)-(i) show datasets with 60% random missing data. Lines represent the average over 20 replicate datasets, and filled regions indicate
the standard error. Datasets shown here have deep speciation events; results for datasets with recent speciation are shown in Additional file 1

improved the robustness of methods to missing data (e.g.,
[23, 25] simulated sequence evolution under a strict
molecular clock; [23] never deleted the outgroup taxon
from gene alignments, and so all estimated gene trees
could be rooted using the outgroup before being given to
MP-EST, which requires rooted gene trees). None of these
prior studies explored performance under the two models
of missing data we examine (i.e., the i.i.d. model and the
clade-based missing data model), and none examined the
impact of missing data when given true gene trees, which
is a main focus of this study.

Our findings are consistent with the trends shown in the
prior studies, demonstrating that ASTRAL-II, ASTRID,
MP-EST, and SVDquartets can achieve good accuracy
when given a large enough number of genes. As expected,
the summary methods have the best accuracy when given
true gene trees, but good results are also obtained when
using a sufficient number of estimated gene trees for the
conditions we examined. Under both models of miss-
ing data, the three summary methods are more accurate
than SVDquartets even when given estimated gene trees,
and ASTRAL-II and ASTRID have better accuracy than
MP-EST.

The analyses under clade-based models of missing data
are novel, as prior studies did not examine this model.
Furthermore, ASTRID substantially outperformed the
other methods, and even improved in accuracy under

some conditions, when taxa were deleted under a clade-
based model. However, the other species tree estimation
methods all degraded in accuracy under the clade-based
model.

To understand the difference in how ASTRID
responded to clade-based missing data compared to
the other summary methods, we examined how taxon
deletion impacted the input to the summary methods
(i.e., the gene trees and the internode distance matrix).
As shown in Fig. 3, GTEE and AD values increased
under Miid models but decreased under Mclade models
of taxon deletion; furthermore, Fig. 4 shows that ‖E‖2 (a
measure of the distance between the internode distance
matrix defined by the model species tree and the intern-
ode distance matrix that ASTRID computes) increased
under Miid models but generally decreased under Mclade
models. These results suggest that summary methods
should become less accurate under Miid models (a trend
we observe in our simulation study), but also suggest that
summary methods should become more accurate under
the Mclade models. However, only ASTRID became more
accurate under Mclade models. Furthermore, the condi-
tions where ASTRID became more accurate as taxa were
deleted under Mclade models were generally those that
resulted in the distance between DA and DT decreasing.

One possible explanation for why taxon deletion under
the clade-based models did not result in improved
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Fig. 8 Comparison of species tree estimation methods given estimated gene trees for the Mclade model of missing data. Species tree error (defined
as the RF error rate) is shown for species trees estimated by giving increasing numbers of genes as inputs to ASTRAL (blue), ASTRID (orange), MP-EST
(green), and SVDquartets (red). All three summary methods were given estimated gene trees, and SVDquartets was given the true multiple
sequence alignment. Each column represents a different level of incomplete lineage sorting (ILS): panels (a), (d), and (g) show datasets with low ILS,
panels (b), (e), and (h) show datasets with high ILS, and panels (c), (f), and (i) show datasets with very high ILS. Each row represents a different
percentage of genes with missing data: panels (a)-(c) show datasets with 0% of genes missing data, panels (d)-(f) show datasets with 55% of genes
missing data, and panels (g)-(i) show datasets with 95% of genes missing data. For example, if 55% of the 1000 genes are missing data, then 450
genes are complete and 550 genes are incomplete (due to clade-based missing data). Lines represent the average over 20 replicate datasets, and
filled regions indicate the standard error. Datasets shown here have deep speciation events; results for datasets with recent speciation are shown in
Additional file 1

accuracy for ASTRAL and MP-EST summary methods,
despite the reduction in GTEE and AD, is that taxon dele-
tion also automatically reduces the amount of information
available, and that reduction in information quantity has
a larger negative impact on ASTRAL and MP-EST than
the positive impact obtained by the improvement in infor-
mation quality (as indicated by the reduction in GTEE
and AD values). This trade-off between information qual-
ity and quantity seems to be different for ASTRID than
for ASTRAL and MP-EST, however, since ASTRID typi-
cally benefits under clade-based models (when there are
enough genes).

Thus, ASTRID responds differently from other species
tree estimation methods, and these differences suggest
that the pattern of missing data in an empirical dataset
may have implications for selecting summary methods for
phylogenomic species tree estimation. In particular, if the
data that are gathered seem to have missing data patterns
that look clade-based, then ASTRID may be preferable to
ASTRAL and MP-EST, while if the data that are gathered
seem to have other types of missing data patterns then
ASTRAL may be preferable.

Conclusions
Species tree estimation using multi-locus datasets is
increasingly common, but many datasets have substan-
tial numbers of incomplete gene trees. Furthermore, many
species tree estimation methods have been shown to
reduce in accuracy as taxa are deleted from gene trees,
leading to the concern that species tree estimation meth-
ods might not be statistically consistent under models of
taxon deletion.

This study proved that many standard species tree
estimation methods remain statistically consistent under
the MSC model under some simple models of miss-
ing data. However, we also proved that under some
more complex models (and in particular under an adver-
sary model) of missing data, some popular species tree
methods can be inconsistent, indicating that the fre-
quency and type of missing data are important factors in
determining the impact of missing data on species tree
estimation.

Our study also examined the accuracy of species trees
estimated on finite numbers of genes using both true and
estimated gene trees. We showed that a high degree of
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accuracy is achievable using four common species tree
methods (ASTRAL-II, ASTRID, MP-EST, and SVDquar-
tets) when given a large enough number of genes, even
when there is a high degree of missing data, gene tree
heterogeneity resulting from ILS, and moderate levels of
gene tree estimation error. We also saw some differences
between methods that depended on the type and degree
of missing data, with ASTRAL typically having among the
best accuracy of all methods; however, under clade-based
models of missing data, ASTRID was usually the most
accurate.

Our theory and experiments are suggestive of why taxon
deletion under Miid models generally reduces accuracy for
all species tree estimation methods we explored, and also
why taxon deletion under clade-based models improves
accuracy for ASTRID; however, further research is needed
to understand other trends we observe in these experi-
ments. For example, we do not know why taxon deletion
under the clade-based models reduces gene tree estima-
tion error and ILS levels (as measured using AD values),
nor why ASTRAL does not improve under clade-based
taxon deletion models although ASTRID does. Several
interesting mathematical questions also remain unan-
swered. Very little is known about data requirements for
coalescent-based species tree estimation, even when all
genes are complete (although see [49] for bounds on the
number of true gene trees needed for species tree accu-
racy with high probability for ASTRAL-II). This study
also showed that species tree estimation accuracy was
impacted by missing data and also by gene tree estimation
error. Since many real world datasets have both incom-
plete gene trees and high gene tree estimation error (see
discussion in [24]), perhaps the most important theo-
retical question is whether statistically consistent species
tree estimation using summary methods is possible in
the presence of both these conditions. However, very lit-
tle is known about this, even when there are no missing
data [33].

The choice of method for species tree estimation
method depends on a combination of factors, includ-
ing statistical properties (such as statistical consistency)
and performance on simulated and biological datasets.
Our findings are generally positive, showing substantial
robustness to taxon deletion in terms of empirical perfor-
mance for several popular species tree estimation meth-
ods, and establishing that statistical consistency can still
be guaranteed for some popular methods under some
models of taxon deletion (in some cases, by simple mod-
ifications to the method). Thus, our study shows that
statistically consistent methods that are highly accurate
exist for species tree estimation even in the presence of
missing data and gene tree heterogeneity due to incom-
plete lineage sorting. Overall, this study adds to a growing
body of literature addressing the impact of missing data on

species tree estimation, and supports the conclusion that
missing data - in itself - is not particularly problematic for
species tree estimation.
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