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Abstract

Background: Sequence data used in reconstructing phylogenetic trees may include various sources of error.
Typically errors are detected at the sequence level, but when missed, the erroneous sequences often appear as

unexpectedly long branches in the inferred phylogeny.

Results: We propose an automatic method to detect such errors. We build a phylogeny including all the data then
detect sequences that artificially inflate the tree diameter. We formulate an optimization problem, called the k-shrink
problem, that seeks to find k leaves that could be removed to maximally reduce the tree diameter. We present an
algorithm to find the exact solution for this problem in polynomial time. We then use several statistical tests to find
outlier species that have an unexpectedly high impact on the tree diameter. These tests can use a single tree or a set
of related gene trees and can also adjust to species-specific patterns of branch length. The resulting method is called
TreeShrink. We test our method on six phylogenomic biological datasets and an HIV dataset and show that the
method successfully detects and removes long branches. TreeShrink removes sequences more conservatively than
rogue taxon removal and often reduces gene tree discordance more than rogue taxon removal once the amount of

filtering is controlled.

Conclusions: TreeShrinkis an effective method for detecting sequences that lead to unrealistically long branch
lengths in phylogenetic trees. The tool is publicly available at https://github.com/uym2/TreeShrink.

Keywords: Tree diameter, Rogue taxon removal, Gene tree discordance

Background

Datasets used in phylogenetic analyses include a large
number of genes and species these days. The number of
loci involved and the size of the trees make it impossi-
ble to carefully examine every sequence alignment and
every gene tree manually. Such manual curation, even
if possible, is subject to biases of the curator and poses
challenges in reproducibility. But the need for data cura-
tion is as strong as ever. Phylogenetic analyses typically
use pipelines of many steps, starting from sequencing, to
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contamination removal, homology and orthology detec-
tion, multiple sequence alignment, and gene tree infer-
ence, and finally species tree reconstruction. Each step is
error-prone, and it has been long recognized that errors
can propagate among these steps [1-3]. However, detect-
ing errors is difficult, especially when large numbers of
genes are being analyzed [4]. For example, discordance
among estimated gene trees may have biological causes
or may be the result of gene tree estimation error; when
error-prone gene trees are fed to a species tree estimation
method, the error may propagate [5-7]. This possibility
motivates the co-estimation methods that aim to break
or weaken the chain of error propagation [8—10]. How-
ever, the end-to-end co-estimation of all steps in the
phylogenetic analyses remains elusive [10]. In practice,
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analysts often devise creative (if ad-hoc) methods to find
and remove erroneous data. Such data filtering should be
treated with care because it may remove useful signal in
addition to error [11], and it also runs the risk of intro-
ducing biases. One common method of data filtering is
alignment masking [12, 13], despite some criticism [11].
Beyond filtering based on sequences, detecting problem-
atic species from reconstructed trees is also possible.

Two common approaches for filtering based on phy-
logenetic trees are rogue taxon removal (RTR) [14-18]
and gene tree filtering [19, 20]. More recent approaches
include filtering of individual sites with an outsized impact
on the tree topology [21]. RTR aim to find species that
have an unstable position in the inferred trees, judging the
stability with regards to replicate trees generated by boot-
strapping [16, 18] or jackknifing [14]. A second approach
is to remove genes that are believed to be problematic,
perhaps due to missing data [19, 20], lack of signal [22],
or even inconsistent signal [21]. When potentially prob-
lematic genes are removed, the justification is that the
inference of the species tree (i.e., by summarizing gene
trees or concatenation) may become more accurate as
a result. Alternatively, some analyses (e.g., [23, 24]) fil-
ter individual species from individual gene trees based
on some criteria (e.g., fragmentation) while keeping the
gene. These analyses aim to find and eliminate only the
problematic data but nothing more.

The branch lengths of an inferred phylogeny can pro-
vide indications of error in sequence data in some cases.
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If the evolution follows a strict molecular clock, we expect
that all leaves should be equidistant from the root. Devi-
ations from the strict clock, if not extreme, would not
produce situations where a small minority of species have
dramatically different rates of evolution and hence root
to tip distances. In other words, variations in root to
tip distance are expected, but outlier species in terms of
distances to the root have to be treated with suspicion.
Several types of error in a phylogenetic data, e.g., contam-
ination, mistaken orthology, and misalignment, can lead
to the addition of very long branches to the tree (e.g.,
Fig. 1a). When a handful of species dramatically diverge
from the rest, it is likely that the sequences of outlier
species contain errors (of unclear nature). Also suspicious
is a species that has normal root to tip distances in most
gene trees but has an unexpectedly large root to tip dis-
tance in a handful of genes. Even when the sequences
of long branches are error-free, they may still pose diffi-
culties due to long branch attraction [25]. Thus, several
studies have tried removing species with outlier root-to-
tip distances in gene trees [23, 26]. However, rooting is
often challenging and prone to error [27]. Moreover, root-
ing is not necessary for finding outlier species in terms of
branch length.

A useful concept is the tree diameter, which gives the
maximum distance between any two leaves of the tree.
We introduce an optimization problem that if solved effi-
ciently can help in finding species that artificially inflate
the tree diameter.

Fig. 1 Example trees with suspicious long branches. a An unfiltered gene tree of a Plant dataset [23] with an obvious outlier leaf; b a gene tree in a
mammalian dataset with a hard to detect outlier branch [36]. Outgroups are shown in blue and the suspicious long branches in the red. Dashed
green line: the tree diameter after removal of red branches. Detecting the red branch is easy on the left but hard on the right
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The k-shrink problem: Given a tree on #n leaves with
branch lengths and a number 1 < k < u; for every
1 < i < k, find a set of i leaves that should be
removed to reduce the tree diameter maximally.

We develop an algorithm to solve the problem in
O (k*h + n) time where / is the height of the tree after
being rerooted at the centroid edge (which can be done
in linear time [27]). Given the solution to the k-shrink
problem, we need to decide the species to remove such
that the number of error-free sequences removed is mini-
mized. Towards this goal, we propose three statistical tests
to find outlier species. We set k = ©(4/n) and com-
pute the proportional reduction in the diameter when
going from i — 1 to i removals for 1 < i < k. We then
look for outlier values in the spectrum of these propor-
tional reductions; outliers are defined as those that lie
at the extreme tails of the distribution, and the outlier
detection is controlled by a level of false positive toler-
ance (o). A further complication is that outgroups, even
when error-free, can greatly impact the diameter (Fig. 1b).
Moreover, if a clade has an increased rate of mutations,
it may impact the tree diameter more than other clades
and may become prone to removal. When multiple gene
trees are available, we can learn such patterns of rate vari-
ation. Our second statistical test simply combines data
from all gene trees to find outliers in a single distribution.
The third test goes further and learns a different distribu-
tion per species. We implement these tests in a tool called
TreeShrink.

We test TreeShrink on six phylogenomic datasets and
an HIV transmission tree. We show that TreeShrink
improves the quality of gene trees effectively for phyloge-
nomic datasets and can separate strains of HIV. When
distributions are learned per species, outgroups are also

handled effectively.

Methods
Notations and definitions
For an unrooted tree ¢ on the leaf-set L, let §(a, b) give the
distance between a and b. The restriction of ¢ to the leafset
A is denoted by ¢ [4, and we use the shorthand ¢\, =
t [i—(a)- We refer to a pair of leaves in ¢ with the highest
pairwise distance as a diameter pair and call the two leaves
on-diameter. Any tree has at least one diameter-pair but
could have more. We define P(t) as a set of all diameter
pairs of £; that is, P(¢) = {(a,b) : (Vx,y € Lt)[5(a,b) >
8(x,9)] }. The diameter set D(t) is defined as the set of all
on-diameter leaves: D(¢t) = {a : (Ix)[ (a,x) € P(t)] }.

We call a tree t singly paired if all the restricted trees of
t (including ¢) have only one diameter pair; that is, VA C
Lt,|P(t 1a)| = 1. We refer to the process of removing one
leaf from ¢ as a removal. A removal is called reasonable iff

a € D).
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A removing chain of t is defined as an ordered list of
removals. We refer to a removing chain of length k as a
k-removing chain and denote it by Hy (). We refer to a
removing chain that consists only of reasonable removals
as a reasonable removing chain. An optimal k-removing
chain, 7-[,’; (), is a removing chain that results in a tree with
the minimum diameter among all chains of length k. Any
Ri(t) C Lt with |Ri ()] = k is called a k-removing set
of t, and is called a reasonable k-removing set if there exists
an ordering of Ry (¢) that gives a reasonable k-removing
chain. We refer to the set of all reasonable k-removing sets
as the k-removing space of t, and denote it by Si(¢). We
let Ri(¢) denote an arbitrary removing set that gives the
restricted tree with the minimum diameter. Finally, for a
rooted version of £, we let Cld(u) denote the set of leaves
descended from u.

For all the theoretical results given below, proofs are
given in the Additional file 1: Appendix.

A polynomial time solution to the k-shrink problem

Only reasonable removals have the potential to reduce the
tree diameter. If ¢ is singly paired, two reasonable removals
exist, and one of them may reduce the diameter more.
This can be simply checked and thus, the problem is triv-
ial for k = 1. For k > 1, a greedy approach that takes
the optimal removal at each step does not always pro-
duce an optimal solution (see Additional file 1: Figure
Sla for a counter-example). Therefore, to solve this prob-
lem, we need to consider a search space. However, a brute
force search for all reasonable k-removing chains is infea-
sible. The brute force method would first consider the
initial diameter pair(s); then, to remove each of the two
on-diameter leaves, it would consider the new diame-
ter pair(s) after the first removal and recurse on each
diameter-pair. This recursive process produces all reason-
able removing chains from 1 to &, but its space grows
exponentially.

Three observations enable us to find the optimal solu-
tion in a reduced search space that only grows linearly
with k. The first observation is that if (a, b) is a diameter
pair, then b remains on-diameter after removing a.

Proposition 1 Ifan on-diameter leaf is removed, the rest
of the on-diameter set are on-diameter for the restricted
tree:a € D(t) = D(t) — {a} C D(t\n).

All i-removing spaces for 1 < i < k can be repre-
sented as a directed acyclic graph (Fig. 2). In this DAG,
each node at row i represents an i-removing set R;(t), and
is also annotated with a diameter pair after the removal
of R;(t). All the entries in the row i form the i-removing
space. Any path from the root ending at a node R;(¢) is
an i-removing chain. Note that each node can be reached
with multiple paths from the root; this leads to a second
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the graph gives the k-removing space of t (Sk(t))

remove b

remove a

remove ¢

remove d

remove a

Fig. 2 Graphical representation of the reasonable search space. The root node represents the initial tree t; each node on row k represents a
restricted tree with k leaves removed. Each node is annotated by the removing set (top) and a diameter pair of the induced tree (bottom). Each
edge in the graph represents a reasonable removal. The path from the root to any node corresponds to a reasonable removing chain. Each row k in

observation, which is trivial but important. Any order-
ing of an i-removing chain gives the same restricted tree.
Thus, we can reduce the search space from reasonable
chains to reasonable sets. The first two observations allow
us to design a polynomial time algorithm for singly paired
trees (described next). Our third observation (formalized
later) is that when a tree is not singly paired, breaking ties
arbitrarily still guarantees optimality.

Singly paired trees

Our main result states that, for singly paired trees, the i
row of the reasonable search space graph (Fig. 2) contains
i + 1 nodes and one of the nodes gives an optimal i-
removing set. Moreover, traversing all O(k?) nodes in this
graph gives the optimal solution to our k-shrink problem.

Theorem 1 The k-removing space of a singly paired tree
t includes all the optimal k-removing sets of t; that is: Vk >
0: Ri(t) € Sk(®).

Theorem 2 The size of the k-removing space for a singly
paired tree tis k + 1.

Corollary 1 The size of the reasonable search space up
to level k is O(k?).

Our algorithm (Algorithm 1) start with a preprocessing
in order to enable computing the pair set at any point in a
removal chain in O(#). The preprocessing uses a bottom-
up traversal of ¢ (rooted arbitrarily). For each internal
node u, we store four values: (i) the leaf x € Cld(u)
with the longest distance to #, (ii) the distance 8 (i, x), (iii)
the leaf y € Cld(u) — Cld(c;) with the longest distance
to u (where ¢; is a child of u such that x € Cld(c1)),

and (iv) the distance §(x,y) (see Additional file 1: Figure
S1b). We store these values for each node u as a tuple
rec(u) = (reci(u),recy(u),rec3(u), reca(u)). These values
can be computed in a post-order traversal of the tree
in the natural way. Once these records are computed,
finding diameter pairs can be done quickly (see function
FindPair in Algorithm 1). Let (4, b) be a diameter pair;
note that regardless of the arbitrary rooting of the tree, at
the LCA of a and b, the record includes a, b as the first
and third fields and the tree diameter as the last. Thus, the
tree diameter corresponds to the record with the largest
fourth value. As we will see, throughout the algorithm, the
values of the records may have to change. However, these
updates can also happen in O(%). Thus,

Proposition 2 Given a rooted tree t of height h, (a,b) €
P(t), and rec(u)u for all nodes u € Lt, we can find one
diameter pair of t\, in O(h).

Once the preprocessing finishes, we start building the
DAG (Fig. 2). We start with the root node, corresponding
to the initial tree ¢ and build the rows iteratively. For any
node at step i with (x,y) as its diameter pair, two nodes
have to be added to the next row, one for removing x
and another for removing y. As the proof of Theorem 2
(Additional file 1: Appendix) indicates, two sister nodes in
step i have to share one descendant in step i + 1 (Fig. 2).
Thus, to construct each row from the previous row we
simply need to find the diameter pair of the tree restricted
to the removal-set of each node; this is done in the func-
tion FindPair previously described. As we build the
DAG, we also keep track of the length of the diameter at
each node and the optimal i-removing set. At the end, we
report an optimal-removing set for each i from 1 to k.
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Algorithm 1 Polynomial time k-shrink algorithm. Func-
tion Shrink gives the main algorithm. Assuming (a, b) €
P(t), function FindPair finds a leaf x such that (x,b) €
P(t\y); it assumes that ¢ has rec(u) computed for all of its
nodes

function SHRINK(Z, k)
Compute rec(u) for all internal nodes u of ¢ using a
postorder tree traversal
(a,b) < (rec1(u), rec3(u)) where u is the node with
the maximum recq (1)
minD < an array of k elements initialized to oo
Q <« an empty queue initialized with tuple
(0,a,b,{},8(a,b))
seen <
while |Q| # 0 do
(i,a,b, R, d) < Q.remove()
minD [i] < min(minD [i],d)
if i < k then

Q.append (i + 1, FindPair(t [ ¢—g,a,b), b, RU {a})
if i ¢ seen then

Q.append(i + 1, a, FindPair(t [r¢—r, b, a), RU {b})

_seen < seen U {i}
return minD

function FINDPAIR(Z, a, b)
diameter < 0
for all node u in the path from the parent of a to
the root do
Update rec(u)u from records of its children
(ignore a if it is one of the children)
if reca(u) > diameter then
diameter < recq(u) and
diamPair < (recy(u), recs(u))
for all node u in the path from the parent of b to
LCA(a,b) do
if reca (1) > diameter then
diameter < recq(u) and

diamPair < (recy(u), recs(u))
return x € diamPair ifx # a

According to Proposition 2, finding each new diameter
pair after removing any node can be done in O(%). From
Corollary 1 and Proposition 2, we have:

Corollary 2 Algorithm 1 solves the k-shrink problem in
O (K*h + n).

Generalization to all trees

If the tree ¢ is not singly paired, nodes in the search graph
could have more than two children which increase the size
of the search space. However, we prove that we can break
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the ties arbitrarily at any step and still guarantee an opti-
mal solution. It follows naturally that Algorithm 1 also
works for trees that are not singly paired.

For any diameter pair (a,b) € P(¢), we define a pair-
restricted k-removing space as a subset of Sy (f) such that
each of its elements includes either a or b.

Theorem 3 For any k, any arbitrary pair-restricted
k-removing space includes at least one optimal k-removing
set.

Proof (sketch). It is not hard to prove that any tree ¢ has
a single midpoint which partitions its diameter set into
disjoint subsets. We call each of those subsets a diame-
ter group of t (Additional file 1, Appendix A, Lemma S2
and Lemma S3). Clearly, unless all but one of the diame-
ter groups are removed, the tree diameter is unchanged.
We refer to the restricted tree of ¢ that have all but one
of the diameter groups removed as a minimum shrunk
tree of t. We can prove that any arbitrary pair-restricted
removing space can produce a// minimum shrunk tree
(see the full proof in the Additional file 1: Appendix). If k
is so small such that there is no k-removing set can reduce
the tree diameter, any solution is optimal and the result
of Theorem 3 trivially follows. Otherwise, any optimal
solution of k-shrink can be induced from one of the mini-
mum shrunk trees (Lemma S4 in Appendix A, Additional
file 1). Thus, to find an optimal tree t*, we can start from
any pair-restricted removing space and concatenate the
two removing chains: the chain that induces the minimum
shrunk tree £ from any arbitrary diameter pair, and the
chain that starts from ¢ to induce ¢*. Full proof is given in
Appendix A of Additional file 1. O

According to Theorem 3, any pair-restricted k-
removing space includes at least one optimal solution. For
a tree that is not singly paired, we can arbitrarily restrict
the search space to any of its diameter pairs at any step
of the algorithm. This ensures that the search space size
grows with O(k?), and that Algorithm 1 still correctly
finds an optimal solution in O (kzh + n).

Statistical selection of the filtering species
The solution to the k-shrink problem for a given k gives
the minimum diameters for 1 < { < k and the corre-
sponding optimal removing sets. Given these results, we
now need to find a set of species that have unexpect-
edly large impacts on the tree diameter. Defining what
is an expected impact on the diameter is not trivial and
depends on many factors such as the rate of speciation,
taxon sampling, and the tree topology. To avoid modeling
such processes, we use empirical statistics.

Let v; be the ratio of the minimum diameter with i — 1
leaves removed and the minimum diameter with i leaves
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removed, and let A; = log(v;). For a tree with no out-
lier branches, we expect v; values to be close to one (e.g.,
T1 in Fig. 3a). For a tree with one outlier leaf on a very
long branch, we expect that v; is much larger than other
v; values (T2 in Fig. 3a). If two species are on a very long
branch, we expect a small vy, a large vy, and small values
again for i > 2 (T3 in Fig. 3a). If there are two excep-
tionally long branches, one with three species and another
with five species, we expect v3 and vg to be large and other
values to be small (T4 in Fig. 3a). We use v values to detect
outliers, but we first need to introduce the concept of
a signature.

The v; values for the removing sets that include a species
measure the impact of that species on the tree diameter.
We will refer to the maximum A; among all removing sets
i that include a species as the signature of that species
(note that this is defined only for some of the species). A
species with an exceptionally larger signature compared
to the other species can be considered an outlier (Fig. 3b).
To define what qualifies as exceptionally large, we design
three different tests. The first test can be applied to a
single tree, while the other two require a collection of
gene trees.

The “per-gene” test

For a single input tree and a large enough k, we have a
distribution over signature values. Since we have limited
data in this scenario, we use a parametric approach and fit
a log-normal distribution to the signatures. Given a false
positive tolerance rate «, we define values with a CDF
above 1 — « as outliers. Then, species associated with the
outlier signatures are removed.

The “all-gene” test

When a dataset includes several gene trees, all related by
a species tree, combining the distributions across genes
can increase the power. With many genes, we may also
be able to distinguish outgroup species from outliers. The
signatures of outgroups across all gene trees should be
consistently higher than those of ingroups, and these high
signatures will appear as part of the combined signature
distribution. Thus, we may be able to avoid designating
outgroups signatures as outliers.

In this test, we put the signature of all genes together
to create one distribution. Unlike the per-gene test, here
we have many data points, which enables us to use a
non-parametric approach. We compute a kernel density
function [28] over the empirical distribution of the com-
bined set of signature values. To estimate the density,
we use Gaussian kernels with Silverman’s rule of thumb
smoothing bandwidth [28] (as implemented in the R pack-
age [29]). Given the density function and a false positive
tolerance rate «, we define values with a CDF above 1 — «
as outliers.
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The “per-species” test

Outgroups can contribute to the tree diameter as much
as erroneous species (Fig. 1b). To better distinguish out-
groups from errors, when a set of gene trees are available,
we can learn a distribution per species. Given a sufficient
number of gene trees, the signatures of a species across
all genes form a distribution that specifically captures the
impact of that species on the gene tree diameter. These
species-specific distributions naturally model the inherent
difference between outgroups and ingroups in terms of
their impacts on the tree diameter. More broadly, changes
in the evolutionary tempo are captured naturally by the
per species distributions.

In this test, we first compute a non-parametric distri-
bution of the signature values for each species. When the
signature of a species is not defined for a gene, we sim-
ply use zero as its signature. Then, for each species, we
use the same non-parametric approach as in the all-gene
test to compute a threshold for the signature value corre-
sponding to the chosen «. Finally, we remove each species
from those genes where its signature is strictly above its
species-specific threshold.

The default parameters of TreeShrink

TreeShrink has two parameters: @ and k. By default, we set
a to 0.05 (but users can choose other thresholds). Large
values of k do not fit our goal of finding outlier species
and can even lead to misleading results (e.g., Figure S2 in
Appendix B, Additional file 1), but a small value of k may
also miss outliers and may lead to insufficient data points
for learning distributions.

Using a value of k that grows sublinearly with # (i.e.,
the number of leaves) gives us an algorithm that is fast
enough for large n. For example, using k = O(/n)
gives O(nh) running time, which on average is close to
O(nlog n) and is O(n?) in the worst case. While the choice
must be ultimately made by the user, as a default, we set
k = min (%,Sﬁ). This heuristic formula ensures that
our running time does not grow worse than quadrati-
cally with # but also avoids setting k to values close to
n (thus also limits the proportion of leaves that could be
removed).

Evaluation procedures

Datasets

We use six multi-gene datasets and a single-gene HIV
dataset, and each dataset includes one or more outgroup
species defined by the original papers (Table 1).

Plants [23]: This dataset of 104 plant/algae species
(four Chlorophyta outgroups) and 852 genes was used
to establish early diversification patterns within land
plants and their sister groups. The data are based on
transcriptoms, and authors faced challenges in terms of
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Equisetum diffusum,
Equisetum diffusum,
Equisetum diffusum,
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Anomodon attenuatus
Smilax bona-nox, Klebsormidium subtile
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Smilax bona-nox, Klebsormidium subtile, Anomodon attenuatus
Smilax bona-nox, Klebsormidium subtile, Nephroselmis pyriformis, Anomodon attenuatus
Smilax bona-nox, Klebsormidium subtile, Nephroselmis pyriformis, Pyramimonas parkeae, Anomodon attenuatus

Fig. 3 a Patterns of v; as a function of i. Four unfiltered gene trees from a Plant dataset [23] are shown (top). For each tree, we also show v; for
1 < i < k=min(n/4,5+/n) (bottom). b An example tree from the Plant dataset with the removing sets and species signatures. The removing sets
are shown with the corresponding v values. The max v values associated with the species signatures are marked in red
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Table 1 Summary of the biological datasets
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Dataset Species Genes

Outgroups

Download

Plants [23] 104 852

Monomastix opisthostigma,

DOI10.1186/2047-217X-3-17

Uronema sp.,

Nephroselmis pyriformis,

Pyramimonas parkeae

Mammals [36] 37 424

Insects [31] 144 1478

Chicken

IXODES SCAPULARIS,

DOI10.13012/C5BG2KWG

http://esayyari.github.io/InsectsData

Sympbhylella vulgaris,

Glomeris pustulata,

Lepeophtheirus salmonis,
DAPHNIA PULEX,
Cypridininae sp,

Sarsinebalia urgorii,

Celuca puligator,

Litopenaeus vannamei

Cannon [32] 78 213

Salpingoeca rosetta,

DOI10.5061/dryad.493b7

Monosiga brevicollis

Mnemiopsis leidyi,

Pleurobrachia bachei,

Euplokamis dunlapae

Rouse [33] 26 393

Mnemiopsis leidyi,

DOI10.5061/dryad.79dgl

Amphimedon queenslandica,

Trichoplax adhaerens,

Nematostella vectensis

Frogs [39] 164 95

Latimeria chalumnae,

DOI10.5061/dryad.12546.2

Protopterus annectens,

Homo sapiens,

Crocodylus siamensis,

Gallus gallus,

Ichthyophis bannanicus,

Batrachuperus yenyuanensis,

Andrias davidianus

gene identification and annotation, leading to abundant
missing data. To obtain reliable species trees using
ASTRAL [30], the authors had to use various filterings,
including removal of low occupancy genes and genes
with fragmentary sequences. The ASTRAL tree obtained
on these filtered gene trees was mostly congruent with
results from concatenation, though some interesting
clades (e.g., the Bryophytes) were differently resolved.
In our analyses, we start with all gene trees estimated
from nucleotide data with the third codon position
removed.

Insects [31]: This phylotranscriptomic dataset includes
144 species and 1478 genes. This dataset was used to
resolve controversial relationships among major insect
orders, but only concatenation analyses were reported. A
different paper performed a species tree analysis of the
same dataset using ASTRAL, obtained on RAXML gene
trees that we estimated on all 1478 gene trees [24]. We use
these gene trees in our analysis.

Metazoa-Cannon [32] and Rouse [33]: Whether Xena-
coelomorpha (a group of bilaterally symmetrical marine
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worms) are sister to all the remaining Bilateria (animals
with bilateral symmetry) has been the subject of much
recent debate [32-34]. The Cannon et al. dataset of 213
genes from 78 species sampled from across the animal
tree-of-life was used to confidently place Xenacoelomor-
pha as sister to Bilateria. Among other analyses, ASTRAL-
II [35] was used on a collection of gene trees that the
authors published, and we use. The dataset by Rouse et al.
addresses the same question as Cannon et al. using 393
genes and 26 species.

Mammals [36]: This mammalian dataset consists of 37
species (36 mammals and Chicken as outgroup) and
424 gene trees. Since the original gene trees had several
issues (including insufficient ML searches and mislabeled
species [37]), here we use RAXML gene trees that were
inferred and used in a re-analysis of this dataset [6]. Sev-
eral reanalyses of this dataset using various methodologies
have largely been consistent, except, for the position of the
tree shrews that often changes [6, 30].

Frogs [38]: This dataset consists of 164 species (156 frog
species and 8 outgroups) and 95 genes. The dataset was
used to study the evolutionary history and tempo of frog
diversification [38]. The RAXML gene trees we use here
were used as inputs for ASTRAL to construct the species
tree [38] and were provided by the authors [39].

HIV dataset [40]: This HIV dataset consists of 648
partial HIV-1 pol sequences that were used to reconstruct
the local HIV-1 transmission network from 1996 to 2011
in San Diego, California. The dataset consists of 639 sub-
type B, 7 non-subtype B, and 2 unassigned sequences of
HIV-1 pol coding region. The sequences have GenBank
accession numbers from KJ722809 to KJ723456, and were
provided to us by the authors. Note that this dataset has
only one gene.

Methods tested

We implemented TreeShrink (https://github.com/uym2/
TreeShrink) using the Dendropy package [41]. We com-
pare the three tests of TreeShrink, namely per-gene, all-
gene, and per-species. In addition, we compare the most
effective test of TreeShrink, the per-species test, with
two alternative methods and a control where we remove
species randomly from the tree.

The main alternative to TreeShrink used previously
[23, 26] is to root gene trees and then remove species
with outlier root-to-tip distances. We use this “rooted
pruning” approach where we define outliers as values
that lie several standard deviations (we vary this thresh-
old) above the average. For the Plant dataset, 681 genes
included the outgroups; for the remaining, we used a
linear-time implementation of the midpoint rooting [27].
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In other datasets, each gene tree included at least one
of the outgroups. While the goals of RTR are some-
what different from ours, we also compare our method
with RogueNaRok [16], which defines a rogue taxon as
one that has unstable positions in replicate bootstrap
runs.

Evaluation

Judging the effectiveness of the filtering methods on real
data is challenging, as we do not know if a removed
sequence is in fact erroneous. However, patterns of discor-
dance can help. While true gene trees may be discordant
with the species tree, erroneous sequences will further
increase the observed discordance. Thus, the amount of
gene tree discordance among genes should reduce as a
result of effective filtering, and more effective filtering
methods arguably reduce the discordance more than less
effective ones. Thus, the quality of a filtering procedure
can be judged (albeit with some uncertainty) by its impact
on gene tree discordance, as long as its optimization prob-
lem does not seek to reduce discordance directly. Note
that none of the methods that we test take the species tree
as input, and none is trying to directly reduce the gene tree
discordance. Thus, we use the reduction in discordance
as one measure of accuracy. To compute gene tree discor-
dance, we compare all pairs of gene trees to each other and
use the MS (Matching Splits) metric [42], implemented in
the TreeCmp [43] to measure distance. To facilitate the
interpretation of MS, which is not normalized, we include
random removal as a control.

A second concern is the potential of methods to aggres-
sively remove true signal. To evaluate this, we investigate
the impact of filtering on the taxon occupancy, defined
as the number of gene trees that include each species.
Lowered occupancy may negatively impact downstream
analyses such as species tree inference and functional
analyses. Ideally, a filtering method would not reduce
taxon occupancy dramatically. Moreover, removing the
same species repeatedly from many genes could be even
more problematic for downstream analyses such as
species tree estimation.

Filtering methods have a knob that can control the
amount of filtering. To avoid impacts of arbitrary choices,
we explore a range of knob settings. For the three tests of
TreeShrink, we set « to 20 different values in the range
[0.005,0.1]. For RogueNaRok, we change the weight
factor to control the penalizing factor of the dropset size
by setting it to 21 values in range [0, 1.0] (0.0 is the default
value). For rooted pruning, we vary the number of stan-
dard deviations above the average that would constitute
long branches between 0.25 to 5.00, with 0.25 increments.
For random pruning, for each threshold of TreeShrink
on each gene tree, we remove the same exact number of
leaves as TreeShrink removes, but we choose the species
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randomly. We repeat the random pruning ten times and
show the average.

On the HIV dataset, we test the power of TreeShrink
(¢ = 5%), rooted pruning (3 std), and RogueNaRok
(default settings) in detecting the outliers. Outliers are
either non-subtype B sequences in the full dataset in
experiment 1 or the simulated outliers we added in exper-
iment 2 (described below).

In the first experiment, we infer a RAXML tree from
the 648 sequences and use it as the input for TreeShrink.
We root the RAXML tree at its midpoint and use it for
rooted pruning. To run RogueNaRok, we also create 100
bootstrap trees using RAXML. We use the 7 non-subtype
B and 2 unassigned sequences as outliers (see Additional
file 1, Appendix B, Table S1) and test if TreeShrink, rooted
pruning, and RogueNaRok can detect them.

In the second experiment, we add 10 simulated out-
liers to the 639 subtype B sequences and use TreeShrink
and rooted pruning to detect them. To create the out-
liers, we randomly select 10 sequences from the 639
subtype B sequences and change a small fraction of
their sites, selected randomly, to a random nucleotide
drawn from the distribution of the base frequencies esti-
mated from the original sequences. In order to root the
tree, we include the 3 subtype C sequences (Table S1 in
Appendix B, Additional file 1) and root the tree on the
branch separating the two subtypes, then remove them
before feeding it to TreeShrink or rooted pruning. We
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create two sets of data, one with 5% and the other with
10% of the sites changed, each consists of 20 replicates.
The trees in this experiment are estimated by FastTree.

Results

We start by comparing the three tests currently imple-
mented in TreeShrink. We then compare the per-species
test of TreeShrink with alternative methods.

Comparing the three tests of TreeShrink

The impact of filtering on taxon occupancy

The three tests of TreeShrink (¢ = 0.05) impact taxon
occupancy differently, especially for outgroups. Out-
groups naturally impact the tree diameter, but ideally, they
should not be removed more often than other leaves.
In all six datasets, the per-gene and all-gene tests tend
to remove outgroups aggressively, while the per-species
test removes all species, including outgroups, close to
uniformly (Table 2 and Additional file 1: Figure S3).

The most severe case is chicken, the sole outgroup in
the Mammalian dataset. Chicken is removed in 12% of
the genes by the per-gene test (19 times more than the
average) and in 17% by the all-gene test (13 times more
than the average). Note that in this dataset, both per-gene
and all-gene tests remove only around 1% of the data,
so the frequent removal of the chicken corroborates our
suspicion that TreeShrink used with per-gene or all-gene
tests can remove outgroups often even if the outgroup

Table 2 The impact of the three tests of TreeShrink on taxon occupancy

Dataset Method Portion of data removed(%) Portion of outgroups removed(%)
Plants Per-gene 33 299
All-gene 2.5 12.8
Per-species 49 5.1
Mammals Per-gene 06 11.8
All-gene 1.2 17.0
Per-species 3.6 47
Cannon Per-gene 14 6.2
All-gene 13 4.7
Per-species 35 5.0
Rouse Per-gene 1.3 1.9
All-gene 1.2 1.1
Per-species 4.0 4.5
Insects Per-gene 1.2 6.6
All-gene 0.8 29
Per-species 43 5.0
Frogs Per-gene 1.3 26.7
All-gene 0.8 159
Per-species 27 4.5
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sequence contains no errors. The per-species test, on the
other hand, only removes chicken slightly more often than
the average: it removes about 4% of the overall data and
removes chicken in about 5% of the genes that have it
(Figure S3b in Appendix B, Additional file 1). In addition
to the outgroups, platypus is also removed often. Being
basal to the other mammals, platypus is prone to the same
issues as outgroups. However, there is also some evidence
that platypus is often misplaced in many gene trees of
this dataset [37]. Just as the chicken, platypus is removed
significantly more often than other species: 5% in the per-
gene test (7 times more often than the average) and 13%
in the all-gene test (10 times more often than the average).
Again, the per-species test removes platypus just slightly
more often than the average: platypus is removed in about
5% of the genes while the average of all species is 4%
(Figure S3 in Appendix B, Additional file 1).

The impact of filtering on gene tree discordance

We now compare the three tests of TreeShrink in reducing
gene tree discordance with minimal filtering. A method
is preferred when it reduces the discordance more for a
given level of filtering (i.e., higher lines in Fig. 4 are pre-
ferred). Except for the Frogs dataset, all the three tests of
TreeShrink are on average better than the control random
pruning. On the Frogs dataset, however, only the per-
species test is better than the control. The failure of the
other two tests could be because they remove outgroups
often (see Table 2) and fail to remove the true outliers
(perhaps because the true outliers are masked by the out-
groups). Overall, the per-species test is consistently the
most effective, followed by the all-gene test, and finally
the per-gene test. Differences between the per-species test
and the all-gene tests are substantial for plants, mam-
mals, and frogs datasets, and less pronounced for others.
Since the per-species test of TreeShrink is consistently the
best here, we recommend using the per-species test for
phylogenomic datasets which contain many genes.

Comparing TreeShrink per-species with RogueNaRok and
rooted pruning

We now compare TreeShrink per-species with alternative
filtering methods.

The impact of filtering on taxon occupancy
Methods run in the default settings (¢« = 0.05 for
TreeShrink, 3 std for rooted pruning) impact occupancy
differently. Overall, RogueNaRok reduces the occupancy
more than the other methods (Fig. 5). Single species at the
base of large clades seem especially prone to filtering by
RogueNaRok. In contrast, TreeShrink and rooted pruning
do not remove any specific taxon extensively.

On the plants dataset (Fig. 5a), RogueNaRok removes
three species from at least half of the gene trees where
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they are present and removes 12 species from one-third
of the genes. Examples include Kochia scoparia (removed
in 343 out of 654 genes), Acorus americanus (251/693),
and Larrea tridentata (221/590) genes. Kochia scoparia is
on a long branch and sister to a group of 7 Eudicots, and
Acorus americanus is basal to 10 Monocots [23]. Surpris-
ingly, Arabidopsis thaliana is removed in 200 genes, even
though it is a genome and is presumably less error-prone
compared to most other transcriptomes species. More-
over, a focal point of this study is placing Chara vulgaris
as basal to all land plants plus two algal groups (Zygne-
matophyceae, and Coleochaetales). RogueNaRok removes
Chara from 160 genes out of 302 that include it; such
aggressive filtering could limit the ability to answer this
main biological question with confidence. In contrast,
rooted pruning and TreeShrink remove 4 and 7% of the
data, respectively. TreeShrink never removes any species
in more than 6% of the genes and all species are removed
in similar proportions.

On the insects dataset (Fig. 5¢), RogueNaRok removes
17% of all the data and many removed species are basal to
large diverse groups. For example, RogueNaRok removes
Conwentzia psociformis, which is basal among 8 Neu-
ropterida [31] from 684 out of 1412 genes that included
it. Zorotypus caudelli, an enigmatic species placed as sis-
ter to a large clade in the ASTRAL species tree is also
removed from 52% of the genes. Interestingly, Rogue-
NaRok removes several outgroups, including Speleonectes
tulumensis and Cypridininae sp frequently (56 and 57%).
In contrast, rooted pruning and TreeShrink only remove
a minimal amount of data (1 and 4%, respectively) and do
not impact occupancy dramatically for any species.

Similar patterns are observed on Metazoa datasets
(Fig. 5e, f). RogueNaRok removes more than 20% of the
leaves overall, and many species are extensively removed
from many genes. In the Cannon dataset, Xenoturbella
bocki is removed in 93 out of the 208 genes that included
it. Xenoturbella is the basal branch of the Xenacoelomor-
pha and in this study, is one of the most important species;
removing it in 45% of genes would leave a long branch
and could negatively impact the placement of Xenacoelo-
morpha. Rooted pruning and TreeShrink, again, remove a
minimal portion of the data (2 and 4%, respectively) and
no species is extensively removed.

The mammalian dataset is not extensively filtered by any
method (Fig. 5b). Rooted pruning only removes about 1%
of the data, while RogueNaRok and TreeShrink remove
about 4%. RogueNaRok removes three species (shrew, tree
shrew, and hedgehog) relatively often (i.e., > 80 genes).
The shrew and the hedgehog are both basal branches to a
larger clade of Laurasiatheria. The tree shrew has a very
uncertain position in various species trees estimated on
this dataset [6, 30, 36, 37]; RogueNaRok results indicate
that its position is also unstable in gene trees. Platypus is
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Fig. 4 The impact of the three versions of TreeShrink on gene tree discordance on six datasets comparing to random pruning. MS distances are
computed for all pairs of gene trees. The average reduction in the MS distance (y-axis) is shown versus the total proportion of the species retained in

the gene trees after filtering (x-axis). A line is drawn between all points corresponding to different thresholds of the same method. a Insects,
b Plants, € Metazoa - Canon, d Metazoa - Rouse, @ Mammals, f Frogs
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also removed relatively often by rooted pruning (54 times),
but somewhat less frequently by RogueNaRok (31 times)
and TreeShrink (20 times). Several issues in the platy-
pus sequences have been identified [37], and perhaps, its
extensive filtering by rooted pruning is justified. Similar to

the mammalian dataset, on the frogs dataset (Fig. 5d), all
methods remove very little data (< 3% overall).

The impact of filtering on gene tree discordance
Since extensive filtering is neither intended nor desired
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in this section, we focus on filtering thresholds that
result in removing at most 5% of the data (see Figure
S4 in Appendix B, Additional file 1, for the full data).
On all six datasets, all the three filtering methods
are on average better than the control random prun-
ing. Comparing TreeShrink and the two alternatives,
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different patterns are observed on various datasets
(Fig. 6).

On the two datasets with the largest numbers of genes,
Plants and Insects, TreeShrink outperforms the other
methods substantially (Fig. 6a, b). On the Insects dataset,
RogueNaRok barely outperforms random pruning and
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Fig. 6 The impact of TreeShrink, RogueNaRok, and rooted pruning on gene tree discordance on six datasets comparing to random pruning. MS
distances are computed for all pairs of gene trees. The average reduction in the MS distance (y-axis) is shown versus the total proportion of the
species retained in the gene trees after filtering (x-axis). A line is drawn between all points corresponding to different thresholds of the same
method. The points corresponding to the default setting of TreeShrink (& = 0.05) are marked in red. a Insects, b Plants, ¢ Metazoa - Cannon,
d Metazoa - Rouse, e Mammals, f Frogs
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TreeShrink is substantially better than rooted pruning.
On the Plants dataset, rooted pruning and RogueNaRok
are essentially tied and TreeShrink is consistently better
than both. For example, TreeShrink with a 0.03 thresh-
old removes 1476 species in total from all genes and
reduces the average pairwise MS discordance by 15 units
(as opposed to 11 for the control), whereas RogueNaRok
and rooted pruning need to remove 1649 and 1740 species
to achieve a reduction of up to 15 units in the MS discord.

On the Metazoa-Cannon dataset (Fig. 6¢), TreeShrink
and RogueNaRok both outperform rooted pruning, and
TreeShrink has a small but consistent advantage over
RogueNaRok. On the Metazoa-Rouse dataset, all methods
are comparable and barely outperform random pruning
(Fig. 6d).

On the Mammalian dataset (Fig. 6e), RogueNaRok is
by far the best, followed by TreeShrink and rooted prun-
ing, which have similar overall performance. On the Frogs
dataset, which included only 95 genes, RogueNaRok and
rooted pruning are tied and both substantially outperform
TreeShrink (Fig. 6f).

Overall, TreeShrink is the best or tied with the best
method in four datasets, and is outperformed in the other
two. TreeShrink seems especially well suited for datasets
with a large number of genes.

The HIV dataset

Detecting non-subtype B sequences

Using the RAXML tree of the 648 HIV pol sequences as
input, TreeShrink correctly detects all seven non-subtype
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B sequences, including a single subtype CRFO1_AE
sequence, two CRF02_AG sequences, three subtype C
sequences, and a subtype G sequence. The two unassigned
sequences are not identified as outliers by TreeShrink
(Fig. 7). Importantly, TreeShrink does not remove any sub-
type B sequences. In contrast, RogueNaRok identifies 41
rogue sequences in total, only one of which is non-subtype
B (the subtype G sequence K]723366). As we elaborate
in the discussions, these differences are due to different
objectives of the two methods. With midpoint rooting,
rooted pruning detects three non-subtype B sequences
(i.e., CRFO1_AE and two CRF02_AG) as outliers but it
misses the other 4 non-subtype B sequences and has two
false positives.

Detecting simulated outliers

Recall that for each simulated dataset, we have 20 repli-
cates and each consists of 10 simulated outliers, for the
total of 200 outliers to be detected. On the dataset with
outliers at 10% changed in sequences, TreeShrink cor-
rectly detects 198/200 outliers and rooted pruning detects
all 200/200 outliers; neither method has a false positive.
On the dataset with outliers at 5% changed in sequences,
TreeShrink correctly detects 106/200 outliers with 9 false
positives while rooted pruning detects 131/200 outliers
with 17 false positives. Overall, TreeShrink has higher pre-
cision and specificity but lower sensitivity comparing to
rooted pruning (Table 3), indicating that TreeShrink is a
more conservative approach. Figure 8 shows one example
for each of the two simulation settings.

o

marked in red. The two unassigned sequences are marked in blue

Fig. 7 The HIV Tree. The subtype G sequence that could be detected by both TreeShrink and RogueNaRok is marked in yellow. The other
non-subtype B sequences that could be detected by TreeShrink are marked in green. The subtype B species that were detected by RogueNaRok are
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Table 3 Performance of TreeShrink in detecting simulated outliers

Dataset Method True positives False positives Precision Recall (Sensitivity) Specificity

5% changed TreeShrink 106 9 92.2% 53.0% 98.6%
Rooted pruning 131 17 88.5% 65.5% 97.3%

10% changed TreeShrink 198 0 100% 99.00% 100%
Rooted pruning 200 0 100% 100.00% 100%

Each of the two datasets consists of 20 replicates, each has 639 HIV-1 subtype B sequences and 10 simulated outliers, for the total of 12780 subtype B HIV sequences and 200

simulated outliers

Discussions

It has been noted before that extreme long branches in a
phylogeny can be erroneous. Gatesy and Springer used the
presence of long branches in gene trees estimated in two
mammalian datasets to argue against specific coalescent-
based analyses (see Figs. 9 and 10 of their paper [7]). To
eliminate problematic long branches, a typical approach
is to root the tree and filter out leaves too distant from
the root [23, 26]. TreeShrink can automatically filter out
such outliers without rooting. In addition, TreeShrink is
very scalable. It could finish processing the GreenGenes
tree [44] with 203,452 leaves (k = 2255) in 28 min and
identified 39 species that could be filtered.

In this study, we observed that the per-species test of
TreeShrink is consistently the best strategy, followed by
the all-gene and the per-gene tests. However, it should be
noted that the per-species test requires more data than the
two alternative tests, and its data requirement has some
practical implications. Because it relies on computing a

distribution per species by aggregating data from all gene
trees, the per-species test may degrade in performance
when few genes are available. Consistent with this obser-
vation, we observed that the only dataset where the per-
species test of TreeShrink was outperformed by rooted
pruning was the Frogs dataset, which has fewer than a
hundred gene trees (less than half of any other datasets).
Similarly, the per-species test may not have enough infor-
mation for species that have extremely low occupancy, to
begin with. Therefore, we recommend caution in taking
the suggestions of the per-species test for low-occupancy
species.

We only examined effects of filtering leaves from exist-
ing trees without redoing alignments or gene trees after
filtering. This was mostly due to our inability to replicate
the exact analysis pipelines of every dataset we analyzed.
When used on novel datasets, it is better to reestimate
alignments and gene trees after the problematic sequences
have been removed, because the problematic sequences

Fig. 8 Examples of two HIV trees with 10 leaves of 10 and 5% changed in sequence. The true positives, false positives, and false negatives of
TreeShrink detection (default settings) are marked in green, red, and yellow, respectively. a 10% error, b 5% error
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could have negatively impacted gene alignments and gene
trees of the remaining sequences.

Although we compared our method to RogueNaRok as
an alternative to our approach, we point out that the two
methods have different objectives and can complement
each other. While RogueNaRok aims to remove rogue
species based on topological stability, TreeShrink detects
and removes erroneous species based on tree diameter.
An analysis pipeline could use a combination of the two
methods to find both erroneous sequences and difficult
unstable tips of the phylogenetic tree. Our HIV dataset
is a case in point. The differences between TreeShrink
and RogueNaRok on this dataset can be mainly attributed
to their different objectives. TreeShrink is specialized
for detecting outlier species and is well-suited for spe-
cific applications such as screening of sub-types, finding
contamination, or perhaps even finding paralogs. Rogue-
NaRok, on the other hand, is designed to find species with
unstable positions. Thus, our results should not discour-
age the use of RogueNaRok. Rather, the HIV example, and
our results more broadly, are meant to clarify that shrink-
ing the tree diameter can be an orthogonal approach to
rogue taxon removal.

Conclusions

In this paper, we introduced TreeShrink, a method to
remove species that disproportionately impact a phyloge-
netic tree diameter without rooting. The tool is fully auto-
matic and is publicly available. In our study, we showed
that TreeShrink is highly accurate in screening subtypes
of HIV, and is effective in reducing gene tree discor-
dance in phylogenomic datasets. As a complement to the
state-of-the-art rogue taxon removal tools, TreeShrink
can be a new component to an analysis pipeline for screen-
ing sub-types, filtering contamination, and detecting
paralogs.
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