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Abstract

Background: One of evolutionary molecular biology fundamental issues is to discover genomic duplication events
and their correspondence to the species tree. Such events can be reconstructed by clustering single gene
duplications inferred by reconciling a set of gene trees with a species tree.

Results: Here we propose the first solutions to the genomic duplication problem in which every reconciliation with
the minimal number of single gene duplications is allowed and the method of clustering called minimum episodes
under the assumption that input gene trees are unrooted.

Conclusions: We showed new theoretical properties of unrooted reconciliation for the duplication cost and apply
them to design several exact and heuristic algorithms for solving the problem. Our evaluation study on empirical
dataset confirmed several genomic duplication events from the literature and demonstrate that algorithms can be
successfully applied.
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Background

The phenomenon of genomic duplication is fundamental
to understand the evolution of life on Earth [1-5]. The
research in phylogenetics focus on the way how the gene
families and genomes evolve by discovering the locations
of gene duplications. Multiple gene duplications occur
when large parts of a genome are duplicated. In particu-
lar, the whole-genome duplication occurred for numerous
species and had a crucial impact on the evolution of crops
[6-9]. The studies of this phenomenon focus on detect-
ing its occurrences as well as its influence on introgressing
novel metabolic traits [10] or its association with peri-
ods of increased environmental stress [11]. The methods
of detecting whole-genome duplications can be divided
into three categories based on synteny and colinearity
comparison of genomes [1, 12, 13], the estimation of
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the age distribution of paralogous gene pairs [3, 14], and
phylogenetic tree inference [15-17].

The reconstruction of the evolution of individual genes
has been thoroughly studied [18-22] also with the focus
on gene trees [23-26], networks [27, 28], from the per-
spective of population genetics [29] or the evolution of
entities (which can be genes, gene domains, or parts of
genes) [30].

The reconciliation model, introduced by Goodman [31]
and formalized by Page [18], interprets the differences
between a gene tree and its species tree [32-34]. In
this model, each node from a rooted gene family tree is
mapped into the species tree and classified as a single
gene duplication or related to a speciation event. In our
work, we model a biologically consistent scenario as the
embedding of a gene tree into a species tree which rep-
resents the location of evolutionary events in the species
tree [35]. Identification of such a scenario is made by a
function called duplication mapping that assigns a gene
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tree node, interpreted as a duplication event, to a node of a
species tree [20, 36—43]. Reconciliation becomes complex
when considering multiple gene duplications. The general
formulation is as follows: given a set of gene trees and a
species tree find evolutionary scenarios for the collection
of gene trees that yields the minimal number of multiple
gene duplication events [44]. Two fundamental issues arise
when dealing with multiple gene duplications: a model of
allowed evolutionary scenarios [20, 44, 45] and the rules
of clustering gene duplications from gene trees into mul-
tiple duplication events. We distinguish three variants of
problems depending on the clustering: episode cluster-
ing (EC) [20, 37, 38], gene duplication clustering (GD)
[45], and minimum episodes (ME). EC is to find scenar-
ios having the minimal number of locations of duplication
episodes in a species tree. EC for rooted gene trees has a
linear time solution [42], while for unrooted trees an FPT
algorithm is known [36]. GD is similar to EC with the dif-
ference that a cluster cannot have two gene duplications
from the same tree. In ME a duplication and its ances-
tor duplication cannot be clustered together [20, 38]. The
first polynomial time algorithm for ME with rooted gene
trees, called RME, under the model from [20] was pro-
posed in [38], whereas the optimal linear time algorithm
in [41, 42]. The concept of assigning every duplication to
an interval of allowed locations in a species tree was intro-
duced in [46] in a more general framework without the
requirement that the intervals induce a biologically con-
sistent scenario. The naive implementation of the iterative
algorithm from [46] has cubic time complexity. The solu-
tion to RME for a variety of models was presented in [44].
In particular, the algorithm proposed in [44] solves RME
in linear time.

Our contribution. We propose the solution to the
unrooted minimum episodes problem, UME, in which
allowed scenarios have the minimal number of gene dupli-
cations [36]. According to our knowledge, the complexity
of UME is unknown. We expanded the theory of unrooted
reconciliation by presenting new properties of the plateau
which is the subtree of an unrooted gene tree containing
edges whose rootings have the minimal duplication cost.
Next, we show that these properties lead to a decompo-
sition of an unrooted gene tree that allows limiting the
possible search space significantly. We show that every
instance of UME can be transformed into at most 5%
“simpler” instances that can be solved in linear time,
where k is bounded above by special cases of S2 stars
[47] in input trees. Next, we propose two linear time algo-
rithms for computing bounds of the score. Finally, for the
case when k is large, we propose an efficient heuristic
algorithm, which in practice allows solving exactly empir-
ical instances consisting of thousands of unrooted gene
trees. Also, we present an evaluation of several empirical
datasets.
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Methods

Basic notation

Let S denote a species tree which is a rooted binary tree
with leaves uniquely labeled by the names of species. We
assume that S is fixed throughout this work. A rooted
gene tree is a rooted binary tree with leaves labeled by
the names of species. The rooted tree (77, T2) has two
subtrees T7 and T, whose roots are the children of the
tree root. Additionally, for nodes a and b, we write a <
b when a and b are on the same path from the root,
with b being closer to the root than 4. Notation a < b
means that ¢ < b and a # b. The root of a tree T
we denote by root(T). By T,, we denote the subtree of T
rooted at v. A cluster for a node v is the set of all species
present in 7.

Let T = (Vr,ET) be a rooted gene tree such that the
set of species present in T is a subset of the set of species
present in S. The least common ancestor (lca) mapping,
Mr : Vi — Vg, is defined as follows. If v is a leaf in T
then Mt (v) is the leaf in S labeled by the label of v. For an
internal node v in T having two children 4 and b, map-
ping M7(v) is the least common ancestor of Mr(a) and
M7(b) in S. An internal node g € V7 is called a duplica-
tion if M7(g) = Mr(a) for a child a of g. The duplication
cost, the total number of duplications in T, is denoted
by D(T,S). Every non-duplication node of 7" we call a
speciation (including leaves).

Evolutionary scenarios

Here, we present the model of DLS trees [35] that will be
used to represent evolutionary scenarios. A DLS tree is a
binary tree having two types of internal nodes, that denote
speciation and duplication events, and two types of leaves
that denote gene loss and gene sequences. DLS trees are
defined as follows [44]:

1 aisasingle-noded DLS tree denoting a gene
sequence from the species a,

2 A- is asingle-noded DLS tree denoting a lost gene
lineage, where A is a non-empty set of species,

3 (R1,Ry)+ is a DLS tree whose root is a duplication
node and its children are DLS trees Ry and Ry such
that the set of species present in R; and the set of
species present in Ry are equal,

4 (Ry,Ry)~ is a DLS tree whose root represents a
speciation and its children are DLS trees R and Ry
such that the set of species present in R} and the set
of species present in R, are disjoint.

Let T be a DLS-tree with at least one gene sequence. A
gene tree can be extracted from T by contracting nodes
of degree 2 from the smallest subgraph of T' containing
all gene sequences. Such an operation will be denoted

by gt(T).
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We say that a DLS-tree T is a scenario for a gene tree G
and a species tree Sif gt(7T) = G, and T is compatible with
S, that is, every cluster of T is present in S. In such a case,
every node g in G uniquely corresponds to a node in T
denoted by £(g). We can define mappings £: G — T and
Fr: G — §, such that Fr(g) is the node in S whose cluster
equals the cluster of £(g). An example is depicted in Fig. 1.

Unrooted reconciliation

The unrooted gene tree is an undirected acyclic connected
graph in which each internal node has degree 3, and the
leaves are labeled by the names of species. The rooting of
an unrooted gene tree U = (Vy, Ey) obtained from U
by placing the root on an edge e € Ey; is denoted by U,.
Such a rooting induces the duplication cost D(U, S). An
edge e is called optimal if D(U,, S) is minimal in the set
of all rootings of U. It is known that the set of optimal
edges, called the plateau, is a full subtree of U [47, 48].
In this article, the notion of the plateau is used exclu-
sively with the duplication cost. In literature, it is often
called D-plateau in order to distinguish between plateaus
for other costs, e.g. DL-plateau [48]. In this work, the sub-
tree induced by the set of all optimal edges will be denoted
by U*. For X, the set of edges of unrooted tree U, by U|x
we denote the smallest subgraph of U containing all edges
from X.

Without loss of generality, we assume that every root of
a gene tree is mapped into the root of S, and both trees
are non-trivial. An edge e = (v, w) of U can be classified
as one of three following types: (a) empty if the root of U,
is a speciation, i.e., Me(v) # root(S) # M.(w), (b) dou-
ble if M (v) = root(S) = M.(w), and (c) single otherwise,
where M, is the lca-mapping between U, and S. Let v be
an internal node of U, then a star with the center v consists
of three edges, sharing v. There are five possible types of
stars present in unrooted gene trees [47, 48], however, in
this article we only use the star called S2 having one empty
edge. In such a case the remaining edges are single, and by
using the notation from Fig. 2, for x € {a, b} we have that
My, (%) # root(S) = My, ,, (v).

It follows from unrooted reconciliation that plateau has
either exactly one empty edge or at least one double
edge [47]. We say that a node is a super-duplication
(respectively, a super-speciation) if it is a duplication
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(respectively, a speciation) in every rooting with the mini-
mal duplication cost.

Lemma 1 (adapted from [36]) Assume that an unrooted
tree has a double edge. Then, every leaf of the plateau is a
super-speciation, and every internal node of the plateau is
a super-duplication.

On the other hand, when there is an empty edge in an
unrooted tree, we have:

Lemma 2 Let U be an unrooted gene tree with an empty
edge e. A node incident to e is a speciation in U, if and only
if it is a leaf of the plateau.

Proof We use the notation from Fig. 2 where e is (v,c).
We may assume that ¢ is an internal node of U; otherwise,
we have a trivial case where c is a leaf in the rooting of
U which is a speciation. Thus, we have two S2 stars shar-
ing the empty edge. (<) Without loss of generality, we
may assume that v is a leaf of U*. If v is not a speciation
in Uy, then it is a duplication. From the definition of
the empty edge, the root of U,y and v in Uy, 4y are spe-
ciation nodes. Moreover, the node v in Uy, 4 is mapped
to root(S) thus the root of U, is a duplication. Both
rootings Uy,,) and Uy, 4), have the same number of dupli-
cations having the same setting of duplications in subtrees
T, Tp and T, as indicated in Fig. 2. Hence, (v,a) is a U*
edge, a contradiction. (=) The proof is similar to the first
case. O

The conclusion from the above Lemma 2 is that either
only empty edge or the whole S2 star is included in the
plateau. Moreover, we can describe the plateau having an
empty edge by the following lemma:

Lemma 3 If the unrooted gene tree has an empty edge
then every leaf of the plateau is a super-speciation, and
every internal node of the plateau not incident to an empty
edge is a super-duplication.

Proof For the first part of the proof, let assume that v is
a leaf of U* which consists of (v, c) edge. Assume that v is
a duplication in some plateau rooting. Then, the subtree

O Duplication node S k—\
@ Speciation node
O Gene loss e

a_bc d

Fig. 1 An example of scenario T for a gene tree G and a species tree S and two corresponding mappings:&: G — T and Fr: G — S shown for
internal nodes of G. Here, T=(((((a,a)+,b-)~,(c,d-)~)~,(ab-,(c-,d)~)~)+e)~, note that gt(T) = G
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Fig. 2 Types of edges, star S2, and two rootings of an unrooted gene tree U: on the empty edge (v, ¢) and on the single edge (v, a). Here, T denotes

T, in this rooting is also a subtree in all plateau rootings
because v is a leaf of U/*. Hence, v is a super-duplication.
If (v,c) is an empty edge we have a contradiction from
Lemma 2. Assume that (v, ¢) is non-empty. The edge (v, a)
does not belong to U*. Therefore, the rooting U, 4 has
more duplications than U, ). Hence, U, 4) has two dupli-
cations in v and in the root. Therefore, the root of U, ) is
not a duplication. However, this is possible only when T,
and T, are mapped below the root(S), thus the (v, c) is an
empty edge, a contradiction. For the next part of the proof,
if U* consists of exactly one empty edge then the prop-
erty holds trivially. Let assume that the {/* has more than
one edge. We show that every internal node v of U*, that
is, not incident to an empty edge is a super-duplication.
Let us consider a path p = v1,vy,...,v, (n > 1) consist-
ing of nodes not incident with the empty edge connecting
v = v with a leaf v, of U*. Hence, when rooting on p,
v is mapped to root(S) as it is the ancestor of nodes inci-
dent with the empty edge. Moreover, when rooting on
(Vn—1,Vvn), we have n gene duplications: for vy, vy, ..., v,—1
and one for the root. All edges from p are elements of U*,
thus moving the root to other edges on p will preserve the
total number of gene duplications. We showed that the
first » — 1 nodes on p are duplications for every rooting
placed on this path. If v is incident to an empty edge, it
is a speciation mapped to the root(S) when rooting on p.
When rooting on an empty edge, the root is a speciation.
Moreover, from Lemma 2 a child of the root is a dupli-
cation if it is an internal node of U*. Hence, all plateau
rootings have the same number of duplications equalling
the number of internal nodes of UJ*. When rooting on an
empty edge, the root is a speciation and all internal nodes
of U* are duplications. Otherwise, if we place the root on
the edge from U*, the root is a duplication node and the
only speciation is that node among nodes incident to an
empty edge which is an ancestor to the other. O

Clustering Duplications: Minimum Episodes Problems

We define the cost determining the number of multiple
gene duplication episodes for a set of evolutionary scenar-
ios. Let R be a set of scenarios compatible with S. We say
that duplications d and d’ from R are clusterable, denoted
d ~. d,iff (1) d and d’ have the same cluster and (2) if d
and d’ are present in the same DLS-tree then either d and

d' are incomparable or equal. Then, the minimum num-
ber of duplication episodes for R, denoted MES(R, S), is
the size of the smallest partition of the set of all dupli-
cation nodes from R induced by an equivalence relation
contained in ~,.

It can be shown that for a collection R of scenarios
compatible with a species tree S,

MES(R, S) = duppath(T, v), 1
(R,$) =} maxduppath(T,v) (1)

veVsg

where duppath(T,v) is the maximal (node) length of the
path in T that consists of all comparable duplication nodes
whose cluster equals the cluster of v [44].

Let A(G, S) be the set of all scenarios for a rooted gene
tree G and a species tree S having the minimal number
of gene duplications. Every element of A(G,S) will be
referred to as an allowed scenario. Here, allowed scenar-
ios are defined as in [36], for the comprehensive overview
see [44]. Now, we formulate the general problem in which
the input consists of mixed types of gene trees: rooted and
unrooted.

Problem 1 (General Minimum Episodes, GME)

Given a collection of gene trees (rooted or not)
U= {L[l, u..., LI"} and a species tree S.

Compute minimum episodes score ME(U, S), or ME score,
as the minimal value of MES({R;}i=1,2,. 1, S) in the sets
of scenarios R; such that R; € AL, S) ifl,[i is rooted or
R; € A(ULS) if U is unrooted, where e is an optimal
edge.

Observe that we allow only scenarios that preserve the
minimal number of gene duplications. We distinguish two
variants of GME Problem: unrooted minimum episodes
(UME) and rooted minimum episodes (RME) in which the
instances consist entirely of unrooted and rooted gene
trees, respectively. RME Problem has a linear time and
space solution [44]. See also [38, 42] for more details on
RME Problem.

Unrooted tree decomposition

In this section, we show that every unrooted gene tree
can be decomposed into a set of trees having at most
one unrooted tree with a simplified structure allowing to
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solve UME more efficiently. We start with the following
observation.

Lemma 4 Let U be an unrooted gene tree and T be a
rooted subtree of U rooted at v. Let X C U* such that

e X is disjoint with V1 \ {v},
® v isa speciation in every scenario from A(U,, S) for
alle € EX,

Then, for any set of scenarios X:

MES(X U {R},S) =

min
Re A(Ue,S).ecEx
min  MES(X U {R,R"},S), )
R e A(Ue,S),ecEx,
R'e A(T,S)
where U, is the unrooted tree obtained from U by replacing

T with S(M(v)).

Proof In every allowed scenario R from the left side,
Fyy,(v) is a speciation node. Thus, scenarios R' and R” can
be obtained from R as follows: R” is the subtree rooted
at Fy,(v) in R, while R’ is obtained from R by replacing
the subtree with the copy of S(M(v)), where every internal
node is a speciation. Such a transformation is a bijection
that preserves the clusterability of duplication nodes. We
omit technical details. O

Given a species tree S and a rooted tree G by G we
denote the set of all <-maximal elements in the set of all
non-root speciation nodes from G. Lets ~ be a relation on
edges of U* for an unrooted gene tree U such that e ~ €
if U, = U,. It should be clear that ~ is an equivalence
relation. The set of equivalence classes of this relation we
denote by U¥.-.. An example is depicted in Fig. 3.

Lemma 5 Ifan empty edge is present in an unrooted gene
tree then every plateau edge present in S2 star uniquely
defines one ~-equivalence class. Otherwise, the tree has
exactly one ~-equivalence class.

Proof Let U be an unrooted gene tree. We have two
cases: (a) either U has a double edge or (b) U has an
empty edge. In the case (a), it follows from Lemma 1,
that U, consists of all U* leaves for every e from U*.
Thus, we have one equivalence class consisting of all U*
edges. Let use the notation from Fig. 2. For the case
(b), from the proof of Lemma 3 we conclude that for
the empty edge (v,c) the set U, consists of all U*
leaves. Moreover, from the conclusion from the proof of
Lemma 2, there are 0,2 or 4 single edges in U™ present
in S2 stars. Let (v,a) be such an edge. The set [,z
consists of: (a) v which is the root of the subtree T, =
(Tp, T;) and thus it is a speciation (it maps to root(S)
and both its children map below the root(S)) and (b) all
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leaves of U* present in T,. From Lemma 3 for every
edge e of U* present in T,, we have f[e = IT[(V,@. Sum-
ming up there can be 1,3 or 5 ~-equivalence classes
uniquely defined by every edge of U* present in S2
star (see Fig. 3). O

If an empty edge is an element of a class X € Ux/~, X
will be called plain. Otherwise, we call X complex.

Lemma 6 If X € Ux/~ is complex then the leaves from
U|x are speciations in every tree U, for every e in X.

Proof U has either an empty or a double edge. The
leaves of U* are super-speciations from Lemmas 1
and 3. If U has a double edge, then there is only one
~-equivalence class (Lemma 5) and every leaf v of U|y is
also a leaf in U*. If U has an empty edge, say e, then there
are 0, 2 or 4 classes X disjoint with {e}. For all of them the
set of the leaves of U |x consists of a subset of the leaves of
U* (disjoint with subsets corresponding to other classes
see Fig. 3) and a node v which is the center of a star S2 and
a speciation when rooting on edges from X (see the proof
of Lemma 5). O

Definition 1 (Unrooted Decomposition) Let U be an
unrooted gene tree, and X € Ux/~, then:

e [f X has an empty edge e then A(U, X) = {U,}.
e Otherwise, A(U, X) is the set of all maximal subtrees
T, of Usuch that visaleaf of U|x and T,NU|x = {v}.

For a complex class X, /X denotes a tree obtained
from Ulyx by replacing every leaf v with the subtree
S(M(root(Ty))). For example, for the largest class X from
Fig. 3, we have: A(U, X) = {c, (d,e), ((a,b), D), ((c,d),d))}
and UX = (a4, b), (¢, d)), e), ((a, b), (¢, d)), ©).

The intuition is that A(U, X) is the set of rooted trees
T induced by X with the following properties: (a) the root
of T is a speciation, and (b) 7 is a subtree present in
all rootings induced by X. For example, when we con-
sider an empty class there is only one possible rooting /.
Lemma 6 describes the properties of A(U, X) for a com-
plex class X. Finally, for an unrooted tree U we have the
following formula:

Lemma 7 (Decomposition Lemma) For a given set
of input geme trees G, an input unrooted gene tree
U and a species tree S we have, ME(G U {U},S) =
ME(G U {U})

if X = {e} and e is empty,
mineex ME(G U {UX} U AU, X), S)
otherwise.

minyeg/s«/-
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S2 star edges: —H—
D-plateau:
duplications: O
speciations: é
max non-root:
at node v: VA

D-plateau leaves: @ ® ©

b a d c b a d ¢ b a

Fig. 3 Equivalence relation ~. An example of an unrooted gene tree U with one S2 star and all plateau rootings reconciled with a species tree

= (((a,b),(cd)),e). U* contains five edges and induces three ~-equivalence classes. The first consists of an empty edge (e, v}, the second of (d, v)
vvhlle the last class consists of the remaining three edges. These three classes induce rootings {G1}, {Gs} and {Gy, Gs, G4}, respectively. Observe, that
Gz 63 G4 consist of a subset of U* leaves and a speciation (different for each class) at node v which is a center of S2 star

Proof Let us consider the set of allowed DLS scenar-
ios induced by rootings of edges from each X € Ux/~.
If X is plain, then the set is A(U,, S). If X is complex,
then by Lemma 6, X and every leaf v from U]y, satis-
fies assumptions from Lemma 4. Thus, the subtree of
U disjoint with X \ {v} can be detached and replaced
by S(M(v)) in U. By Lemma 4 the MES score is pre-
served. The rest follows by induction on the set of
leaves v, where we show that the unrooted tree after all
transformations is /% and the set of detached subtrees
is A(U, X). O

Algorithms

Solution to RME

We start with the linear time algorithm for RME from [44]
adapted to the model of allowed scenarios presented here.

Algorithm 1 Solution to RME (adapted from [44, 46])

1: Input: A species tree S, rooted gene trees
G1,Ga,...,G, and interval I(d) defined for every
duplication node. Output: ME(Gy, Gy, . .., Gy, S).

2: Let s be the lowest among top nodes of intervals, i.e.,
s = minyg max l(d).

3: Let A(s) be the maximal length of the s-chain, where
s-chain is a path consisting of duplication nodes d
such that max|1(d) = s.

4. For every duplication d such that minl(d) < s =<
max I(d), the level of d, denoted levels(d), is the max-
imal number of duplications below d in an s’-chain
containing d.

5: Assign every duplication d to s if levelg(d) < A(s).

6: Remove all assigned duplication intervals, add A(s) to
the score and repeat steps 2-6 until there is no interval
left.

For the input consisting of rooted gene trees, every
duplication d is associated with the interval consisting of
all possible locations of d in the species tree. Our model of
allowed scenarios is equivalent to the model from [44], in
which I(d) is an interval defined by a pair (M(d), s), where
s > M(d) is the child of M(g) such that g is the lowest spe-
ciation satisfying g > d, or s is the root if such a speciation
does not exist. Algorithm 1 is a greedy bottom-up algo-
rithm that iteratively assigns duplications to the top-end
of intervals. In every step, it finds the lowest top node s of
available intervals and assigns to s all duplications d hav-
ing max |(d) equal to s. Additionally, the algorithm assigns
other duplications to s but only if the ME score is not
increased, which is controlled by A(s). For details please
refer to [44].

Exact solution to UME

A naive solution to UME is to run RME algorithm for
every combination of plateau rootings from input gene
trees. In many cases the plateau can be large, hence, the
time complexity of such a solution is O([ [; |L;|(3_; |1U;i| +
|S])). Here, we propose an algorithm based on Lemma 7
to limit the cases that have to be checked to the number
of classes of ~ relation.

Lemma 8 (Correctness of gnaw) Let U be an unrooted
gene tree and X be a complex class. Let X, be a set of rooted
gene trees T such that the root of every T is a speciation. Let
me(u,v) = (s,n), in a call of gnaw with UX and X,, such
that v is internal in X. Then,

e for every rooting U2 such thate € X, and having v
below the root, if Algorithm 1 (RME) is executed for
X, U {U)}, then v is assigned to a node s and
n = levely(d),

e the call of gnaw returns mingcx ME (Xr U {UeX})
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Algorithm 2 Exact solution to UME

1: Input: Unrooted gene trees Uy, L, . .
tree S.
Output: ME({U1, U>, ..., U,}, S).
2. For every sequence X1, Xo, . .., X}, of classes
from the product U} /~ x U5/~ x -+ x Uy /~:
3 A=, A(U;, X;) and
X, .= U;{U%i: X; has no empty edge}
4 mex := maxyxcy, gnaw (UX,X,,S)
5: Return the minimal value of mex computed in the
above loop, where gnaw is defined below:
6 Function gnaw (U*, X, S):
Compute r = ME(X}, S) and A(v) for everyv € §
by Algorithm 1. # Solve an instance of RME
8:  Let A(root(S)) = +o0 and A(v) = O for every
v # root(S) not visited in Algorithm 1 in line 2.
9:  ForeverysesS,
root(S) ifs = root(S),
par(s), if A(par(s)) > O,
¢ (par(s)) otherwise.
10: For every ordered pair (u, v) of adjacent nodes in X:
11: me(u,v) =
(M, (v),0) uisaleafinX,
next(max(me(x, u), me(y,u)))
u is internal in X and{x, y, v}
are all nodes adjacent to u,
(s,m+ 1) if n < A(s),
(¢ (s),1) otherwise.

., Uy, a species

Let ¢(s) =

where next(s, n) = {

122 Fore={u,v} € X,
m, := max{n: for (s, n) € {me(u,v), me(v,u)}
such that s = root(S)}
13:  Returnr + 1 + mingex m, # End of gnaw

Proof First, observe that every call of gnaw satisfies the
assumptions (see Def. 1). Assume that e € X. Then, by the
properties of a complex class X, we have in U that the
root and all internal nodes of X, are duplications, while
all leaves of X are speciations. Let X/, be the set of dupli-
cation nodes from X including the root. Thus, for every
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d € X, we have I(d) = (M.(v),root(S)), where M, is
the lca-mapping from UX to S. Hence, all duplications
from A, have the top interval node below the root, there-
fore, if Algorithm 1 (RME) would be called with the input
consisting of X, U {Ug(}, then, for v being the root of S
(in line 2 of Algorithm 1), all X, duplications are already
processed. Additionally, a duplication d from X can be
assigned earlier to a node v > M,(d) only in step 5, if the
condition is satisfied. Thus, we can separate the process of
RME computation for X, (line 7 of Algorithm 2) and the
rootings of UX. Furthermore, processing /X can be done
collectively for all rootings from X, by using a dynamic
programming that jointly executes the assignment opera-
tion. Note, that in line 11 the first elements of me(x, «) and
me(y, u) are comparable (i.e., u is a duplication), there-
fore, max is well defined by using lexicographical order.
The proof of the first part follows by induction, in which a
node in a rooted subtree of LI¥ is assigned to the first next
free “slot” in a species node. Such a slot can be located
by using next. When all slots of non-root nodes are occu-
pied then duplications have to be assigned to the root.
Such assignments create new episode events. Thus, the
score of every rooting placed on e = {u,v} can be eas-
ily computed by verifying if such additional episodes were
created. This information is stored for the two subtrees
of the root in me(u,v) and me(v, u), respectively, i.e., if
me(u,v) = (root(S),n), then n additional episodes are
required. This value for both subtrees is stored in #1,. Note
that, max in line 12 is well defined, otherwise, X cannot
be complex. Additionally, the root of L[g( creates one more
episode. Therefore, the score returned by gnaw consists
of r (from rooted trees), the minimal value of 1, (the con-
tribution of X) and 1 (the root duplication). An example is
depicted in Fig. 4. O

Lemma 9 (Correctness) Given a collection of unrooted
gene trees U and a species tree S, Algorithm 2 returns
MEU, S).

Proof The proof follows from Decomposition Lemma 4
and Lemma 8. O

a b c d

a ¢ b

S
T
2 «
g 4
a
b ¢

Fig. 4 lllustration of gnaw for U with a double edge. Here, T denotes the root of S. Assume that S has two positive lambda’s computed in line 7 by
Algorithm 1: A(e) = 2 and A(B8) = 1. Every edge e = (u,v) of the plateau is split into two directed edges: (u, v) and (v, u). Each directed edge (u,v)
is decorated with the Ica-mapping M,y (v) and me(u, v). For example, T6 denotes the lca-mapping to T and me(u,v) = (t,6). Here, gnaw returns
34+ 14 3induced by the marked edge
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Lemma 10 (Complexity of Exact UME) Algorithm 2
requires O ((1S| + Y_; 1Ui|) 5*) time and O (3, |U;| + IS])
space, where k is the number of gene trees with S2 star
having more than one class of U /~.

Proof Time: The number of iterations of the main loop
is bounded above by 5. Locating classes of ~ and trans-
forming trees can be done in linear time. Each call of func-
tion gnaw requires O (ZTGX, |T| + |LIX|) time. Space: It
follows from the complexity of Algorithm 1 and gnaw. [

Solving hard instances
In this section, we propose several alternative solutions
to our problem designed to cope with hard instances of
ME Problem. For example, when the input consists of
thousands of trees, it is more likely that k is large enough
(e.g., for k > 20) to prohibit applications of Algorithm 2.
The first approach, presented in Algorithms 3 and 4,
is to decrease the search space by introducing the lower
and upper bounds on the optimal solution in a similar
way that we proposed in [44]. In these algorithms we
define function gnawrooting, being a variant of gnaw
from Algorithm 2., that instead of the minimal score it
returns the corresponding optimal rooting of the input
gene tree.

Lemma 11 Algorithm 3 computes the lower bound of
ME score in O (|S| +> |L1i|) time and space.

Algorithm 3 Lower Bound of ME score

1: Input: see Algorithm 2.
Output: a lower bound of ME({U1, U>, . .
2: Function gnawrooting(U/%, S):
# Assumption: ). and ¢ are computed.
Execute lines 10-12 from Algorithm 2.
Return one element from arg min,cx m,
End of Function
X, =0
. For U in {U1, Uy, ..., Uy,}:
If U/~ consist of a single class X Then
X, = X, U AU, X)
If X is not an empty class Then &), := &,U {LIX}
9. Else
Add to X, all maximal rooted subtrees obtained
from U by removing all internal nodes of U*
10: Given &, and S compute A and ¢ (the lines 7-9 of
Algorithm 2).
11: For U in X;:
e = gnawrooting(U, S)
X, = X, U {U)}
12: Return ME(&,,S) # Solve an instance of RME by
Algorithm 1

LUy} S).

® N Dok oW
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Proof Algorithm 3 computes the score from a set of
input gene trees as follows. For each gene tree U:

e If Ux/~ contains exactly one class then decompose
the tree similarly to Algorithm 2, i.e., incorporate all
duplications from U into the clustering space.

e Otherwise, ignore every duplication located in the
plateau. In other words, to preserve all non-plateau
duplications, it is sufficient to extract all (rooted)
subtrees of U obtained from U by removing all
internal nodes of the plateau.

Having this, we conclude that the size of the clustering
computed by Algorithm 3 is less or equal to the size of the
clustering from Algorithm 2.

The function gnawrooting processes all edges of the
input tree in linear time, thus, the time complexity of
the loop from line 11 is equal to O(}_; |U;]). A similar
property has the decomposition from lines 7-9. The ME
score for rooted trees is computed by Algorithm 1 two
times: in line 10 and in line 12. Hence, the time and space
complexity of Algorithm 2 is O (|S| +>; ILIi|). O

Algorithm 4 Upper Bound of ME score
1: Input: see Algorithm 2.
Output: an upper bound of ME({U1, U>, . .
2: Xr =0
3: For U in {L[l, U2, ey Uy,}:
4 Let X € Ux/~ be the class having the maximal size
5
6
7

LUy}, S).

X=X U AU X)
If X is not an empty class Then X, := &}, U {LIX}
: Execute lines 10-12 from Algorithm 3.

Lemma 12 Algorithm 4 computes the upper bound of
ME score in O(|S| + Y_; |U;|) time and space.

Proof Algorithm 4 returns the number of episodes com-
puted for exactly one set of rootings that uniquely corre-
sponds to an element from the product of classes U} /~ x
Uy /~ x -+ x U /~. Hence, this number of episodes is
evaluated in max-formula in line 4 of Algorithm 2. There-
fore, the ME score computed by Algorithm 2 is bounded
above by output of Algorithm 4. The class of the maximal
size for a gene tree G can be found in O(|G|) time, there-
fore, the complexity of the decomposition from lines 3-6

is O (X; 1Uy]). O

Algorithm 4 is a greedy heuristic in which the method
of class selection can be replaced in several ways, e.g., by
using a random class, the minimal size class or the class
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with the minimal value of gnaw. Moreover, it could be fur-
ther refined to obtain a feasible algorithm similar to one
presented in [36].

Finally, we present Algorithm 5. It is a heuristic solu-
tion to UME Problem having a quadratic time complexity.
Algorithm 5 is designed to utilize the following property:
if the input consists of thousands of trees, then it is more
likely that clustering of duplications from all non-plateau
rooted subtrees is sufficient to approximate, or even to
provide, the exact ME score. Therefore, Algorithm 5 first
solves computationally simple instances of RME extracted
from the input gene trees and, then if the solution is
not found, it proceeds to complex unrooted parts. In the
next Section (see Table 1), we observe a surprising per-
formance of Algorithm 5 allowing to solve exactly hard
instances containing a large number of complex classes
with runtimes counted in seconds. Also, when the ‘rooted’
part of an instance is small (see the Guigé dataset with
53 trees), the runtime could be much worse than for the
large and potentially hard datasets (e.g., Génolevures with
4144 trees).

Lemma 13 Algorithm 5 is a heuristic solution to UME
that runs in O ((ISI +Y; IL[,'I)Z) time and O(|S| +
> Uil space.

Proof The first part of Algorithm 5 consists of two
phases. The first phase (lines 10-11) has a linear time
complexity (see Lemmas 11 and 12). In the second phase
(lines 12-24) it may provide an exact solution in quadratic
time due to the calls of gnaw.

In the second part of Algorithm 5, depending on the
size of & it is either computing an exact solution by apply-
ing Algorithm 2, or it returns a heuristic solution that has
quadratic worst-time complexity. This part of the heuris-
tic is similar to Algorithm 4, however, instead of selecting
the largest class we choose the class with the minimal ME
score (see line 20).

Observe, that some duplications, which are included in
Algorithm 5 in line 12 and corresponding to Algorithm 3
line 9 in Algorithm 5 are included for the second time.

Table 1 Datasets: properties, scores and runtimes
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Algorithm 5 UME Heuristic
1: Input/Output: see Algorithm 2.
Function mixedUME(U, R, S):
# U - unrooted gene trees, R - rooted gene trees
For every sequence X € U/~ x U5/~ x---xU};/~:
X, :=RUJ, AU, X))
X, = U;{U%: X; has no empty edge}
mex = maxxy, gnaw (U%, &;, S)
Return the minimal value of mex computed in the
above loop.
9: End of Function
10: Compute lower bound («) and upper bound (8) by
Algorithms 3 and 4, respectively, for the input
U and S.
11: Ifa = B Then Return « # Exact solution
12: Let X, be the set of rooted trees for which ME score is
returned by Algorithm 3 when computing o.
13: &= 0 # a set of unprocessed trees for the exact solution
14: H =0 # a set of pairs (tree, abstract class) for a heuristic
15: For U in {U, U, ..., U,}:
16:  If|Ux/~| > 1 Then

17: m := —1 # minimal gnaw value for chosen class
18: For X € Ux/~:

19: p = gnaw(UX, X, U A(U, X),S);

20: Ifm=—-lorp <mThenm :=p;Y :=X;
21: If m = o Then break;

22: If m = B Then Return 8 # Exact solution found

23: Elifm > o Then & := EU{U}; H .= HU{(U,Y)}
24: If |£| is empty Then Return « # Exact solution found
25: If |€| < g, where ¢q is a small constant (e.g. ¢ = 10)
Then
26:  Return mixedUME(E, &}, S) # Compute exact
solution
27: # Heuristic solution
28: For every pair (U, X) from H
X, =X, U AU, X)
If X is not an empty class Then X, := &, U {L[X}
Execute lines 10-12 from Algorithm 3.

1 class 3 classes 5 classes Lower Upper ME score Runtime

Dataset Size Species Double Empty empty empty bound bound (exact) of

tree edge edge edge edge by Alg.3 by Alg4 by Alg.5 Alg.5
Guigod 53 S [51] 0 41 12 0 3 7 5 < 30min

S» [20] 3 38 12 0 3 6 5 < 30min
TreeFam 1274 NCBI [56] 133 611 463 67 227 227 227 ~40s
Génolevures 4144 [54] 589 2226 1274 55 100 100 100 ~40s

[55] 673 2250 1079 142 91 91 91 ~40s
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Fig. 5 Duplication episodes in Guigo dataset [20] inferred by RME [44] and UME algorithms for the species trees Sy [51] and S [20]

Note, the ME score will remain the same, because all of
them have a plateau leaf ancestor. O

Implementation

Our algorithms are implemented in a prototype computer
program written in C++ and python. Additionally, for a
more detailed output, all score computing algorithms are
extended with a routine for the reconstruction of gene

duplication clusters (episodes) with their location in the
species tree. The software is available on request.

Results and discussion

In this section we present the result of evaluation of
three datasets: Guigé dataset [20], Génolevures [49] and
TreeFam [50]. Datasets properties including the size of
classes and the runtime are depicted in Table 1.

ME=91

L & )
m wn N (@} 1%} m w N @] 14
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- » o » = ©-o © = @™ = % O » = © O = m

Fig. 6 Left: a summary of 100 duplication episodes found in Génolevures dataset [49] by Algorithm 5 for the species trees from [54]. Right: 91
duplication episodes found in the species tree from [55]. D2 and D2* denote one whole genome duplication (WGD) event suggested in [58, 59],
while D1 and D1* denote one WGD event from [57]. The number of episodes assigned to a single edge is presented on the side (blue italic), for
example, our algorithm found 13 duplication episodes in the rooting edge in both trees. A gray histogram (the right side of a node) denotes the
frequency of gene trees (Y axis) being involved into exactly x (X-axis starting from 1) episodes located on the corresponding node. The number
above the highest bar denotes the maximal number of such gene trees. For example, the gray histogram in the left tree with the second bar of the
size 960 denotes that there are 960 gene trees contributing to exactly 2 episodes at the current node. Bars of frequency lower that 10 are not
shown. A red bar on the left of a node denotes the number of gene trees having at least one duplication event mapped to this node, i.e,, the sum of
bars of the corresponding gray histogram
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Datasets

Guigo dataset is a collection of 53 rooted gene trees from
16 Eucaryotes [20]. Multiple gene duplication events were
inferred for two species trees: S from [51] and S, from
[20]. The comparison of the results for RME [44] and
Algorithm 2 is shown in Fig. 5, where the original rooting
of each gene tree was ignored in UME.

Génolevures consists of 4144 gene families from nine
yeast genomes [49]. We used the corresponding gene
family trees inferred by the authors of [52] using tools
from Phylip [53]. The gene trees were reconciled with the
species trees from [54] and [55]. The summary of dupli-
cation episodes found by our algorithms is depicted in
Fig. 6.

TreeFam consists of 1274 unrooted gene family trees
[50] sampled from 28 mostly animal species. The species
tree is based on NCBI taxonomy [56]. The summary of
duplication episodes found by our algorithms is depicted
in Fig. 7.

Discussion
Guigé dataset: The clustering for the species tree S;
indicates that UME algorithm found a better scenario
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than RME, ie., 5 episodes vs. 6. Additionally, the
duplication locations are generally in agreement with
the solution to the unrooted variant of episode clus-
tering (see more in [36]). Next, the result of RME
for Sy is consistent with [20, 38]. However, in [37]
authors suggested a different evolutionary scenario hav-
ing more duplication episodes. The results differ, i.e.,
for the gene tree for B-nerve growth factor pre-
cursor (NGF) of topology (rept, (mamm, (amph, aves)))
in the placement of two duplications inferred by
that gene tree and S;. In the optimal solution from
UME algorithm, the rooting of NGF gene tree is
(aves, (mamm, rept), amph)) and it infers one duplication
with Sy.

Génolevures: We locate two genomic duplication events
spanning a large number of gene trees in the left species
tree: one situated at D1 (2638 trees) and the other above
D2 (1064 trees). While in the right tree, we have three such
events: at D1* (2228 trees) and the children of D1*. There
is a definite correspondence between the events located
above D2 and D2*. Next, we observe at least 960 trees
participating in two duplication clusters at D1. There-
fore, we postulate that D1 has at least two large genomic
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Fig. 7 Two hundred twenty seven duplication episodes found by Algorithm 5 for the TreeFam dataset. The upper and lower bounds returned by
our algorithms are the same, therefore, 227 is the exact solution. Please refer to Fig. 6 for the description of numbers and histograms. Two
consecutive WGD events at D1 and one WGD event at D2 are reported in [60-62]
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duplications. Also, they seem to correspond to two events
from the right tree located at D1* and the left child of D1*.

In comparison to the literature, we claim that the peaks
at D1 and D1* match the whole genome duplication
that was a direct consequence of ancient interspecies
hybridization [57]. The location of a WGD event at D2 and
D2* [58, 59] is not supported by our analysis. Based on
UME clustering, the most likely location of such an event
is their parent, i.e., the root of (ZYRO, (CAGL, SACE)).

TreeFam: The episode clustering (see Fig. 7) indicates
several genomic duplications located at D1, D2, D3, D4
and D5. The dataset have only two plant genomes so
it is inadequate to study WGD in plants. The same
applies to yeasts (2 species), worms (2 species) and insects
(6 species). The major part of TreeFam consists of Chor-
dates, for which various studies [60—62] suggest the exis-
tence of two consecutive WGDs located at D1 as well as
one WGD event at D2. Both are partially supported by our
analysis by the presence of relatively large number of gene
trees contributing to gene duplication events at these two
nodes. The genomic duplication at D3 spans almost every
tree from the dataset suggesting one WGD event, how-
ever, we did not find any evidence of such an event in the
literature.

Conclusions

In this article, we proposed the first solution to the prob-
lem of minimum episodes clustering for the case when
input gene trees are unrooted. We showed new proper-
ties of unrooted reconciliation for the duplication cost.
Then, we proposed a decomposition of an unrooted gene
tree that allows transforming a gene tree into a set of
rooted trees and a simplified unrooted tree. Based on
the tree decomposition, we designed several exact and
heuristic algorithms for solving the problem. From the
application point of view, the most important is an effi-
cient heuristic algorithm, which in practice allows solving
exactly empirical instances consisting of thousands of
unrooted gene trees. Our evaluation on empirical datasets
confirmed several genomic duplication events from
the literature.

Future Work

Future work will focus on the open question of the com-
plexity of UME (we conjecture that UME is intractable).
Moreover, we plan to research on the applications of
the developed theory to infer genomic duplication events
from simulated and empirical datasets of unrooted gene
trees including a comparative study of other models of
duplication intervals [36].

Abbreviations

D: Gene duplication; DL: Gene duplication and loss; Ica: Least common
ancestor; ME: Minimum episodes clustering for rooted gene trees; UME:
Minimum episodes clustering for unrooted gene trees
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