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Abstract

pressure in both deep-sea fish and hadal amphipod.

Background: High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life
forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility,
can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids
exposed to low temperatures can form secondary structures that hinder genetic information processing. To study
how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence
and compare their genes with those of their shallow-water relatives.

Results: We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant,
from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its
transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an
lllumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy
orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation.
Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection

Conclusions: Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA
repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results
suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of
deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.
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Background

The deep sea is characterized by high hydrostatic pres-
sure, darkness and low temperatures [1]. Among these
characteristics, high hydrostatic pressure is regarded as
the harshest for living organisms, since it can inhibit the
functions of proteins through denaturing and impairing
their structures [2, 3]. This is especially for enzymes [4, 5]
and cytoskeleton proteins [6]. Besides, at low tempera-
tures, DNA and RNA strands tend to tighten their struc-
tures, hindering the involvement of enzymes in DNA
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replication, transcription and translation [7] and thus dis-
rupting the transcription and translation processes.

In eukaryotes, actin and microtubules are the primary
constituents of cytoskeleton organization, which contrib-
utes to maintaining cytoskeletal structures, intracellular
transport and cell motility [8]. However, high hydrostatic
pressure has been found to disrupt actin fibers, microtu-
bules and myosins in mammalian cells [6]. High hydro-
static pressure can also influence the cellular regulatory
system, which controls and regulates the cytoskeletal
changes, thus disrupting the assembly of actin filaments
and microtubules [9]. Therefore, high hydrostatic pres-
sure can affect all sorts of biological processes that rely
on the cytoskeleton, such as spindle formation, cell
division, mitosis and meiosis [10].
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As a response to high hydrostatic pressure, cells in
deep-sea organisms develop counteractive strategies,
such as amino acid substitutions at specific key sites of
actin sequences [8, 11] to help stabilize the advanced
structures of proteins. For instance, Q137K and A155S
can maintain the coupling of ATP and Ca** to
counteract the dissociation effects of high pressure, and
both V54A and L67P can help sustain the DNase I
activity [8, 11]. A few amino acid substitutions of lactate
dehydrogenase from deep-sea fish were suggested to
help the enzyme better tolerate and function under high
hydrostatic pressure [12]. Amino acid substitutions may
also contribute to the hydrostatic pressure adaptation of
protein-protein interactions or ligand binding [13]. In
fact, this is not limited to deep-sea fish. In the amphipod
Hirondellea gigas, amino acid substitutions likely provide
the main resource for molecular adaptation, allowing
this creature to survive and thrive in hadal trenches [14].
Additionally, osmolytes can help proteins fold properly
and remain stable so that they can maintain their func-
tions under high hydrostatic pressure [15, 16].

Aldrovandia affinis (Gunther, 1877) [17] is a bentho-
pelagic teleost fish (Actinopterygii: Teleostei) commonly
found in the deep sea. It has a snake-like body and a
pointed snout. This species is widespread in the Atlantic
Ocean and Pacific Ocean at depths ranging from 730 m
to 2560 m [18]. To adapt to a wide range of hydrostatic
pressure, A. affinis has likely developed capabilities to
maintain protein structures and functions, especially
cytoskeleton organization [2], but little is known about
the molecular mechanisms.

Genome-wide patterns of positive selection can be ef-
fectively identified through transcriptome sequencing
combined with a branch site model [19-21]. In this ap-
proach, proteins of a specific species are compared with
its ancestral protein sequences predicted through phyl-
ogeny. If the nonsynonymous substitution rate (dN) is sig-
nificantly larger than the synonymous substitutions rate
(dS), the genes are defined as positively selected [22, 23].
In the present study, the transcriptome of A. affinis
captured from the Okinawa Trough at a depth of 1550 m
using a ROV was sequenced and compared with those of
three shallow-water fish species (the cave fish Astyanax
mexicanus, the cod fish Gadus morhua, and the platy fish
Xiphophorus maculatus) in order to identify positively
selected genes.

Methods

Sample collection, RNA extraction, and sequencing
During the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) R/V Kairei cruise KR15-17 in
November 2015, an individual A. affinis (JAMSTEC sample
no. 1150047615) (Fig. 1) was captured from the Sakai
hydrothermal vent field [24, 25] of the Okinawa Trough
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Fig. 1 Photograph of an individual of the deep-sea fish Aldrovandia affinis.
Aldrovandia affinis being captured from the Sakai hydrothermal vent field
of the Okinawa Trough (21°314749' N, 126°59021" E) at a depth of

1550 m by the remotely operated vehicle Kaiko (Dive Number #676)
.

(21°31.4749' N, 126°59.021" E) at a depth of approximately
1550 m by the ROV Kaiko Mk-IV. A section of muscle tis-
sue was preserved in RNAlater at 4 °C overnight, and
transferred to — 80 °C afterwards. The species was identified
initially based on morphology [18] and later confirmed with
the COI barcoding sequence. RNA was extracted using the
TRIzol Reagent (Invitrogen, USA) according to the manu-
facturer’s instruction. The quality and quantity of RNA
were evaluated by 1.5% agarose gel electrophoresis and with
the NanoDrop 2000 (Thermo). The RNA quality was fur-
ther tested with the Agilent 2100 Bioanalyzer and the RNA
integrity number was 7.8. A full-length ¢cDNA library was
constructed and sequenced on the Illumina HiSeq 4000
with the read length of 150 bp.

Data filtering, de novo assembly, functional annotation
and reference species determination

Trimmomatic version 0.33 [26] was used to trim the
adaptors and remove low-quality reads. Trinity version
2.0.6 [27] was utilized to de novo assemble all filtered
reads. Due to redundancy of isoforms generated during
alternative splicing, only the isoform with the highest
abundance as estimated by RSEM was retained for each
gene. CD-HIT-EST version 4.6.5 [28] with the setting of
“-c 0.95” was used to remove transcripts whose sequence
similarity exceeded 95% [14, 29]. BUSCO version 2.0
[30] and the metazoa_odb9 database were used to assess
the completeness of the non-redundant transcripts.
Coding sequences of the non-redundant transcripts were
then predicted and translated using TransDecoder [27, 31]
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with a cut-off of 100 bp as recommended by the Trinity
manual [27]. Each transcript was represented by the lon-
gest translated protein sequence in subsequent analyses.
All translated protein sequences were compared to se-
quences in NCBI non-redundant (NR) database using
BLASTp version 2.2.31 with an E-value <1 x e °. Then,
the NR hits of all protein sequences were classified
according to the taxonomy database of NCBI using
MEGANS5 [32]. The functions and annotations of proteins
were predicted with Blast2GO version 3.1 [33] to search
against the Gene Ontology (GO) database. The KEGG
(Kyoto Encyclopedia of Genes and Genomes) Automatic
Annotation Server [34] was used together with the bi-
directional BLAST method to identify pathway informa-
tion. Subsequently, the GO item distribution for biological
process, cellular components and molecular functions was
summarized and plotted with WEGO version 1.0 [35].

Amino acids and codons usage analysis

The codon usage of the overall coding region was calcu-
lated in CodonW version 1.4.4 [36]. The codon usage bias
was determined by the relative synonymous codon usage
(RSCU). RSCU >1 and RSCU <1 imply positive and
negative codon usage bias, respectively. If RSCU equals 1,
the codon usage is regarded as no bias. A Perl script was
written to calculate the proportion of amino acids.

Identification of orthologs and phylogenetic analysis

Single-copy orthologs shared by the deep-sea fish A.
affinis and sequences of shallow-water fishes Astyanax
mexicanus, Gadus morhua, Lepisosteus oculatus, Oryzias
latipes, Tetraodon nigroviridis, Xiphophorus maculatus
and Latimeria chalumnae, in the Ensembl database were
identified using OrthoMCL version 2.0.9 [37] relying on
all-vs-all BLASTp with an E-value threshold of 1xe™°
and MultiParanoid [38] which clusters pairwise orthologs
inferred with InParanoid [39]. Aligned amino acid
sequences of single-copy orthologs between A. affinis and
the shallow-water species (with Latimeria chalumnae
serving as the outgroup; class Sarcopterygii) were
concatenated and used for constructing a phylogenetic
tree using RAXxML version 8.2.4 [40], which applies
maximum-likelihood analysis based on the substitution
model of PROGAMMA + GTR with 100 bootstraps. The
phylogenetic tree with the highest bootstrap value was
used in subsequent positive selection analysis. To exclude
the influences of paralogs generated from genome dupli-
cation within the species, single-copy orthologs derived
from speciation were used. Indeed, including a greater
number of the shallow-water species would increase the
statistical significance of the result. However, doing so
would also reduce the number of common single-copy
orthologs. Therefore, there is a trade-off between the
number of shared single-copy orthologs and the number
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of species used. Moreover, genome duplication is common
in fish [41, 42] and also reduces the number of single-
copy orthologs. We ran several trials and found that three
particular shallow-water fish species (A. mexicanus, G.
morhua, and X. maculatus) can provide the subsequent
positive selection analysis with the greatest number of
single-copy orthologs. Therefore, these three species of
fish were referred to the subsequent positive selection
analysis of A. affinis.

Positive selection analysis

The same analytical pipeline described in the previous
genome study [29] was used to identify positively selected
genes in the deep-sea A. affinis. A modified branch site
model A [43] coupled with Bayesian Empirical Bayes
(BEB) methods [44] was adopted to compare A. affinis
with the shallow-water species.

MUSCLE [45] was used to align amino acid sequences,
and amino acid alignment further guided the alignment
of coding DNA sequences in ParaAT version 1.0 [46]
with the “-g” flag to delete gaps in the aligned sequences.
The strength of positive selection on each codon of each
orthologous gene along a specific targeted lineage of a
phylogenetic tree, designated as the deep-sea A. affinis,
was estimated with the modified branch site model using
codeml of the PAML package [47]. To determine to what
degree these codon sequences along the targeted lineage
fit the branch site model including positive selection bet-
ter than the one containing neutral selection or negative
selection, an alternative branch site model (Model = 2,
NSsites = 2 and Fix = 0) and a neutral branch site model
(Model =2, NSsites=2, Fix=1 and Fix o = 1) were
combined to calculate log-likelihood values for each
model using likelihood ratio tests. The log-likelihood
values generated were used to assess the model fit, using
the Chi-square test with one degree of freedom [43]. A
multiple testing correction method [48] was then applied
to correct the P values. In addition, potential positive se-
lection of codon sites was assessed by their posterior
probabilities calculated with the BEB method. If the

Table 1 Statistics of assembly and annotation for Aldrovandia affinis

Aldrovandia affinis
5,755,634,100 bp

Trinity assembly

Sequencing data

Total number of coding transcripts 27,633

Total assembled nucleotide bases 27,427,719 bp
N50 length 1359 nt
Annotation

Total translated proteins 25,851

NR 23,196 (90%)
GO 15,999 (62%)
KEGG 7954 (31%)
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Fig. 2 Gene ontology distribution for the cellular component, molecular function and biological process of Aldrovandia affinis

Biological Process

posterior probability exceeds 0.9, then the amino acid
site would be considered as a positively selected site.
Genes with an adjusted P value <0.1 [49, 50] and posi-
tively selected amino acid sites were regarded as posi-
tively selected genes.

Results
A total of 38,370,894 raw paired-end reads (150 bp) were
cleaned and filtered, resulting in 31,858,276 reads (83%)
that were retained and used for de novo assembly. After
removing redundant isoforms from the raw transcrip-
tome assembly and predicting the open reading frame,
27,633 non-redundant transcripts ranging from 297 bp
to 19,469 bp had a total size of 27,427,719 bp and a
contig N50 value of 1359 nt (Table 1). The length
distribution of the assembled contigs is shown in
Additional file 1: Figure S1. These non-redundant
transcripts hit 90.9% of the single-copy orthologs in the
BUSCO metazoan database, including 82.2% of the
complete orthologs and 8.7% of the fragmented ortho-
logs. Translating all of these A. affinis transcripts with
the open reading frames, 23,196 (~84%) of these
sequences were significantly matched to the existing
protein sequences in the NCBI NR database; 15,999 had
at least one significant match to the GO item; and 7954
had significant hits in terms of KEGG pathways (Table 1).
The GO item distribution of A. affinis (Fig. 2) for
biological processes, molecular functions and cellular
components did not appear to be significantly biased,
indicating that there was no sequence bias in the reads.
A phylogenetic tree (Fig. 3) was constructed from a
total of 349,341 amino acids that were aligned and
trimmed from single-copy orthologs shared by the deep-
sea fish A. affinis and shallow-water fishes A. mexicanus,

G. morhua, L. oculatus, O. latipes, T. nigroviridis, X.
maculatus and L. chalumnae (the latter of which served
as the outgroup). A. mexicanus, G. morhua and X
maculatus were chosen for positive selection analysis
because they shared 4918 single-copy orthologs with A.
affinis, which is the greatest number possible from this
pool. The Venn diagram shows that 7475 gene families
were shared among A. affinis, A. mexicanus, G. morhua
and X. maculatus, including both single-copy orthologs
and multi-copy paralogs (Fig. 4). There was no significant
amino acid and codon usage bias among these four species
(Additional file 1: Table S1). Among these orthologous

—— Oryzias latipes
100
100 Xiphophorus maculatus
100 Tetraodon nigroviridis
100, Gadus morhua
100 .
Astyanax mexicanus
- —— Aldrovandia affinis
w0 Lepisosteus oculatus

Fig. 3 Maximum-likelihood phylogenetic tree for Aldrovandia affinis
and shallow-water fish. The shallow-water fish species include the cave
fish Astyanax mexicanus, the cod fish Gadus morhua, the spotted gar
Lepisosteus oculatus, the medaka fish Oryzias latipes, the tetraodon fish
Tetraodon nigroviridis, the platy fish Xiphophorus maculatus and the
coelacanth Latimeria chalumnae (class Sarcopterygii; serving as the
outgroup). This tree was constructed based on the substitution model
of PROGAMMA + GTR with 100 bootstraps
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131

Fig. 4 Gene families shared by Aldrovandia affinis, Astyanax mexicanus,
Gadus morhua and Xiphophorus maculatus

genes, 138 genes (Additional file 1: Table S2) in A. affinis
fitted the alternative branch site model significantly better
assuming positive selection and had positively selected
amino acid sites with a posterior probability exceeding 0.9.
A set of proteins involved in cytoskeleton organization,
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especially proteins stabilizing actin and microtubules, and
nucleic-binding proteins involved in genetic information
processing had a clear positive sign (Table 2).

Discussion

High hydrostatic pressure and low temperatures are
considered as two major barriers to survival in the deep
sea [2, 7]. How certain animals cope with such adverse
conditions remains largely unknown. A set of positively
selected genes related to cytoskeleton structures, DNA
repair and genetic information processing were identi-
fied in this study. This finding implies certain genes
contribute to molecular adaptation to the deep sea. By
comparing our results with those from our previous
studies concerning the giant amphipod H. gigas collected
from the Challenger Deep at a depth of approximately
11,000 m [14], we found that functional domains in-
volved in separating the strands of the DNA double helix
chain or the self-annealed RNA chain, including DEAD
(Asp-Glu-Ala-Asp motif) box helicase, helicase conserved
C-terminal domain, UvrD/REP helicase N-terminal domain
and RNA helicase, as well as eukaryotic initiation factor
4G, are positively selected in both A. affinis and H.

Table 2 Positively selected genes related to the cytoskeleton system and genetic information processing in Aldrovandia affinis

Gene Function

Description Adjusted P value

Cytoskeleton system

COL18A2 collagen alpha-2(l) chain

COL18A1 collagen alpha-1 (XVIIl) chain

C21orf2 protein C210orf2

DST dystonin

GCP3 gamma-tubulin complex component 3
CDK5RAP2 CDKS5 regulatory subunit-associated 2
PIKFYVE 1-phosphatidylinositol 3-phosphate 5-kinase
FRMD6 FERM domain-containing protein 6
CKAP5 cytoskeleton-associated 5

RMDN1 regulator of microtubule dynamics 1
CLASP2 CLIP-associating protein 2

FRYL furry homolog-like

AGTPBP1 cytosolic carboxypeptidase 1

Genetic information processing

ERCC4 DNA repair endonuclease XPF

RFC1 replication factor C subunit 1

DNAJC4 DnaJ homolog subfamily C member 4

TAF1 transcription initiation factor TFIID subunit 1
GTF3C1 general transcription factor 3C polypeptide 1
TCEA1 transcription elongation factor A 3

HINFP histone H4 transcription factor

DHX36 ATP-dependent RNA helicase DHX36

EIF4B eukaryotic translation initiation factor 4B

Basement membrane 1.82E-04
Basement membrane 3.48E-02
Cytoskeleton organization 1.04E-02
Link actin 4.24E-08
Microtubule nucleation 842E-02
Microtubule nucleation 7.35E-02
Actin regulation 3.20E-10
Actin and cytoskeleton regulation 3.55E-02
Cytoskeleton regulation 8.19E-02
Microtubule Regulation 4.32E-02
Actin and microtubule stabilization 1.71E-02
Microtubule stabilization 4.32E-02
Tubulin 1.03E-05
DNA repair 1.55E-02
DNA replication 3.09E-02
Protein folding 1.20E-03
Transcription 5.80E-06
Transcription 1.29E-04
Transcription 2.58E-02
Transcription 1.22E-02
Transcription; cold shock 751E-03
Translation 1.82E-06
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gigas. These domains are capable of generating cold shock
response and are further involved in unwinding unfavor-
able secondary structures, which helps maintain the gen-
etic information processing in the deep-sea environment
[51, 52]. Both the fish A. affinis and the amphipod H. gigas  ocean
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are unable to regulate their body temperature themselves,
which means that essential genetic processes such as
DNA replication, transcription and translation, are con-
fronted with the threats of low temperatures in the deep

[7, 53]. Moreover, high hydrostatic pressure
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treatment can trigger cold shock response in bacteria [54].
Therefore, cold shock genes are subjected to positive se-
lection pressure, which may help animals deal with not
only low temperatures but also high hydrostatic pressure
to maintain their key genetic processes in the deep sea.

Besides low temperatures, deep-sea organisms are ex-
posed to high hydrostatic pressure that can cause DNA
chain breakage and damage, and thus it is suspected that
they would need to repair their DNA more frequently to
maintain DNA integrity [55-58]. In the present study,
two important genes involved in repairing DNA damage
are positively selected in A. affinis. One is DNA repair
endonuclease XPF (ERCC4) (Table 2, Fig. 5) that can
contribute to repairing abnormal nucleotide excision
and helping recombinant DNA remove cross-links dur-
ing the homologous recombination stage [59]. The other
gene is replication factor C subunit 1 (RFC1) (Table 2,
Fig. 5). In the hadal amphipod H. gigas, replication factor
Al (RFA1) is positively selected [14]. Both RFC1 and
RFA1 help repair DNA damaged by environmental stress
[14, 60]. In the deep sea, animals cannot avoid exposure
to high hydrostatic pressure, and their fundamental gen-
etic information is vulnerable in such an extreme
environment. Thus, deep-sea animals probably require
stronger DNA repairing mechanisms to protect their
genetic information from high hydrostatic pressure. The
positive selection of genes required for DNA repair may
be one of the reasons that deep-sea vertebrates and
invertebrates can adapt to high hydrostatic pressure.

In contrast to the hadal amphipod H. gigas [14], a set of
genes involved in cytoskeleton reorganization, especially
microtubule regulation, are positively selected in the deep-
sea fish A. affinis. The assembly of microtubules can be
inhibited under high hydrostatic pressure [2, 9]. Microtu-
bules determine the extension of axon formation and
neuronal polarity [61], and thus one possible reason that
these genes are associated with microtubule cytoskeletons
under positive selection in the deep-sea fish A. affinis is
that this particular fish has a much more developed ner-
vous system than H. gigas. Genes involved in maintaining
microtubules may be subjected to higher positive selection
pressure to sustain the function of the nervous system
under high hydrostatic pressure. Such positively selected
genes include CDK5 regulatory subunit-associated 2
(CDK5RAP2), cytoskeleton-associated 5 (CKAP5) and
CLIP-associating protein 2 (CLASP2) (Table 2, Fig. 5).
These genes bind to the plus-end of microtubules to regu-
late the dynamics of their assembly [62—65]. Furthermore,
CDK5RAP2 can promote microtubule nucleation in axons
[66, 67]. Dystonin (DST) is a key protein linking F-actin
and neuro-filaments to maintain neuronal cytoskeleton
organization. The positive selection (Table 2, Fig. 5) of this
protein may help protect the nervous system of deep-sea
fish from the effects of high hydrostatic pressure [2, 68].
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Even though the results obtained in the present study are
based on one individual A. affinis, they still reflect the
genetics of the entire species. This study has thoroughly
compared the positive selection between deep-sea ver-
tebrates and deep-sea invertebrates, which sheds light
on the molecular adaptation of deep-sea animals.

Conclusions

A set of positively selected genes related to cytoskeleton
structures, DNA repair and genetic information processing
were identified in the present study. These genes imply the
molecular adaptation of animals to the deep sea. The deep-
sea organisms rely on the amino acids substitutions of these
positively selected genes as the main adaptation resources to
survive in such an environment. Furthermore, the present
study provides a high-quality, deep-sea transcriptome that
can serve as a reference for future deep-sea studies.
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