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Abstract

Background: Identification of genomic regions that have been targets of selection may shed light on the genetic
history of livestock populations and help to identify variation controlling commercially important phenotypes. The
Azeri and Kuzestani buffalos are the most common indigenous Iranian breeds which have been subjected to divergent
selection and are well adapted to completely different regions. Examining the genetic structure of these populations
may identify genomic regions associated with adaptation to the different environments and production goals.

Results: A set of 385 water buffalo samples from Azeri (N = 262) and Khuzestani (N = 123) breeds were genotyped
using the Axiom® Buffalo Genotyping 90 K Array. The unbiased fixation index method (FST) was used to detect
signatures of selection. In total, 13 regions with outlier FST values (0.1%) were identified. Annotation of these regions
using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the
selected regions. Putative candidate genes identified include FBXO9, NDFIP1, ACTR3, ARHGAP26, SERPINF2, BOLA-DRB3,
BOLA-DQB, CLN8, and MYOM2.

Conclusions: Candidate genes identified in regions potentially under selection were associated with physiological
pathways including milk production, cytoskeleton organization, growth, metabolic function, apoptosis and
domestication-related changes include immune and nervous system development. The QTL identified are involved in
economically important traits in buffalo related to milk composition, udder structure, somatic cell count, meat quality,
and carcass and body weight.
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Background
The water buffalo (Bubablus bubalis) is an important live-
stock resource in many regions of the world, particularly in
tropical and subtropical countries. Water buffalo produce
milk, meat and are used as draught animal in developing
countries [1, 2]. There are two types of domestic water
buffalo: the river buffalo that originated in the Indian sub-
continent and are now spread widely from India to Europe,
and the swamp buffalo, that originated in N. Thailand or
Laos and are the most common buffalo in Asia from India
to the Philippines [2, 3]. The current world population of
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buffalo is about 200 million head compared with 1.49
billion cattle, 1.17 billion sheep and 1 billion goats [4].
Although, water buffalo represents only 11.8% of the world
bovinae population, a large proportion of the world’s
population depend on the domestic water buffalo [1, 5].
Unlike other domesticated bovids, whose populations are
declining, the water buffalo population worldwide has in-
creased constantly at a rate of 1.65% per year during the last
five decades. However, the potential of buffalo has not been
fully exploited. Water buffalo breeders and farmers face
many challenges, such as poor reproductive efficiency, sub-
optimal production potential, and low rates of calf survival
[6]. Improvement of these traits will support increasing
buffalo production, particularly in poorer communities.
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Iranian buffalo breeds originated from the Indian sub-
continent and have been farmed in the Lorestan prov-
ince of Iran since the ninth Century B.C. [7]. In the
1930s there were 1.5 million head of buffalo in Iran [7].
In contrast to the world trend, the number of Iranian
buffaloes has dramatically decreased to ~ 204,000 head
today [AGRI, 2014].
There are three main buffalo breeds in Iran: Azeri,

Khuzestani and Mezandrani, with 119,000, 81,000 and
4000 individuals, respectively. These three breeds are
reared in three different geographical areas of the coun-
try: the Azeri is widespread in the north-west and north
of Iran, the Khuzestani is focused in the west and south-
west (mainly in Khuzestan province), and the Mazan-
drani in the north of the country, mainly in the Mazan-
dran province. These breeds experience dramatically
different climatic conditions: in the northwest, Azeri
buffalo are exposed to cold, sub-zero winters with heavy
snowfall and hot, dry summers a with temperatures
reaching 35 °C. The climate of Khuzestan in the South-
west is generally very hot and occasionally humid with
summertime temperatures routinely exceeding 45 °C de-
grees while in the winter, it can drop below freezing.
The buffalo farming system in Iran is based on small-

holders (99%) and the median herd size is five animals,
with a small number of herds of between 20 and 50 buf-
faloes and only a very few herds with 200 buffaloes
(AGRI, 2010). Farming systems differ between breeds.
Khuzestan buffaloes are raised outdoors throughout the
year, while Azeri and Mazandrani breeds are housed in
autumn and winter seasons [7]. Water buffalo provide
about 239 thousand tons (2.8% of Iran's total milk pro-
duction) and 24.7 thousand tons (2.5%) of meat [AGRI,
2010]. Average milk production of Iranian buffaloes in a
202-day lactation ranges from, 1141Kg in W. Azarbaijan,
to 2017 Kg in Khuzestan [8]. Azeri and Khuzestani are
different in milk production, body size and weight. Milk
production in 210-day lactation period was 1865 and
1200 kg for Khuzestani and Azeri, respectively. Height-at-
wither is 133 cm and body weight is varied 400 to 600 kg
for Azeri adult female. Height-at-wither is 141 cm and
body weight is 600 kg for Khuzestani adult female [7].
In recent years, the development of high-density SNP

platforms has boosted genomics research in many live-
stock species [9]. A de novo assembly of the water buf-
falo genome from mixed Illumina and 454 data, and an
Affymetrix panel of SNP markers has been created for
water buffalo [10]. These new buffalo genomic resources
open an unprecedented range of research possibilities
for this species: from genome wide association studies to
identifying genomic regions controlling target traits to
genome assisted genetic selection [11–14].
Identifying signatures of recent selection in domesti-

cated animals could provide information on the genomic
response to domestication, climatic adaptation and se-
lection for production traits [15]. This information may
assist the design of more efficient selection schemes
[16]. During the domestication process, livestock have
been selected for desired morphological characteristics,
physiology, increased yield, behavior and adaptation to
particular environments [17, 18].
Genetic selection changes the frequency of beneficial

variants and neutral variations in neighboring regions,
leaving patterns in genome that can be distinguished be-
tween the population [19]. These patterns, referred to as
signatures of selection, are detectable in genomic datasets
as (i) changes in the ratio of non-synonymous to syn-
onymous variations in the open reading frames (ii) a defi-
ciency in heterozygosity compared with the rest of the
genome, (iii) deviation in the Site Frequency Spectrum
(SFS), (iv) differences in the allele frequencies among pop-
ulations, (v) LD persistency, and (vi) unusual long-range
haplotypes [20, 21]. Several statistical methods have been
developed to identify selection signatures in genomic data
[22–33]. To date, several studies have identified loci and
genomic regions subject to positive selection in different
domestic animals [18, 27, 34–36]. Once identified, these
signals of selection can be used to search for the genes in-
volved in adaptation or which are under selection [18].
The study presented here used 90,000 SNP genotypes

for Azeri and Khuzestani buffalo breeds to search for se-
lection signatures and explore putative candidate genes
under the selection signatures identified.

Results
Least square means and standard deviations of some
morphometric traits in Iranian Azari and Khuzestani
water buffalo breeds are shown in Additional file 1. For the
SNPs analyzed in this study, the average MAF for Azeri
and Khuzestani buffalo breeds were 0.317 (SD = 0.118) and
0.308 (SD = 0.122), respectively. The Azeri and Kuzestani
buffalo breeds are genetically distinct, as seen by the
principal components analysis [37]. Assuming two an-
cestral populations the structure plots show that the
two breeds are distinct, but with a moderate levels of
admixture (Fig. 1). The relationships among the studied an-
imals were revealed by relationship matrix and heat map
plot (see Additional files 2 and 3).
Averaged Weir&Cockerham’s unbiased FST values ob-

tained for sliding windows of 500 kb across the genome gave
an average of unbiased between population FST of 0.0178
(SD= 0.027), as shown in Fig. 2. Evidence of selection was
found in 13 regions which contained 0.1% of windows with
the highest FST values over 0.1 included in 65 significant win-
dows. These regions were located on chromosomes 2
(65,490–66,490 and 111,415–112,415 kb), 3 (56,750–57,750
and 114,861–115,861 kb), 4(26,287–26,287 kb), 7 (55,042–
56,042 kb), 9 (54,934–55,934 kb), 10 (22,554–23,554 kb), 19



Fig. 1 Principal components and population structure diagrams of studied buffalo populations. (a) Principal components diagram provided based on
the genomic kinship coefficients between individuals. The first two principal components (PC) and the variance explained by each component are
shown on the corresponding axis. (b) Population structure of studied buffalo populations provided by Admixture software with k = 2
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(22,916–23,916 kb), 21 (59,937–60,937 kb), 23 (24,776–
25,776 kb), 27 (51.5–344 kb) and X (97,516–98,516 kb). Sta-
tistics for linkage disequilibrium, including r2 and D’ were
calculated for regions that were selected using FST as
selection signature (See Additional files 4 and 5).
The iHS and XP-EHH values were determined across

the genome (see Additional files 6, 7, 8 and 9). The re-
sults revealed that the selected regions using the FST
method on chromosomes 2 (2 regions), 3 (2 regions),
10, 19 and 23 were also determined as selected regions
by iHS and XP-EHH methods (Additional files 6, 7, 8
and 9). The haplotype base analyses was carried out to
verify selected regions from FST method. Only regions
determined as signature of selection from FST were
used for gene and QTL detection.
The 1 Mbp genomic regions flanking the putative signa-

ture of selection regions were searched for genes that may
be have been the subjects of selection. In a total, 13 Mb
representing 0.45% of the genome were included and 59
Fig. 2 Genome-wide distribution of pairwise unbiased FST (Theta) between
across the genome were used to identify putative signatures of selection. T
genome-wide distribution is shown by the blue line
genes and 18 QTLs were identified from the annotation of
the cattle genome (UMD3.1 Bos Taurus). The results are
shown in Table 1 and Additional file 10.

Discussion
Among the three Iranian buffalo breeds, Azeri and Kuzes-
tani are the most common indigenous breeds that are well
adapted to different regions. The Khuzestani have high
milk, meat and growth in comparison with other breeds in
Iran. The Azeri and Khuzestani breeds have differences in
behavior, milk production and body size and are adapted to
different environments and rearing methods. In this study,
the population structure of these two buffalo breeds was
analyzed. Principal component analysis (PCA) of the geno-
type data formed two distinct clusters with no overlap be-
tween them, each containing one of the two breeds
showing that the breeds are genetically distinct (Fig. 1).
Further analysis of the population structures showed that
there was significant admixture (Fig. 1). The mean genomic
Azari and Khuzestani buffalo breeds. Overlapping windows of 300 kb
he threshold determined based on the 0.1% of the empirical



Table 1 Complete list of genomic regions and genes harboring significant SNPs identified by unbiased FST method

Chr Location on
Cattle genome

Genes QTL QTL-ID QTL Reference

2 65,990,337 GPR39- ACTR3-(bta-mir-2904-3)-(bta-mir-2887-2) fatty acid content 20,506 [66]

2 112,415,910 SGPP2- MOGAT1- ACSL3- KCNE4 – – –

3 57,251,956 SNORA62 Residual feed intake 5336 [67]

3 115,361,435 SH3BP4-AGAP1 – – –

4 26,787,114 HDAC9 Somatic cell count 1500 [68]

Milk protein percentage 2517 [69]

7 55,541,968 NDFIP1 – ARHGAP26 Average Daily Gain 22,812 [13]

9 55,434,304 – Rump angle 1686 [70]

Somatic cell count 1744 [71]

10 23,054,360 – Teat placement 4634 [72]

Udder attachment 4633 [72]

Subcutaneous fat 7093 [73]

Meat percentage 7094 [73]

Somatic cell count 2701 [74]

Carcass weight 4546 [75]

Body weight (mature) 10,872 [76]

Marbling score (EBV) 10,874 [76]

19 23,416,189 RPH3AL-DOC2B-WDR81-SERPINF2-SERPINIF1-
RPA1-DPH1-OVCA2-HIC1-SRR-SGSM2

Somatic cell score 6225 [77]

21 60,437,376 ERICH1-SERPINA3–6 Shear force 20,814 [14]

23 25,276,633 TMEM14A-FBXO9-(BOLA-DQB)
(HLA-DQB1)-(BOLA-DRB3)-BTNL2

Milk protein yield 3631 [78]

27 274,465 CLN8-ARHGEF10-KBTBD11-MYOM2 – – –

X 98,016,499 MAGED2-APEX2-RRAGB-FOXR2 – – –
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FST value across all SNPs was 0.0178, indicating low genetic
differentiation (FST ranged less than 0.05) according to
Wright’s classification [38].
Iranian buffalo are exposed to extreme heat stress which

is known to reduce an animal’s performance in tropical,
sub-tropical and arid areas [39]. Compared with other
farm animals, buffaloes have poor heat tolerance capacity
and are more sensitive to heat because of scarcely distrib-
uted sweat glands and dark body color [40]. The extent of
heat stress depends on the individual animal’s genetics
which can alter a number of physiological and behavioral
responses [41]. Adaptation to heat stress requires the
physiological integration of many organs and systems in-
cluding endocrine, cardiorespiratory and immune system
[42]. Thus, genetic variation could be selected for better
adaptation [43]. Here, 59 genes and 18 QTLs were found
within the regions of high FST. Some of these loci may be
related to environmental adaptation such as the cytosketal
organization and immune function, while others affect
production traits including milk production, and growth
(Table 1 and Additional file 10).
Natural selection is expected to act strongly on immunity

genes through disease exposure and response to stress [18].
The highly polymorphic major histocompatibility complex
(MHC) has been implicated in the resistance and suscepti-
bility to a broad range of diseases [44], differences in milk
production, growth rate, reproductive performance and im-
mune response [45]. The bovine BoLA locus is located on
BTA23 between 25.3 and 25.6 Mb which was identified as a
region of high FST in the comparison of the two buffalo
breeds studied here (Table 1). Other genes in this region
are also involved in immune responses, specifically FBXO9.
Also, NDFIP1 (located on BTA7 between 54.9 and 55.
9 Mb) is another gene detected in a region under selection
and is involved in immune response.
Candidates genes involved in cytoskeleton organization

within high FST regions included ACTR3, ARHGAP26 and
CLN8. Genes in this category within high FST have been
implicated in muscle development, including MYOM2
[46] which has a role in protein synthesis and modification
of skeletal muscle [46], and, ARHGAP26 and ACTR3 in-
volved in actin filament polymerization and organization
(NCBI). MOGAT1 and AC8 L3 have key role in lipid and
Fatty Acyl-CoA biosynthesis. GPR39 (located on BTA2 be-
tween 65 and 66 Mb) is involved in the control of growth
hormone release [47].
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Apoptotic pathways participate in growth, proliferation,
development, immunity and stress responses. Genes in-
volved in apoptosis within high FST regions included
TMEM14A (Trans membrane protein 14A) which stabil-
izing mitochondrial membrane potential [48] that may be
affected by heat stress. The CLN8 [36] has a negative
regulatory function in the apoptotic process. DNAJB2 en-
codes a heat shock binding protein which has anti-
apoptosis function and has been implicated in meat ten-
derness. SERPINF2 is involved in regulation of proteolysis,
which is a response to heat stress (NCBI). SERPINF2 is in-
volved in the Wnt signaling pathway which associated
with apoptosis response, but is also involved in mammary
gland alveolus development, possibly related with milk
production traits [49].
The QTLs that were associated with regions of high

FST are shown in Table 1 and are involve traits such as
fatty acid content, milk protein percentage, milk protein
yield, somatic cell score, teat placement, udder attach-
ment, subcutaneous fat, meat percentage, marbling score
(EBV), shear force, carcass and body weight in mature,
somatic cell count and residual feed intake traits.

Conclusions
In this study, a genomic scan was performed on two dis-
tinct Iranian buffalo breeds and was analyzed using a popu-
lation differentiation index approach. A total of 13 regions
with outlier FST were detected, indicating greater than gen-
ome average divergence between the two Iranian buffalo
breeds in these regions where natural or breeding selection
may have been acting. A total of 59 genes were identified
within these regions. Many of these genes are involved with
physiological pathways including milk production, cytoskel-
eton organization and growth, metabolic and apoptosis
processes, immune function. Hence, these genes may be
considered as candidates for genes under selection. How-
ever, from this large number of candidate genes and very
wide range of functions it will be necessary to refine the
study to identify those under selection and variants that are
beneficial for production nor climate adaptation traits.

Methods
Animal samples and phenotype data
Blood and hair root samples were collected from 159 milk-
recorded herds, including 112 herd for Azeri (AZI) breed
and 47 herd for Khuzestani (KHU) breeds, respectively,
which participate in the registration and recording system
of the Animal Breeding Centre of Iran. Sample collection
from studied animals was performed in accordance with
animal ethics and approved by the Animal Use Committee
in University of Tehran and Animal Breeding Center of
Iran (ABCI). Fewer than 5 animals were selected from each
herd. Individuals from each herd were selected based on
the lowest possible pedigree-based relationship. Production
records and type traits were considered to assess the diver-
sity of the each breed. Extensive sampling was carried out
to cover a large proportion of each breed. The AZI breed
samples were collected from East-Azarbaijan, West-
Azarbaijan, Ardebil and Gilan provinces, located in north
and north-western part of Iran (37.02° – 38.78° N, 44.81° -
49.52° E), whereas the KHU breed samples were collected
from Khuzestan (30.68–32.55° N, 48.02°- 48.97° E) and Ker-
manshah provinces (34.54°N, 45.60°E), located in the south-
western part of Iran (Fig. 3). In total 510 samples were
collected from which 385 were selected for genotyping. Se-
lected animals had milk production records and type traits
including height-at-withers and chest girth. The data, nor-
mally distributed in each breed, were analyzed by SAS soft-
ware (SAS 2014, SAS Institute Inc., Cary, NC, USA) using
the GLM procedure. The results showed that breed had
significant effect on traits (P < 0.001) and KHU had higher
height-at-withers (143.63 vs 138.73), chest girth (195.37 vs
183.89) and milk production (10.92 vs 6.98) than AZI.

Genotyping and data quality control
Genomic DNA was extracted from blood by the modi-
fied salting out method [50] and from hair samples as
described by Alberts et al. [51]. The quality and concen-
tration of extracted DNA were assessed by visualizing
on 1.2% agarose gel and spectrophotometrically based
on absorbance at (260 nm /280 nm). DNA samples were
diluted to 50 ng/ul for genotyping.
The set of 385 water buffalo samples from AZI (N = 262)

and KHU (N = 123) breeds with milk production and type
records were genotyped using the Axiom® Buffalo
Genotyping 90 K Array (Affymetrix). SNP genotypes were
extracted from raw data using the AffyPipe workflow [52]
and applying default thresholds (dish-quality control < 0.82
and individual call rate < 0.97). Primary quality control and
filtering, was carried out and genotypes exported in PLINK
format. In total, 4 animals were removed because they
failed the quality standards. Furthermore, 5501 (6.1%) and
9857 (11.7%) SNP were discarded because the call rate was
below the threshold and low quality genotypes, respect-
ively. A total of 73,935 SNP passed the quality control
which had an average sample call rate of 99.68%. Genotype
repeatability assessed from 5 replicate samples was 99.96%,
demonstrating a high quality of the genotyping results. A
total of 64,339 (71.6%) probes were high-quality poly-
morphic (PolyHighResolution class), 7924 (8.8%) showed
high-quality monomorphic signals (MonoHighResolution)
and 1672 (1.8%) had one homozygous genotypes class
missing (NoMinorHom). The latter three classes were
retained for further analyses. Therefore, the quality-edited
dataset has a total of 383 animals, AZI n = 260 and KHU
n = 123 individuals and 73,935 SNP genotypes.
A second QC procedure was performed breed-wise,

using PLINK software [53], retaining SNPs on autosomal



Fig. 3 Distributions of the two Iranian Buffalo breeds used in this study. (a) The Iran country in Middle-East (south-west of Asia). (b) More than
99% of AZI and KHU buffalo breeds distribute in red and green highlighted areas, respectively. The red highlighted area (located in north and
north-western part of Iran) consist of East-Azarbaijan, west-Azarbaijan, Ardebil and Gilan provinces, and the green highlighted area (west and
south-western part of Iran) consist of Khuzestan and Kermanshah provinces
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and X chromosomes, minor allele frequency (MAF)
> 0.02%, divergence from Hardy-Weinberg Equilibrium
(HWE) (P-value >10e-6) and SNP Call rate (CRSNP)
> 0.95%. After this quality control, individuals with call
rate (CRIND) below 0.95% were excluded from further
analysis (Table 2 and Additional file 11). This procedure
yielded 371 individuals (253 AZI and 118 KHU) and
64,866 SNPs with average distances between 2 adjacent
Table 2 Description of AZI and KHU buffalo breeds genotypes
available for analysis before and after filtering for cryptic quality control

AZI KHU

Number of individuals before filtration 260 123

Number of SNPs before filtration 73,935 73,935

SNPs with unknown position on genome 19 19

SNPs with minor allele frequency (MAF) 8830 8830

SNPs out of HWE (P-value <10e-6) 198 124

Total genotyping rate in remaining individuals 0.9974 0.9954

SNPs with Call rate (CRSNP) < 0.95% 0 0

Individuals with call rate (CRIND) < 0.95% 2 2

Replicate individuals 2 3

Removed individuals by PCA output 3 0

Removed individuals with IBS > 0.8 0 0

Number of individuals before filtration 253 118

Number of SNPs after QC 64,866 64,866
SNPs about 40 kb based on the bovine genome UMB 3.
1, which were used for further analyses (Table 2).

Population structure and FST estimation
PCA analysis based on SNPs which passed quality control,
was carried out using the identical by state (IBS) matrix
generated with GenABEL [54] by converting the calculated
genomic kinship coefficients to squared Euclidean distances
that capture the differences between individuals via classical
multidimensional scaling [55]. Individuals located outside
the expected breed cluster were excluded from further ana-
lysis. As the selection of individuals was based on pedigree,
the identity-by-state (IBS) relationship matrix was used to
remove closely related animals, as proposed by Leutenegger
et al. [56]. The IBS matrix was estimated using GenABEL R
package IBS function [54] and individuals with an IBS > 0.8
were removed from further analysis. Genetic structure of
the population was tested using ADMIXTURE software
[57]. The r2 statistics between adjacent SNP pairs were
calculated for both of the studied populations for all
marker pairs, using SnppldHD software (Sargolzaei M,
University of Guelph, Canada).
The unbiased Fixation index (Theta) estimator proposed

by Weir and Cockerham was calculated (Additional file 12)
to detect signatures of selection [32, 58] in R (the R project
website, http://www.r-project.org/). The FST outlier method
was used to detect signatures of selection [59] where
adjacent SNPs show outlier FST values [60]. A modified
sliding window (SW) approach (referred to as a “Creeping

http://www.r-project.org/
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Window”: CW) was used to scan the entire genome for
evidence of selective sweeps, using a one SNP step [61].
The optimal size of the window depends on time since the
occurrence of the selection sweep, as LD breaks down with
time [35]. An arbitrary 300Kbp window size was chosen in
this study (Additional file 13). In total, 13 regions exceeding
the 0.1% threshold of the empirical outlier window-wise
unbiased FST values. Overall unbiased FST was calculated
using Weir and Cockerham method [32] in R as population
differentiation index. To verify selected regions from
unbiased FST results and appropriately identify selection
signatures, two haplotype base methods integrated Haplo-
type Homozygosity score (iHS) [31] and Cross Population
Extended Haplotype Homozygosity (XP-EHH) were applied
using rehh package [62] in R. Imputation of missing data
and haplotype phasing were carried out by fastPHASE
software [63] for use in haplotype base analysis.

Annotation of the outlier regions
The 13 outlier genomic regions were surveyed to find genes
within 1 Mb of the outlier region peaks. In total 59 genes
were extracted from the corresponding areas in UMD3.1
Bos Taurus Genome Assembly using Biomart. DAVID [64]
was used to perform a gene ontology analysis and to iden-
tify putative biological networks including the genes found
in outlier regions. Finally, the Enrichment Map Cytoscape
plug-in was used to construct networks [65].
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