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Abstract

Background: Due to the advancement in high throughput technology, single nucleotide polymorphism (SNP) is
routinely being incorporated along with phenotypic information into genetic evaluation. However, this approach
often cannot achieve high accuracy for some complex traits. It is possible that SNP markers are not sufficient to
predict these traits due to the missing heritability caused by other genetic variations such as microsatellite and copy
number variation (CNV), which have been shown to affect disease and complex traits in humans and other species.

Results: In this study, CNVs were included in a SNP based genomic selection framework. A Nellore cattle dataset
consisting of 2230 animals genotyped on BovineHD SNP array was used, and 9 weight and carcass traits were
analyzed. A total of six models were implemented and compared based on their prediction accuracy. For comparison,
three models including only SNPs were implemented: 1) BayesA model, 2) Bayesian mixture model (BayesB), and 3) a
GBLUP model without polygenic effects. The other three models incorporating both SNP and CNV included 4) a
Bayesian model similar to BayesA (BayesA+CNV), 5) a Bayesian mixture model (BayesB+CNV), and 6) GBLUP with CNVs
modeled as a covariable (GBLUP+CNV). Prediction accuracies were assessed based on Pearson’s correlation between
de-regressed EBVs (dEBVs) and direct genomic values (DGVs) in the validation dataset. For BayesA, BayesB and GBLUP,
accuracy ranged from 0.12 to 0.62 across the nine traits. A minimal increase in prediction accuracy for some traits was
noticed when including CNVs in the model (BayesA+CNV, BayesB+CNV, GBLUP+CNV).

Conclusions: This study presents the first genomic prediction study integrating CNVs and SNPs in livestock. Combining
CNV and SNP marker information proved to be beneficial for genomic prediction of some traits in Nellore cattle.
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Background
Genomic prediction is the estimation of breeding values
using genetic variations such as single nucleotide poly-
morphism (SNP) [1]. Ideally, breeding values would be
predicted as the sum of the effects of all inherited quan-
titative trait nucleotides (QTNs). As QTNs are not
known in practice, genome-wide SNP markers have been
proposed as surrogates to indirectly capture the effects

of causal variants [1, 2]. However, due to incomplete
linkage disequilibrium (LD) with other variants [3–7],
SNP markers may fail to capture all the effects of vari-
ants causing missing heritability or phenotypic devia-
tions, thus genomic estimated breeding values (GEBV)
based on SNPs may represent only a component of the
true breeding value (TBV) [8]. Missing heritability was
defined as the proportion of genetic variation not
accounted for by SNPs but predicted to be present due
to heritability. Another possibility is that genetic effects
are not due to the common SNPs, but due to other
kinds of genetic variants, such as microsatelites and copy
number variations (CNV) [9, 10].
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In the last ten years, attention has been drawn to
CNVs, as they are deemed to impact phenotypes. CNVs
are structural variations larger than 50 bp in the form
of insertions, deletions, duplications, inversions and
translocations [11, 12]. For example, a number of studies
indicate chromosomal translocations and subsequent du-
plications of the KIT gene are involved in several distinct
cattle coat phenotypes [13, 14], suggesting that the differ-
ent modifications of the KIT gene can influence coat color
in cattle [14].
Given the ubiquity of immunity related genes that co-

incide with CNVs, there are likely many more immunity
traits that are influenced by CNVs. Antimicrobial peptides
(AMPs) represent a class of copy number variable genes
within livestock species that function as part of the innate
immune response to pathogens. The β-defensin class of
AMPs appears to be copy number variable in several live-
stock species, but most notably in cattle [15, 16]. The lin-
gual antimicrobial peptide (LAP) and tracheal antimicrobial
peptide (TAP) genes share a high degree of sequence
homology with β-defensins, but AMPs are exclusive to
cattle [17]. Additionally, the BSP30A gene, which is an
important salivary AMP, was found to be highly copy
number variable within cattle of different breeds [16].
Finally, cathelicidin-type AMPs such as CATHL4 [16]
and PGN3 [18] have been identified as highly variable
among pig and cattle individuals, respectively. MHC
gene family members have been frequently found to be
copy number variable in livestock species. A duplica-
tion of the CIITA gene, which encodes a trans-activator
of the MHC class II receptor, was found in cattle that
had resistance to ingested nematodes [19]. In addition,
studies on the loss of copy number of MHC class II
genes within other species have revealed increased sus-
ceptibility of that species to pathogens and cancers,
such as the Tasmanian devil facial tumor epidemic [20].
This serves as a warning to all animal breeders, as a
loss of diversity at this locus due to improperly man-
aged selective breeding or imposed population bottle-
necks could increase the susceptibility of their herds to
epidemics [21]. Several other classes of immunity related
gene families have also been identified as copy number
variable in livestock species. Expansion and contraction of
the workshop class I (WC1) gene family has been identi-
fied in cattle [15, 16]. WC1 genes are unique to the cattle,
sheep, and pig genomes, and encode pattern recognition
receptors expressed on γδ-T cells [22].
The two 1000 human genome structural variation (SV)

papers reported multiple types of CNVs, including dele-
tions, tandem duplications, novel sequence insertions and
mobile element insertions [11, 23]. Mills et al. [11] studied
four CNV formation mechanisms by examining the break-
point junction sequence: (1) NAHR or non-allelic homolo-
gous recombination, associated with homologous sequence;

(2) NH or “non-homologous” rearrangements without
sequence similarity, including NHEJ (non-homologous
end-joining) and (MMBIR) microhomology-mediated
break-induced replication; (3) VNTR (the shrinking or
expansion of variable number of tandem repeats, often
involving simple sequences by slippage; and (4) MEI
(mobile element insertions, including transposition and
retrotransposition of common repeats). Within these
CNV types, deletions are often mediated by NAHR and
are the easiest ones to detect, genotype and validate.
Therefore, deletions were extensively studied by [11]; 2/
3 of reported events were deletions and almost all
(98.8%) validations were on deletions. Deletion’s unique
advantages are that their locations and allele types are
well defined and easy to assess. For a single deletion, its
location is restricted to the allele’s locus and can be
easily derived. Its alleles normally can only be one of
these three types: no deletion (0,0), heterozygous dele-
tion (− 1,0) and homozygous deletions (− 1,-1).
By comparing deletion genotypes with genotypes of

nearby SNP, Mills et al. [11] found, consistent with earlier
studies [3–7], that 81% of common deletions had one or
more SNPs with which they are strongly correlated. This
suggests that many deletions mapped will be identifiable
through tagging SNPs. However, a fifth of the genotyped
deletions were not tagged by HapMap SNP, implying that
these CNV should be genotyped directly. In our cattle
study [7], we observed a similar result, i.e. 75% simple de-
letions displayed LD with SNPs while the remaining 25%
did not, suggesting that these events are not tagged by the
BovineHD SNPs. Similarly, Handsaker et al. [24] used
whole genome sequence data to detect and impute CNV
and found that most of common deletions and biallelic
duplications were well imputed whereas the imputation
accuracy for common multi-allelic CNV or mCNV, espe-
cially duplications with three or more segregating alleles
was lower [24]. Additionally, the LD properties of complex
SVs (e.g., mCNV like tandem duplications or novel se-
quence insertion) have not yet been fully ascertained
because methods for genotyping such CNVs with high
accuracy just emerged and was only reported and ap-
plicable for human data [24, 25].
CNV can function either as causal variants or as tag-

ging markers. A human study found that CNVs captured
around 18% of the total variation in gene expression in
cultured lymphocytes [26]. Furthermore, studies revealed
several CNVs with effects on livestock economically im-
portant traits such as milk production, residual feed in-
take in Holstein cows and disease resistance in Angus
cattle [7, 27–29]. As CNVs have been shown to affect
gene structure and dosage, they may have drastic effects
on phenotypes, altering gene regulation and exposing re-
cessive alleles [7, 28, 30–33]. Considering the critical
role of CNVs in complex traits, genomic prediction
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integrating both SNP and CNV may offer novel insights
for elucidating complex traits and understanding the
missing heritability. However, in the last decade, nearly
all genomics predication in farm animal were conducted
based on only SNP using GBLUP and Bayesian methods.
Up to now, there are no reports of the joint use of SNP
and CNV genotypes in genomic prediction in livestock
[1, 34, 35]. We recently published a CNV-based study of
growth traits using high density SNP microarray data in
Bos indicus cattle. We detected 17 CNVs significantly as-
sociated with seven growth traits [36]. The objectives of
this study were to integrate CNV (deletions and biallelic
duplications) with SNPs into genomic evaluation using
GBLUP and Bayesian methods and investigate their im-
pact on the genomic prediction accuracy.

Methods
Phenotypic data
Estimated breeding values (EBVs) were based on Best
Linear Unbiased Predictor (BLUP) estimates of single-trait
animal models obtained from routine genetic evaluations
using performance and pedigree data from the database
(available at: http://www.gensys.com.br/home/show_
page.php?id=701). Phenotypes used to fit the models
comprised records from 542,918 animals born between
1985 and 2011, and raised in 243 grazing-based herds. The
evaluated traits included birth weight (BW), post weaning
gain (PWG), weaning gain (WG), carcass conformation at
weaning (CW), muscling at weaning (MW), carcass finish-
ing precocity at weaning (PW), carcass conformation at
yearling (CY), muscling at yearling (MY) and carcass finish-
ing precocity at yearling (PY). Conformation, finishing pre-
cocity and muscling traits (CPM) were based on recorded
visual scores assigned in a discrete ordered scale, relative to
the animals of the same management group (for a more de-
tailed description of the traits, see Neves et al. 2014 [37]).
For each trait, only EBVs of animals whose accuracy (i.e.,
square root of reliability, calculated based on prediction
error variance estimates) was > 0.50 were analyzed. The
number of animals used in the study and heritability of
traits analyzed are presented in Table 1.
In this study, genomic prediction analysis was car-

ried out using de-regressed EBV (dEBVs) instead of
EBVs as the response variable in order to remove any
bias due to double counting phenotypic and pedigree
information. De-regressing of EBVs was performed ac-
cording to the approach proposed by [38] which re-
moved parent average (PA) effects and also accounted
for heterogeneous variances. To test the performance
of the proposed models, the dataset was randomly
split into two datasets, 2/3 and 1/3 of the data for
training and validation, respectively and the analysis
was replicated five times.

SNP genotyping and quality control
A total of 2230 Nellore animals (Bos indicus) were geno-
typed for 777,962 SNP markers with the Illumina BovineHD
BeadChip assay. This data builds on previously published
studies [37, 39]. The quality control step consisted of
excluding SNP markers with minor allele frequency
less than 0.02 and SNPs with Call Rate (CRSNP) < 0.98
and Fisher’s exact test P-value for Hardy-Weinberg
Equilibrium (HWE) < 1 × 10− 5.

CNV segmentation and genotyping
The multivariate CNV calling approach of Golden Helix
SVS 8.3.0 (Golden Helix Inc., Bozeman, MT, USA) was
used to detect common CNV events. This is because other
traditional CNV discovery methods are not designed to find
common CNVs but to report more CNVs [7]. In total,
992,350 CNVs were detected, as described previously [36].
By merging all the segments, 445 non-redundant CNV
events were identified in the 2230 samples. After filtering
away CNVs over 5 Mb and CNVs with frequency < 0.45%
(i.e. appearing in less than 10 samples), a total of 231 CNVs
with high confidence, ranging from 894 bp to 4,855,088 bp,
were retained and used in further analysis.
After visual inspection of the histograms of segment

mean intensities (LRR), all 231 CNVs were assigned into
2 categories: CNV events with simple and distinct geno-
type clusters or CNV with multiallelic and complex
genotype clusters. Deletions and biallelic duplications
can be genotyped if the clusters representing different
genotypes are sufficiently distinct. Based on this classifi-
cation and event frequency, three different CNV subsets
were tested and used in genomic prediction analyses: 1)
common deletions (n = 55) with frequency > 5%; 2) all
deletions (n = 72) and 3) all deletions and biallelic dupli-
cation (n = 173) (Additional file 1: Table S1).

Statistical analysis
The first three models used to estimate DGVs considering
SNP effects only are the following: 1) Bayesian regression
model (BayesA), a mixture Bayesian model (Bayes B) and

Table 1 Number of animals and heritabilities of traits analyzed

Trait N h2

BW 2058 0.37

CW 2032 0.25

CY 1979 0.31

MW 2032 0.26

MY 1979 0.30

PW 1982 0.25

PWG 1990 0.33

PY 1979 0.31

WG 2052 0.26
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a GBLUP model without polygenic effects (GBLUP). All
three models accounted for additive effects only.
The first approach to combine SNP marker informa-

tion and CNV information (BayesA+CNV) is described
below. In this approach we assume that SNP effects and
CNV effects contribute to the genetic variance. Using
this approach the effects of variants will be modeled as
the following:

yi ¼ μþ
Xp

k¼1

xikbk þ
Xm

l¼1

zilgl þ ei ð1Þ

Where yi is the pseudo-phenotype (dEBV) for animal
i, μ is the overall mean, xik is the SNP marker genotype
for animal i at locus k (k = 1, 2…, p)coded as the number
of copies of minor allele, bk is the kth SNP effect, zil is
the CNV genotype for animal i, gl is the lth CNV effect
and ei is the residual term.
For CNV effects, a flat prior was assumed since the

number of CNVs is several folds smaller than the num-
ber of observations therefore allowing the data to drive
the inferences of CNV effects.
The second approach to incorporate SNP markers and

CNVs is a mixture model (BayesB+CNV) similar to the

model in eq. (1) except for the SNP effects part
Pp

k¼1
xikbkIk

where xik is the genotype of the kth marker, coded as the
number of copies of the minor allele, bk is the effect of
marker k, and Ik is an indicator variable that is equal to 1
if the kth marker has a non-zero effect on the trait and 0
otherwise. A binominal distribution with known probabil-
ity π = 0.01 was assumed for Ik. As opposed to SNPs, a
mixture distribution was not assumed for CNVs, since the
number of CNVs is small.
A third approach is GBLUP where CNVs were mod-

eled as a covariate which can be described as:

y¼XbþZaþe ð2Þ
where y is the vector of dEBVs, b is a vector of fixed
CNV covariates coded as − 1, 0, 1 for neutral, loss and
gain states respectively, a is the vector of random animal
additive effects and e is the vector of residual terms. The
direct genomic value (DGV) was calculated as:

DGV ¼ Xb̂þ Zû ð3Þ
Where DGV is the vector of direct genomic values, X

is the matrix of CNV covariates, b is the vector of CNV
effects, Z is the matrix of genotypes and u is the vector
of estimated SNP effects.
Models adopted in this study were compared using the

following criteria: Pearson’s correlation between dEBV
and DGV, mean squared error of Prediction (MSE) and

the regression slope of dEBVs on DGVs for animals in
the validation dataset in order to test the inflation/defla-
tion degree of genomic predictions.
Gibbs sampler was used with a chain of 90,000 itera-

tions for each parameter, with a burn-in period of 10,000
iterations and a sampling interval of 100 iterations. Con-
vergence testing was performed for all parameters in-
cluding SNP effects following Geweke’s (1992) [40] and
Heidelberger and Welch’s (1983) [41], and visual analysis
of trace plots was also performed using Bayesian Output
Analysis program.

Results and discussion
CNV detection
Out of 231 CNV, 95 (41.13%) were pure deletions.
Within the remaining CNVs, only 12 CNVs (5.19%) have
duplication frequency > 5% and all other 124 CNV had
duplication frequency < 5%. Based on CNV classification
and event frequency (Methods), three different CNV
subsets were tested and used in genomic prediction ana-
lyses: 1) common deletions (n = 55) with frequency > 5%;
2) all deletions (n = 72) and 3) all deletions and biallelic
duplication (n = 173) (Additional file 1: Table S1).
As we described previously [42], most of deletions re-

ported in this study by the SVS’s multivariate option
were either no deletions or homozygous deletions, with
only a handful of events were heterozygous deletions. A
similar observation of two alleles was found for biallelic
duplications, the event was either with no duplication or
with duplication. These results indicated that deletions
and biallelic duplications could be accurately genotyped
with defined genomic coordinates and mainly 2 states
(with or without deletion or duplication), which were
similar to the behaviors of common SNPs. As demon-
strated for human and cattle CNVs previously [4, 36, 43],
the assumed additive model was largely satisfied when de-
letions and biallelic duplications were included in genetic
prediction.

Genomic prediction
Different methods of incorporating CNVs into genomic
evaluation were compared based on their prediction ac-
curacies. Using the average of 5 replicates, prediction
accuracies computed as Pearson’s correlation between
DGV and dEBV for all nine traits using SNP markers
are shown in Table 2. The accuracy for BW trait was
0.21 using BayesA and dropped to 0.17 and 0.20 using
BayesB and GBLUP respectively. For MW, higher ac-
curacy was seen using GBLUP (0.40) compared to
models BayesA and BayesB with accuracies of 0.36 and
0.34 respectively. The highest prediction accuracy was
noticed for PY using BayesB model (0.62). On average
GBLUP model resulted in slightly higher genomic predic-
tion accuracies than BayesA and BayesB. The genomic
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prediction accuracy results of the three models differed
from trait to trait as displayed in Fig. 1.
The prediction accuracies integrating CNVs are also

presented in Table 2. Three different CNV subsets were
tested (common deletions with frequency greater than
5%, all deletions, and all deletions and biallelic duplica-
tions). A small increase in prediction accuracy was seen
for BW for all models across all three scenarios. The
highest increase was noticed for model BayesB+CNV
using all deletions (0.23 vs. 0.17). Further, prediction ac-
curacy slightly increased for MW, MY and PW traits.
Using BayesB model, the prediction accuracy for MW
was 0.34, the accuracy increased when including CNVs
(BayesB+CNV) to 0.39, 0.38 and 0.38 for common

deletions greater than 5%, all deletions, and all deletions
and biallelic duplications respectively.
A decrease in accuracy was also noticed when incorp-

orating CNVs in the prediction. Accuracy for trait CW
decreased from to 0.12 using BayesA to 0.10 using
BayesA+CNV. The largest decrease in prediction accur-
acy was seen for WG using BayesB+CNV model. This
decrease could be due to redundant information of
CNVs already captured by SNP markers. On average,
using common deletion CNVs with frequency greater
than 5% resulted in higher accuracies. Furthermore,
GBLUP+CNV slightly outperformed BayesA+CNV and
BayesB+CNV. This gain in accuracy was observed when
including CNVs into GBLUP type of approach. A plausible

Fig. 1 Prediction accuracies calculated as Pearson’s correlations between direct genomic values (DGVs) and dEBVs of animals in the validation
data sets using BayesA, BayesB and GBLUP

Table 3 Mean squared error (MSE) of genomic predictions of different models using all deletions and biallelic duplications (173 CNVs)

Trait BayesA BayesA+CNV BayesB BayesB+CNV GBLUP GBLUP+CNV

BW 0.87 0.86 0.89 0.85 0.88 0.89

CW 0.10 0.14 0.11 0.12 0.12 0.12

CY 0.18 0.21 0.20 0.23 0.19 0.21

MW 0.29 0.29 0.30 0.26 0.24 0.25

MY 0.28 0.32 0.26 0.22 0.27 0.22

PW 0.08 0.11 0.10 0.07 0.09 0.11

PWG 25.76 25.45 24.32 24.49 23.76 24.38

PY 0.16 0.16 0.14 0.15 0.15 0.11

WG 18.32 20.85 20.14 20.76 14.60 16.68
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explanation to the behavior seen using this approach is
that the genomic relationship matrix G used in GBLUP
does not capture all the genetic variation, therefore in-
cluding CNVs as covariates may explain part of the miss-
ing genetic variance and thus improving the prediction
accuracy.
By evaluating the models in this study using the MSE

criterion (Table 3), we found that the goodness-of-fit of
the model did not improve when including CNVs into the
model (BayesA+CNV, BayesB+CNV and GBLUP+CNV),
but on average, MSE was higher for these models.
In order to measure the degree of inflation or deflation

of direct genomic breeding values (DGV), the slope of
the regression (b1) of dEBVs on DGV was evaluated.
Table 4 shows the estimates of b1 for all nine traits.
Model BayesA and BayesA+CNV resulted in inflated es-
timates compared to the other models. On average
GBLUP performed the best in terms of scale.
A study using the same dataset [44] revealed genetic

stratification among the samples. Population stratifica-
tion could potentially affect the resulting genomic pre-
diction accuracies; however a random cross-validation
approach was adopted in this study so that the impact of
stratification was minimized [45]. In general, the predic-
tion accuracy of the DGV for most traits using only SNP
was in concordance with the results reported in litera-
ture for Nellore cattle breed [37]. For example the pre-
diction accuracy for BW using GBLUP was 0.24 as
reported in [37], and it resulted in an accuracy of 0.20
here (Table 2). Additionally, although genomic predic-
tion accuracies were computed using dEBVs as the re-
sponse variable; the results shouldn’t greatly change if
other unbiased measures of true genetic value (e.g., aver-
age corrected performances (YD) or DYD for bulls)
instead of dEBVs were used.

Conclusions
In this study, including copy number variation information
into genomic selection proved to be beneficial for some
traits. However, their impact varied from model to model
and from trait to trait and a universal model is yet to be
developed. The small increase in prediction accuracy seen
when integrating CNVs could be due to their function
either as causal genes or as tagging markers. This might
help in the prediction of complex traits and explain part of
the missing heritability that SNP markers fail to capture.
Future efforts are warranted to better utilize CNV informa-
tion in genomic evaluation methods.

Additional file

Additional file 1: Table S1. Detail information of the CNVs detected
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