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Landscape of transcriptional deregulation
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Abstract

Background: Lung cancer is a very heterogeneous disease that can be pathologically classified into different subtypes
including small-cell lung carcinoma (SCLC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and
large-cell carcinoma (LCC). Although much progress has been made towards the oncogenic mechanism of each
subtype, transcriptional circuits mediating the upstream signaling pathways and downstream functional consequences
remain to be systematically studied.

Results: Here we trained a one-class support vector machine (OC-SVM) model to establish a general transcription
factor (TF) regulatory network containing 325 TFs and 18724 target genes. We then applied this network to lung
cancer subtypes and identified those deregulated TFs and downstream targets. We found that the TP63/SOX2/
DMRT3 module was specific to LUSC, corresponding to squamous epithelial differentiation and/or survival. Moreover, the
LEF1/MSC module was specifically activated in LUAD and likely to confer epithelial-to-mesenchymal transition, known
important for cancer malignant progression and metastasis. The proneural factor, ASCL1, was specifically up-regulated in
SCLC which is known to have a neuroendocrine phenotype. Also, ID2 was differentially regulated between SCLC
and LUSC, with its up-regulation in SCLC linking to energy supply for fast mitosis and its down-regulation in LUSC
linking to the attenuation of immune response. We further described the landscape of TF regulation among the three
major subtypes of lung cancer, highlighting their functional commonalities and specificities.

Conclusions: Our approach uncovered the landscape of transcriptional deregulation in lung cancer, and provided a
useful resource of TF regulatory network for future studies.
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Background
Lung cancer is the leading cause of cancer-related deaths
worldwide. Pathologically, lung cancers can be classified
as small-cell lung carcinoma (SCLC) and non-small-cell
lung carcinoma (NSCLC), and the latter can be further
divided into lung adenocarcinoma (LUAD), lung squa-
mous cell carcinoma (LUSC), and others such as
large-cell carcinoma (LCC). Among these lung cancer
subtypes, LUAD, LUSC and SCLC are most prevalent,
accounting for about 40%, 25-30% and 10-15% respect-
ively (https://www.cancer.org). Previous mechanistic
studies have greatly advanced our knowledge about
how lung cancer initiates, progresses and responds to
drug treatments [1–3]. However, it remains interesting to

systematically uncover the molecular regulatory network
in contributing to lung cancer malignant progression.
Transcription factors (TFs), known to be evolutionarily

conserved in orchestrating transcriptional gene regulation
networks, are the key players in contribution to a broad
range of critical cellular physiological and pathological
processes, from normal development and physiological
processes to diseases such as cancer [4–7]. Notably, mas-
ter TFs bind to the corresponding promoter regions via
recognizing specific short sequence patterns (‘motifs’), and
regulate transcriptional expression of a series of target
genes, which thus control cell growth, proliferation and
differentiation. For instance, TFs such as PPARγ and C/
EBPα are key regulators of adipogenic differentiation [8].
Overexpression of TFs including OCT4, SOX2, KLF4 and
MYC can reprogram fibroblasts to pluripotent stem cells
[9, 10]. Nanog, another TF which is transcriptionally regu-
lated by OCT4 and SOX2, is also important for the
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maintenance of pluripotency [11]. Furthermore, TFs
are the major driving forces of transdifferentiation and
transition among different cell types [12]. Such TF regula-
tory programs also exist in cancer. For example, the
epithelial-to-mesenchymal transition (EMT) process,
mediated by key TFs such as SNAILs and bHLHs, is
known to promote cancer malignant progression and
metastasis [13, 14]. The reprogramming factor, SOX2,
has also been identified as a lineage-survival oncogene
in LUSC [15]. SOX2 and TP63 (the other known LUSC
lineage TF) are both frequently amplified and crucial
for LUSC development [15–17]. Recently, we have also
shown that, TP63 mediates the transdifferentiation from
LUAD to LUSC [18].
To systematically understand how transcription factors

contribute to the malignant progression of lung cancer,
we employed a machine learning approach to build a
transcriptional regulatory network, based on curated regu-
latory relations, motif distributions, protein-protein interac-
tions (PPIs) and gene co-expression. With the application
of this network in LUSC, LUAD and SCLC, we identified
those core TFs specific for each lung cancer subtype. We
further described the landscape of TF deregulation in these
three major lung cancer subtypes.

Methods
Lung cancer data sources and preprocessing
The RNA-Seq FPKM and copy number data for TCGA
LUAD and LUSC were downloaded from the UCSC Xena
hub (http://xena.ucsc.edu/). The SCLC gene expression data
were obtained from the paper-accompanied data [19]. Other
LUAD and LUSC data outside of TCGA were downloaded
from the NCBI GEO with accession number GSE81089. To
be concise, we refer to these LUAD and LUSC datasets out-
side of TCGA as ‘LUAD2’ and ‘LUSC2’. For FPKM data, a
log-transformation was applied before downstream analyses
of co-expression and differential expression.

Promoter sequences and motif analyses
We obtained genomic sequences (UCSC hg19) from 10kb
upstream to 10kb downstream of TSS for each Ensembl
gene. Non-redundant TF motifs were from the JASPAR
database [20] and converted to MEME format. Additional
motifs (NKX2-1 and ASCL1) were trained from the re-
ported TF binding peaks [21, 22], with the MEME-ChIP
pipeline [23]. Scanning of motifs along promoter sequences
was performed with FIMO (default p value threshold, 1e-4)
[24]. FIMO matches on each strand were categorized by
upstream 10kb, 2kb, 500b and downstream 10kb, 2kb,
500b, respectively.

Gene co-expression and network neighborhood analyses
We downloaded the comprehensive tissue profiling data
from the GTEx project (version v6p) [25]. After logarithmic

transformation and quantile normalization with voom [26],
Pearson Correlation Coefficient (PCC) was computed for
each pair of genes. Protein-protein interactions were down-
loaded from the integrated EBI IntAct molecular inter-
action database [27]. For each candidate gene, its PCCs
with the TF and TF-interacting proteins (‘neighbors’) were
computed, and the latter PCCs were summarized into three
quantiles (25% as Q1, 50% as M, 75% as Q3). The candidate
gene’s PCCs with the background genes were also calcu-
lated and summarized into these three quantiles.

OC-SVM model training and evaluation
One-class support vector machine (OC-SVM) is a spe-
cial type of SVM model suitable for solving problems
where high-quality training data is available for only one
class, and it has been widely used in single-class learning
and outlier detection [28, 29]. Here we used curated
TF-target relations from the TRRUST database as the
positive training set [30], with synthetic negatives to
evaluate the model performance. The negative set was
built with 1000 20kb random sequences scanned with
FIMO using the same setting. The correlation coefficient
data for synthetic genes were randomly chosen from real
gene correlation coefficients. A random subset of 50,000
TF-target pairs were used for evaluation. The OC-SVM
model was trained using the libSVM R wrapper in the
e1071 package. With the radial basis kernel and a series
of ‘nu’ (ranging between 1^-4 and 0.9) and ‘gamma’
(2^-5, 2^-8, 2^-11), the performance of models were
assessed in terms of sensitivity and false positive rate
(FPR) with 10-fold cross-validation. To achieve a high
specificity that is essential for large-scale predictions
where the candidate relations are huge (over 17,000,000),
we controlled the final model (nu=0.5, gamma=2^-5) at a
relatively low FPR (0.002), sacrificing some sensitivity
(50%). This predicted 2,432,769 relationships between TFs
and protein-coding target genes, and ~5000 of them were
likely to be false positives.

Identification of core TFs in lung cancer
To ensure specificity on the lung cancer dataset, we fil-
tered the predicted targets for individual TFs by enfor-
cing two sequential steps: (i) the target gene must have
conditional co-expression with the TF (PCC>=0.5); (ii)
the target gene must have inter-correlations with at least
1/6 of the other target genes (PCC>=0.5). Thus we en-
sured both the TF-target correlations and the overall
inter-correlations among the targets. We next deter-
mined the differential regulation of TF and targets in
cancer versus normal tissue. A 2-fold expression change
threshold (i.e. log2fc=1) and paired Student’s T test were
used to determine up- and down-regulated genes. The
Benjamini-Hochberg method was used to control the
overall false discovery rates (FDR=0.1). All datasets were
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analyzed with these same threshold settings. For the
TFs, we only required them to be weakly differentially
expressed in cancer versus normal (log2fc>=0.3 and
p<=0.05), as we noticed some TFs may not be very
strongly deregulated at the mRNA level. Then, for each
TF, we counted the number of its target genes that were
up- and down-regulated in cancers (‘n_up’ and ‘n_down’, re-
spectively), and classified the TF-targets group as ‘up’ if the
TF was overexpressed and n_up/n_down>=10 (vice versa).

Gene Ontology analysis
Gene Ontology (GO) annotations for human were ob-
tained from the org.Hs.eg.db package (Bioconductor).
The GO hierarchy was downloaded from the GO official
website (http://geneontology.org) and we focused on the
‘biological processes’ category, which are more relevant
to functional enrichment analysis. Fisher’s exact test was
used to assess the enrichment for each GO term, and
those significant terms (p<0.05 and OR>2) were further
filtered according to the GO hierarchy with a priority
given to more specific terms.

Results
An OC-SVM model for predicting transcriptional
regulatory network
To unravel the TF regulatory network in the major lung
cancer subtypes, we designed a two-step strategy: first
build an overall TF regulatory network, and then com-
bine dataset information to identify dataset-specific TFs
and regulation. Over the years, experimentally validated
TF-target relationships have accumulated and become a
valuable resource for learning general principles that would
guide further discoveries of novel regulation [30–32]. For
such experimental knowledge, the positive training datasets
are of high quality whereas the negative datasets are mostly
unavailable. To build a global TF regulatory network
based on the resource available, we took advantage of
an OC-SVM framework that has been widely used in
the single-class prediction field [33].
We collected and extracted the following information

for establishing TF-target relationships: the presence and
distribution of TF binding motifs along the promoter
regions, the co-expression between a TF and its target genes,
as well as the co-expression of a TF’s interacting proteins
(‘neighborhood’) with its target genes (Fig. 1, Methods).
From the distribution of Pearson correlation coefficients

(PCCs), there was much stronger positive co-expression
than the background (Fig. 2a, b), implicating the rationality
of co-expression-based TF-target prediction. In addition,
the TF-interacting proteins displayed a positive but weaker
co-expression with target genes. An interesting example
was JUND, which regulated downstream target gene
GADD45A (Fig. 2c-d, Additional file 1: Figure S1). Al-
though JUND itself did not show clear co-expression

with GADD45A, its interacting proteins indeed showed
strong positive co-expression with GADD45A. Therefore
we integrated the neighborhood co-expression with target
genes into the OC-SVM model.
To assess the performance of the OC-SVM model, we

artificially synthesized some negative sets based on the
following principles: 1) the synthetic genes’ promoter
regions are randomly generated and then summarized
for individual TF-binding motifs; 2) the co-expression
between synthetic genes and other genes including TFs
and TF neighbors were randomly extracted from real
co-expression data using a randomized gene label. Model
performance was evaluated with 10-fold cross-validation.
At a sensitivity level of 75%, the true positive rates are gen-
erally above 90% (Fig. 3a). We realized that minimizing the
FPR was critical for our tasks, since the number of possible
regulatory relationships are rather huge: e.g. for 300 TFs
and 20,000 genes, there would be 6 million possible rela-
tions. Therefore we had to minimize FPR as long as the
sensitivity was acceptable. To further guarantee the appro-
priate choice of model parameters, we evaluated different
parameter combinations (nu=0.3, 0.5, 0.7; log2gamma=-5,
-8, -11) for TF network training, with a real dataset (TCGA
LUSC) and two known core LUSC TFs (TP63 and SOX2)

Fig. 1 Prediction of TF targets with OC-SVM. TF binding motifs were
scanned along promoter regions (-10kb~+10kb around TSS) for
annotated genes. Co-expression between TF and candidate
targets, as well as between the TF PPI neighborhood and
candidate targets, were analyzed. An OC-SVM model was trained
with curated TF-target knowledge, and synthetic negatives were
used for evaluating its performance
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serving as positive controls. Each combination successfully
recalled both TFs, indicating that core TFs might be identi-
fied even with a less sensitive model (Additional file 2:
Table S3). Nonetheless, the number of targets predicted for
each TF decreased with lower model sensitivities, empha-
sizing that a higher model sensitivity might be more power-
ful to detect core TFs (Additional file 2: Table S3). Based on
the cross-validation and real dataset evaluations above, we
chose an appropriate parameter combination (nu=0.5 and
log2gamma=-5) to balance our specific requirements of
sensitivity (~50%) and FPR (~0.2%). This resulted in a pre-
dicted network of 325 TFs and 18724 protein-coding target
genes (Fig. 3b). The numbers of target genes for TFs
are 7332 in median (ranging from 338 to 15929), and
the numbers of regulatory TFs for genes are 139 in me-
dian (ranging from 0 to 244), indicating the network
was quite general and should be narrowed down for
identification of condition-specific regulation.

Identification of dataset-specific differential
transcriptional regulation
To identify condition-specific regulation, we enforced three
requirements (Methods): (i) co-expression between TF and

predicted targets; (ii) co-expression among the predicted
targets; (iii) differential regulation between cancer and nor-
mal tissue: the TF itself should at least be weakly deregu-
lated and its targets should be distributed in the same
direction as the TF, with an enrichment of 10 fold versus
the opposite direction (Methods).
In order to evaluate the effect of differential criteria on

TF identification, various combinations of log2fc and
FDR q value thresholds were tried on the TCGA LUSC
dataset. Although the numbers of up- and down-regulated
genes fluctuated greatly, the TFs identified were quite
stable, indicating the robustness of the methodology
(Additional file 2: Table S4). Therefore, the same differen-
tial threshold (|log2fc|>=1 and q<=0.1) was applied to all
datasets.
We applied the above analyses and requirements to the

following lung cancer datasets (Methods), and identified
dataset-specific regulatory TFs: TCGA LUAD (referred to
as ‘LUAD’), TCGA LUSC (referred to as ‘LUSC’), SCLC
dataset (referred to as ‘SCLC’), independent LUAD and
LUSC dataset (referred to as ‘LUAD2’ and ‘LUSC2’ re-
spectively) (Additional file 2: Table S1). We also clustered
the up- and down-regulated TFs according to their targets

a b

c d

Fig. 2 Co-expression analyses for TF, TF neighborhood and known target genes. a, b Distribution of PCCs between TFs and target genes,
between TF neighborhoods and target genes, and among all genes as the background. c JUND and its neighborhood network. Nodes were
colored according to co-expression with JUND’s known target GADD45A. d Co-expression distribution between JUND’s neighborhood
and GADD45A
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overlapping to identify potential co-regulated TFs (Fisher’s
exact test, p < 0.05).

The TP63/SOX2/DMRT3 circuit as a hallmark of lung
squamous carcinomas
We identified 26 up-regulated TFs in LUSC, 21 of which
were also identified in the LUSC2 dataset independently,
suggesting a good agreement between different datasets
(Fig. 4a, Additional file 3: Figure S2A, Additional file 2:
Table S1). We then merged these two sets of up-regulated
TFs and only retained those with shared target genes. A
further clustering of these TFs showed some of them were
well clustered into TF modules (Fig. 4b, Additional file 3:
Figure S2B).
Among these, TP63 and SOX2 were well-known

LUSC-specific oncogenic TFs that were important in
squamous epithelial differentiation and/or survival

[15–17, 34–36]. Moreover, our analyses indicated that
DMRT3 was associated with TP63 and SOX2 in the
same module (Fig. 4b-d). The functional implication
of DMRT3 in LUSC was not well known, though two
earlier studies found that DMRT3 could be lost
through copy number alteration mechanisms in LUSC
[37, 38]. To reconcile this seeming discrepancy, we
exploited inter-correlations among DMRT3 copy
number, DMRT3 expression, and TP63/SOX2 expres-
sion through an integrative analyses of the TCGA data.
We found that the copy number status of DMRT3 was
heterogeneous in LUSC, with tumors not bearing
DMRT3 deletions having significantly higher DMRT3
expression, as well as significantly increased TP63/
SOX2 expression (Additional file 3: Figure S2C-E).
These indicated that DMRT3 might have dual func-
tions correlated with the heterogeneity of LUSC, with

a

b

Fig. 3 Training and prediction of the OC-SVM model. a ROC curves for model evaluation with 10-fold cross validation. The positive sets were
curated known TF-target regulatory relationships, whereas the negative sets were artificially synthesized (See Methods). ROC curves for three
values of log2 gamma parameter were shown: -11, -8, -5. b Predictions of OC-SVM. Left, distribution of TFs by the number of predicted targets.
Right, distribution of genes by the number of TFs predicted to target them
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its higher expression mainly restricted to samples overex-
pressing TP63/SOX2. In addition, both SOX2 and DMRT3
targeted the TP63 promoter (Additional file 3: Figure S2F),
and these three factors altogether co-regulated a common
subset of genes involved in epithelial cell differentiation
(Fig. 4e, left). Therefore, we hypothesize that DMRT3 may
participate in the TP63/SOX2 circuit for regulating squa-
mous cell differentiation and/or survival, and that these
three factors may co-regulate genes functioning in human

LUSC development and squamous phenotype formation
(Fig. 4e, right). Interestingly, a more recent study identified
DMRT3 as an important regulator of neuronal differenti-
ation programs involved in locomotor network develop-
ment [39]. Future experimental studies are worth to fully
characterize the implication of DMRT3 with SOX2/TP63
in augmenting LUSC epithelial survival.
Furthermore, a comparison with the other two lung can-

cer subtypes revealed that, the TP63/SOX2/DMRT3 circuit

c

e

d

a b

Fig. 4 Transcriptional hallmarks for LUSC. a Consistency of up-regulated TFs identified in the LUSC and LUSC2 datasets. b Clustering of up-
regulated TFs shared in the two LUSC datasets. TFs with 10 or fewer targets shared between the two datasets have been filtered out before
clustering. Cluster membership was determined using Fisher’s exact test (p<0.05). c, d Expression patterns of the TP63/SOX2/DMRT3 module and
their commonly regulated genes in LUSC (c) and LUSC2 (d) datasets. e Functional enrichment of co-regulated genes by TP63/SOX2/DMRT3 (left).
A hypothetical regulatory model was proposed (right)
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was among the TFs up-regulated in a LUSC-specific man-
ner (Fig. 7c), consistent with known properties of squamous
lineage survival TFs.

Functional regulation transcriptionally encoded in lung
adenocarcinomas
We next analyzed the TF modules that were up-regulated
in LUAD (Fig. 5). The two independent datasets again
show good agreement, although not as good as that in
LUSC datasets (Fig. 5a). To reduce batch effects, we re-
stricted our analyses to the LUAD dataset. Several LUAD
TFs were commonly shared with LUSC, such as E2F7,
E2F8, MYBL2, TFAP2A, TFAP4 and OTX1 (Fig. 4b, 5b,
Additional file 2: Table S1). Other TFs such as LEF1
(Lymphoid Enhancer-binding Factor 1) and MSC (Muscu-
lin, also Activated B-Cell Factor 1) were specific to LUAD
and not present in LUSC or SCLC (Fig. 7c, Additional
file 2: Table S1). LEF1 is in the Wnt signaling pathway
and known to regulate the EMT process. It has been
found to be activated in multiple cancer types ranging
from leukemia to solid tumors including LUAD [40].
Consistent with its function in EMT, LEF1 drives me-
tastasis of primary LUAD to brain and bone [41]. The
other factor, MSC, is less studied in lung cancer. Nonethe-
less, its overexpression has been implicated in disruption
of normal B cell differentiation program and Hodgkin
lymphoma development [42]. These data suggest that

MSC and LEF1 might functionally converge at EMT. In
LUAD, MSC and LEF1 clustered together to regulate a
shared set of target genes (Fig. 5b). Furthermore, analyses
of these genes co-regulated by MSC and LEF1 revealed
significant enrichment of terms such as extracellular
matrix (ECM) organization and cell-ECM interactions,
which were related to EMT (Fig. 5c, d). Together, our data
showed that two LUAD-specific TFs, MSC and LEF1,
might synergize in promotion of lung cancer malignant
progression through EMT process.
Surprisingly, NKX2-1, a TF amplified in about 12% of

LUAD [43], turned out to be a down-regulated regulator in
the TCGA LUAD dataset, and not identified in the LUAD2
dataset (Additional file 4: Figure S3B, Additional file 5:
Figure S4, Additional file 2: Table S1). Several observa-
tions might help explain this unexpected result. First,
NKX2-1 was amplified in only a limited subset of
LUAD tumors (Additional file 4: Figure S3C) [43]. Second,
NKX2-1 expression showed a stage-dependent manner,
with up-regulation in stage I and gradual down-regulation
from stage II to IV (Additional file 4: Figure S3D), in con-
sistent with previous publication [44]. Third, it has been
proposed that NKX2-1 plays dual roles in LUAD, both
oncogenic and anti-oncogenic (also anti-metastatic) in
LUAD [45, 46]. Taken together, NKX2-1 may have
stage-specific function in LUAD and tends to be
down-regulated as LUAD become advanced.

c d

a b

Fig. 5 Transcriptional deregulation in LUAD. a Consistency of up-regulated TFs identified in the LUAD and LUAD2 datasets. b Clustering of up-
regulated TFs identified in the TCGA LUAD dataset. Cluster membership was determined using Fisher’s exact test (p<0.05). c Expression pattern of
the LEF1/MSC module and their common targets in TCGA LUAD dataset. d Functional enrichment of genes co-regulated by LEF1/MSC
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Regulatory patterns specific to small-cell lung carcinomas
Traditionally, LUAD and LUSC are categorized in the
NSCLC group, as SCLC is distinct in its cell size, shape and
cell mitosis rate. In SCLC, we found those uniquely
up-regulated TFs such as ASCL1, CENPB, HSF2, ZNF143
and down-regulated TFs such as STAT3, REST, NFKB1,
different from those in LUAD and LUSC (Fig. 6a-b, Fig. 7c,
Additional file 2: Table S1). Among these, the bHLH family
TF ASCL1, a well-known neuronal differentiation regulator,
is required by neuroendocrine tumors including SCLC
[47–49]. ASCL1 target genes showed an involvement in
regulation of neurotransmitter levels and presynaptic
process related to synaptic transmission (Additional file 2:
Table S2). Moreover, the target genes of ASCL1 were sig-
nificantly shared by FOXA2, whose target genes were also
enriched for neural-related functions including neuronal
generation and cell migration (Additional file 2: Table S2).
These again emphasized the unique neuroendocrine fea-
tures of SCLC, in contrast to LUAD and LUSC.
Interestingly, some TFs showed opposite expression

changes in comparison with LUAD and/or LUSC. For
example, ID2, FOXA2 and ID4 were up-regulated in
SCLC but down-regulated in LUAD and/or LUSC.
Similarly, TP63 and RARG were down-regulated in
SCLC but up-regulated in LUSC (Fig. 7c). We next ex-
plored the potentially opposite roles of ID2 in SCLC
and LUSC. In SCLC, ID2 regulates mitochondrion

organization, mitochondrion protein translations and
ATP synthesis (Fig. 6c), and its up-regulation probably
assisted SCLC cells in gaining sufficient energy to support
fast mitosis and proliferation. However, in LUSC, ID2 con-
ditionally regulated another set of genes involved in positive
regulation of immune response, leukocyte cell activation
and immune signaling (Fig. 6d), and down-regulation of
ID2 and its target genes help LUSC cells to escape immune
surveillance. This indicated that different types of cancer
cells may deregulate the same TF differently, in support of
cancer-specific need in malignant progression.

The transcriptional regulatory landscape of lung cancer
subtypes
We have unraveled the key TFs as well as their targets in
each of the three major subtypes of lung cancer (Fig. 7c,
Additional file 5: Figure S4, Additional file 2: Table S1).
Notably, there were some deregulated TFs shared by all
three subtypes. For example, two TFs, E2F1 and TCF3,
were up-regulated in all three subtypes (Fig. 7a, c). These
two factors both regulated target genes mainly involved in
cell cycle and/or cell division processes (Additional file 2:
Table S2). We found that E2F1 regulated genes enriched in
‘cell division’ across all three subtypes, with three target
genes in the GO term commonly regulated in lung cancers:
CCNF (cyclin F), NCAPH (Non-SMC Condensin I Com-
plex Subunit H), SPAG5 (Sperm Associated Antigen 5).

a b

c d

Fig. 6 Transcriptional deregulation in SCLC. a-b Clustering of up-regulated (a) and down-regulated (b) TFs, respectively. Cluster membership was
determined using Fisher’s exact test (p<0.05). c Functional enrichment of ID2 target genes in SCLC. d Functional enrichment of ID2 target genes
in LUSC
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Moreover, five TFs were found to be down-regulated in
all three subtypes: FOS, GATA2, SOX17, TBX5, TCF21
(Fig. 7b, c). They regulate various functions ranging
from ‘inflammatory response’ to ‘positive regulation of
apoptotic process’. Some TFs shared the same target
genes across the different subtypes, e.g., FLI1 probably tar-
gets CCRL2 (Chemokine/C-C Motif Receptor-Like 2), an
essential regulator of leukocyte recruitment in the lung
[50], in all three subtypes.
We also found dramatic difference of regulation patterns

among the subtypes. The two NSCLC isoforms (LUAD and
LUSC) shared more TFs than with SCLC (Fig. 7a, b). LUAD
and LUSC shared 5 up-regulated (TFAP4, OTX1, E2F8,

E2F1, TCF3) and 21 down-regulated factors (ID4, RXRG,
JDP2, MITF, SPI1, NFIX, NR2F1, ZEB1, ZNF423, ERG,
TFEC, ETS1, HOXA5, PKNOX2, TCF21, FLI1, SOX17,
TBX5, IRF8, FOS, GATA2). The up-regulated TFs mainly
regulated cell proliferation (‘mitotic nuclear division’, ‘cell
division’, ‘G1/S transition of mitotic cell cycle’ and ‘DNA re-
pair’), and the down-regulated TFs mainly regulated cell
differentiation (‘mesenchymal cell differentiation’, ‘lung de-
velopment’, ‘embryonic morphogenesis’, ‘pattern specification
process’), cell proliferation (‘negative regulation of cell pro-
liferation’) and immune responses (‘inflammatory response’,
‘T cell proliferation’, ‘T cell aggregation’) (Additional file 2:
Table S2). SCLC specifically up-regulated a series of TFs

c

a b

Fig. 7 Landscape of transcriptional deregulation in lung cancer. a Comparison of up-regulated TFs in LUAD, LUSC and SCLC datasets. b Comparison
of down-regulated TFs in LUAD, LUSC and SCLC datasets. c The global patterns of TF deregulation across the five datasets: LUAD, LUAD2, LUSC, LUSC2
and SCLC. Colors reflect the log2 scaled number of a TF’s targets, with up-regulated TFs in red and down-regulated in blue. Selected branches of TFs
that were common (orange for NSCLC-common, yellow for all-common) or subtype-specific (blue) are highlighted (bottom)
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(ASCL1, FOXA2, ID2, ID4, THAP1, ATF4, CENPB,
ZNF143, HSF2, ESRRA, TBP, INSM1, PKNOX1) that
functioned in neural functions (‘regulation of neuro-
transmitter levels’, ‘presynaptic process’, ‘generation of
neurons’, ‘neuron development’, ‘neurological system
process’), mitochondrial activities (‘mitochondrion
organization’, ‘mitochondrial translational elongation’),
protein synthesis (‘translation’, ‘rRNA processing’), me-
tabolism (‘purine ribonucleoside metabolic process’)
and cell proliferation (‘mitotic cell cycle process’, ‘cell
division’). Those down-regulated TFs in SCLC (JUNB,
NFKB1, VENTX, CREB3L1, REST, RARB, FOXO1,
EGR1, TP63, ZBTB7A, STAT3, MEOX1, FOSL2, RARG,
GATA5, RXRA, NPAS2, LEF1, BCL6, TCF12) were func-
tionally linked to cell differentiation (‘positive regulation of
cell differentiation’, ‘epithelial cell differentiation’) and im-
mune responses (‘inflammatory response’, ‘T cell aggrega-
tion’, ‘positive regulation of cytokine production, ‘leukocyte
migration’) (Additional file 2: Table S2). These findings in-
dicated that NSCLC and SCLC hijacked different molecular
machineries to promote malignant progression. Nonethe-
less, SCLC had more specific TF circuits to increase mito-
chondrial activities and protein synthesis, which probably
provided high levels of cellular energy in support of fast
mitosis [51].
A notable difference of TF circuits was even detected

between LUAD and LUSC, two major subtypes of NSCLC.
LUAD specifically up-regulated several TFs (LEF1, E2F3,
HLTF, FOXP3), whereas LUSC preferentially up-regulated
other TFs (SOX2, TP63, DMRT3, PITX1, E2F7, TFAP2A,
MYBL2, HOXA10, HOXC13, RARG, TFAP2C, POU6F2,
HOXD13, PAX9, TP73, E2F2). Besides the common
function enriched for these two up-regulated sets of
LUAD- and LUSC-specific TFs (‘mitotic nuclear division’,
‘cell proliferation’), there were unique functions enriched
for LUSC (‘epithelial cell differentiation’, ‘epidermis devel-
opment’, ‘skin development’) (Additional file 2: Table S2),
and the TP63/SOX2/DMRT3 cluster was closely related
to this squamous differentiation program.

Discussion
Transcriptional regulation serves as the fundamental
regulatory program in orchestrating normal develop-
ment and disease progression. To unravel the transcrip-
tional target genes of TFs, both experimental techniques
(e.g. SELEX, ChIP-on-chip, ChIP-seq) and computa-
tional methods have been successfully developed. Trad-
itionally, TF binding preferences can be characterized as
position-weight matrices (PWMs), which are then used
to scan the promoter regions for potential hits. Although
PWM-based methods and extensions have been widely
followed and deeply exploited [52–59], sequence-based
methods per se are not sufficient to account for the full
TF-DNA interaction specificities in vivo [60, 61]. To

enhance the specificity of target gene predictions, it is
useful to incorporate expression relevance between TF
and targets [62, 63]. However, as TFs may often be regu-
lated by post-translational modifications, translocations,
as well as protein-protein interactions, its expression level
could not fully represent the regulatory activity. To remedy
this, we used a network-based approach to incorporate
expression relevance dispersed in the TF neighborhood.
Through the integration of PWM matching, expression
correlations, and neighborhood relevance, an OC-SVM
model was trained and evaluated for the performance in
predicting known targets, which allowed us to control the
false discovery rate to 0.002.
Another major motivation of this work is to present

the landscape of transcriptional deregulation of lung
cancer including three major subtypes LUAD, LUSC and
SCLC. We reveal those common regulatory relationships
as well as subtype-specific regulatory relationships. We
have distinguished up- and down-regulation of TF circuits
in each subtype, and predicted a number of subtype-specific
TF modules (e.g. TP63/SOX2/DMRT3, LEF1/MSC, ASCL1
and ID2). Moreover, we have interpreted each module to
functionally explain that different mechanisms are hijacked
by different cancer cells to achieve corresponding malignant
progression. Notably, many of these functional outputs are
highly correlated, such as cell proliferation, dedifferentiation
and immune suppression. Nonetheless, different subtypes of
lung cancer also harbor unique TF machinery in contribu-
tion to tumor growth. For example, in SCLC, many unique
TF circuits are related to mitosis, protein synthesis, mito-
chondrial activities and energetic metabolism, which are
certainly important for promoting fast cell division. The
epithelial differentiation programs are also dramatically ele-
vated in LUSC, which are known important for squamous
cell lineage survival from studies of cell lines and mouse
models.
There are also some limitations of this study. We have

not necessarily required a TF itself to be co-expressed
with its target genes when training the general regula-
tory network. However, during the dataset analyses, we
still require the TF to have at least weak expression
changes (through using less stringent thresholds), as we
want to focus on those TFs that can be regulated at
expression level, which is also common for many TFs
important in the regulation of differentiation. Nonethe-
less, this may miss some TFs that are transiently regulated
without long-term changes in expression. In addition, we
restrict our analyses to activating TFs that up-regulate tar-
get genes, but the number of TFs that are repressive is
also nonnegligible. Future work will be needed to integrate
them into a more flexible model. Moreover, the SCLC
dataset that we used lacks normal controls, and so we
used the adjacent normal samples in the LUAD and LUSC
datasets to compare with SCLC. Although those adjacent
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normal tissues from LUAD and LUSC are quite similar
(Additional file 6: Figure S5), we cannot rule out the possi-
bility that those from SCLC might be different.
The complete landscape of complex deregulation in

various lung cancer subtypes still contains many gaps
and missing parts. This work provides an initial compre-
hensive study to unravel the overall patterns with an em-
phasis on those important circuits in lung cancer. Future
studies from both computational and experimental ap-
proaches would be necessary to decode and validate the
transcriptional networks in various lung cancer subtypes,
including those not covered here, such as LCC.

Conclusions
We have systematically studied the core transcriptional
deregulation in three well-characterized lung cancer
subtypes (LUAD, LUSC and SCLC), and identified a
number of common (e.g. proliferation-related E2F1
and TCF3) as well as subtype-specific TF circuits (e.g.
the epithelial-development-related TP63/SOX2/DMRT3
module in LUSC, the EMT-related LEF1/MSC module in
LUAD, and the neural differentiation regulator ASCL1 in
SCLC). Moreover, ID2 targets two different sets of genes
with one involved in mitochondrial activities in SCLC
and the other involved in immune response in LUSC,
highlighting the importance of the same TF differen-
tially regulated in different cancer subtypes. Nonethe-
less, different TFs are also employed by NSCLC and
SCLC to achieve similar functional consequences to
support tumor progression.

Additional files

Additional file 1: Figure S1. Co-expression between JUND or its
neighborhood and its known target gene GADD45A. Three of JUND’s
neighborhood genes with strongest co-expression with GADD45
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Additional file 2: Table S1. TFs deregulated in each lung cancer
dataset. Columns are: DS (dataset), DIR (direction of regulation), TF, lfc
(log2 fold change), p (differential t test p value), ntargs (number of
targets deregulated) and targs (targets deregulated). Table S2. GO terms
enriched in targets of each TF. Columns are: DS (dataset), DIR (direction
of regulation), TF, GO, Term, Annotated (Number of genes annotated and
recognized in GO term), GOI (Number of deregulated targets for each
TF), Hits (TF targets annotated in the GO term), OR (odds ratio), pFisher
(Fisher’s Exact Test p value) and Genes (Gene Hits). Table S3. Evaluation
of SVM parameters. Different parameter combinations were used to set
up the OC-SVM model for training. Each model was used to predict a TF
network, which was then applied to the LUSC dataset to see if the two
positive control TFs (TP63 and SOX2) can be recalled. Table S4. Evaluation
of differential analysis parameters. Several combinations of log2fc and q
value thresholds were applied to determine up- and down-regulated genes
in the LUSC dataset, which are further used for TF identification. The
identified TFs are compared with each other to evaluate the procedural
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summarizing tables; Bottom: detailed tables of TFs identified in each
parameter combination. (XLS 3594 kb)

Additional file 3: Figure S2. Down-regulation of TFs in LUSC. (A)
Consistency of down-regulated TFs identified in the LUSC and LUSC2

datasets. (B) Clustering of down-regulated TFs shared in the two LUSC
datasets. Cluster membership was determined using Fisher’s exact test
(p<0.05). (C) DMRT3 expression grouped by DMRT3 copy number status
(deletion vs. non-deletion) (Wilcoxon signed-rank test). (D) DMRT3 loss
status in relation to TP63 expression (Wilcoxon signed-rank test). (E)
DMRT3 loss status in relation to SOX2 expression (Wilcoxon signed-rank
test). (F) SOX2 (red) and DMRT3 (blue) binding motifs on the TP63 promoter
(-10kb to +10kb of TSS). Genomic coordinates are according to the hg19
assembly. (PDF 92 kb)

Additional file 4: Figure S3. Down-regulation of TFs in LUAD. (A)
Consistency of down-regulated TFs identified in the LUAD and LUAD2
datasets. (B) Clustering of down-regulated TFs identified in the TCGA
LUAD dataset. Cluster membership was determined using Fisher’s exact
test (p<0.05). (C) NKX2-1 copy number distribution in TCGA-LUAD dataset.
(D) NKX2-1 expression in normal lung and LUAD categorized by tumor
stage (I to IV). (PDF 94 kb)

Additional file 5: Figure S4. The complete version of Fig. 7c, showing
the global TF deregulation patterns across the five datasets: LUAD,
LUAD2, LUSC, LUSC2 and SCLC. Colors reflected the log2 scaled number
of a TF’s targets, with up-regulated TFs in red and down-regulated in
blue. (PDF 22 kb)

Additional file 6: Figure S5. Consistency among the normal lung
tissues from the four datasets: TCGA-LUAD, TCGA-LUSC, LUAD2 and
LUSC2. The PC1 and PC2 axes from Principal Component Analysis (PCA)
together explained 91.8% of total variance. A good consistency of these
normal lung tissues justified the assumption that they could be pooled
together for comparison with SCLC cancer samples. (PDF 42 kb)
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