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lateral gene transfer and gene loss?

Julie C. Dunning Hotoppm'3

Abstract

Background: Lateral gene transfer (LGT), also known as horizontal gene transfer, into multicellular eukaryotes with
differentiated tissues, particularly gonads, continues to be met with skepticism by many prominent evolutionary and
genomic biologists. A detailed examination of 26 animal genomes identified putative LGTs in invertebrate and vertebrate
genomes, concluding that there are fewer predicted LGTs in vertebrates/chordates than invertebrates, but there is still
evidence of LGT into chordates, including humans. More recently, a reanalysis of a subset of these putative LGTs into
vertebrates concluded that there is not horizontal gene transfer in the human genome. One of the genes in dispute is an
N-acyl-aromatic-L-amino acid amidohydrolase (ENSG00000132744), which encodes ACY3. This gene was initially identified
as a putative bacteria-chordate LGT but was later debunked as it has a significant BLAST match to a more
recently deposited genome of Saccoglossus kowalevskii, a flatworm, Metazoan, and hemichordate.

Results: Using BLAST searches, HMM searches, and phylogenetics to assess the evidence for LGT, gene loss, and rate
variation in ACY3/ASPA homologues, the most parsimonious explanation for the distribution of ACY3/ASPA genes in
eukaryotes involves both gene loss and bacteria-animal LGT, albeit LGT that occurred hundreds of millions of years ago
prior to the divergence of gnathostomes.

Conclusions: ACY3/ASPA is most likely a bacteria-animal LGT. LGTs at these time scales in the ancestors of humans are
not unexpected given the many known, well-characterized, and adaptive LGTs from bacteria to insects and nematodes.
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Background
“If all the trees were one tree, what a great tree that
would be.” — from a children’s nursery rhyme [1].

We have one great tree of life that grows and is pruned
by evolutionary processes. In 1859, Darwin published “On
the Origin of Species” describing the role natural selection
plays on the evolution of species, elucidating an interplay
between competition and survival [2]. Seventy years later,
Frederick Griffith discovered that traits, specifically viru-
lence, can be directly transferred between bacteria in a
process we now understand to be horizontal/lateral gene
transfer (HGT/LGT) [3]. It was another 16 years before
Avery, MacLeod, and McCarty demonstrated that DNA is
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the molecule that encodes traits and is inherited [4].
Darwin’s theory predates the discovery of DNA and as
such transcends any one specific molecular mechanism.
Today, the field of molecular evolution focuses on un-
derstanding Darwinian evolution of genomes along with
Kimura’s neutral theory with an emphasis on using
phylogenetic techniques to analyze nucleotide sequence
variation in protein coding genes. With some exceptions,
this research in eukaryotes focuses on nucleotide substi-
tutions in conserved protein-coding regions from genes
deemed a priori to be vertically inherited. But as Avery
et al. discovered [4], traits can also be transferred hori-
zontally or laterally via LGT. LGT has played a major
role in the natural evolution and niche adaptation of bac-
teria, but the role of LGT in the evolution of eukaryotic
genomes has been understudied and underappreciated.
When we started working on LGT of bacterial DNA
into animal genomes more than a decade ago, the prevail-
ing paradigm was that it was non-existent. Subsequently,
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instances of bacteria-animal LGT have been observed
in multiple invertebrates [5-34], including many such
integrations of genes that have at least some evidence
for being functional [9-19, 23-26, 28, 30, 32—34]. The
coffee berry borer acquired a bacterial mannanase gene
that allows it to exploit coffee berries as a new ecological
niche relative to its sister taxa [23]. The invasive brown
marmorated stink bug that ravaged crops in the
mid-Atlantic region is thought to have several LGTs
from bacteria, including a mannanase gene [14]. Several
plant parasitic nematodes have acquired cellulases, pectate
lyases, and expansin-like proteins from bacteria that allow
them to degrade plant material [26, 28]. In mealybugs,
LGTs from at least three different bacterial lineages have
resulted in hybrid biosynthetic pathways [13]. There have
been numerous functional transfers of bacterial peptido-
glycan remodeling genes [11, 12, 14, 32-34] to various
eukaryotes that may indicate that eukaryotes can acquire
bacterial genes that the eukaryotes then use against the
bacteria [35].

Despite this, LGT in multicellular eukaryotes with dif-
ferentiated tissues, particularly gonads, continues to be
met with skepticism. For example, Crisp et al. conducted
a detailed examination of 26 animal genomes in order to
identify putative LGTs in invertebrate and vertebrate ge-
nomes, including the human genome [36]. They found that
there are fewer predicted LGTs in vertebrates/chordates
than invertebrates, but there is still evidence of LGT into
chordates, including humans [36]. Some people might not
find LGT to chordates to be unusual, since chordates are
known to have co-opted endogenous retroviral env genes
multiple times during the evolution of placental mammals
[37]. However, LGT from bacteria is thought to pose a
higher barrier than acquisition of new functions from en-
dogenous retroviruses.

More recently, Salzberg re-analyzed a subset of the puta-
tive LGTs in vertebrates that were proposed by Crisp et al.
[36] and concluded that “horizontal gene transfer is not a
hallmark of the human genome” [38]. One of the genes
Crisp proposed to be a bacteria-chordate LGT [36], but
Salzberg attempts to debunk [38], is an N-acyl-aromatic-
L-amino acid amidohydrolase (ENSG00000132744), which
encodes ACY3. ACY3 can convert N-acyl-aromatic-L-
amino acid to the corresponding aromatic-L-amino acid
and a carboxylate, or alternatively ACY3 can convert
N-acetyl-L-cysteine-S-conjugate to L-cysteine-S-conjugate
and acetate [39]. ACY3 has an important role in humans,
catalyzing the deacetylation of mercapturic acids in kidney
proximal tubules [39]. It is highly expressed in the gastro-
intestinal tract, the endocervix of women, and the kidneys
[40, 41]. BLASTP searches of non-redundant protein data-
base (NR) with ACY3 returns matches to the human ASPA
protein. ASPA is a protein that converts N-acetylaspartate
to aspartate and acetate [42]. In humans, mutations in
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ASPA are responsible for Canavan disease, an autosomal
recessive disease leading to brain defects and subsequently
early death in children [42]. It is expressed in the central
nervous system [40, 41]. Given that ACY3 and ASPA are
homologues and our BLASTP searches, and therefore likely
the BLASTP searches by Crisp et al. [36] and Salzberg [38],
return both homologues, we will refer to them as the
ACY3/ASPA homologues.

Salzberg discounted the ACY3/ASPA homologues as
“no HGT” [38] because it no longer passes the test Crisp
et al. [36] devised for bacteria-chordate LGT since it has
a significant BLAST match to the recently deposited gen-
ome of Saccoglossus kowalevskii [43], a flatworm, Metazoan,
and hemichordate. We sought to examine the evolutionary
history of the ACY3/ASPA homologues further in an effort
to better understand the evidence for LGT, gene loss, and
rate variation.

Results

Phylogeny of human aspartoacylase

BLASTP was used to identify homologues of the human
aspartoacylase gene (ENSG00000132744; NP_542389; ACY3)
in NR using the NCBI website. This search largely confirmed
the BLAST-based results from Crisp [36] and Salzberg [38]
demonstrating a large number of matches from bacteria and
chordates, but no significant matches (e-value <le-5)
from arthropods, nematodes, plants, fungi, or apicomplexa,
among others. This BLAST search identified the proteins
encoding human ACY3 and the human ASPA (NP_
000040; ASPA), as well as their homologues in other
animal genomes.

A maximum likelihood phylogeny was inferred with
RAXxML after model testing with PROTTEST on an
alignment that included all well-aligning sequences from
hundreds of bacteria and chordates as well as alveolates
(n =2), chromophytes (n = 6), cnidaria (n = 2), and hemi-
chordates (n=1) (Fig. 1). This phylogeny reveals 88%
support for a clade of mostly vertebrate proteins and a
clade of mostly bacteria, which initially gives an impression
of LGT, with a gene moving from bacteria to vertebrates,
or vice versa (Fig. 1). Further refinement of the tree, col-
lapsing branches down to the class designation reveals that
the vast majority of the eukaryotic proteins (Fig. 1) are
evolving in a manner consistent with our understanding of
eukaryote evolution (Fig. 2). The human ACY3 and ASPA
are paralogs that likely arose following duplication. This
duplication may have occurred after the divergence of
bilateria (88% support) in the ancestor of deuterostomia,
which includes chordates, hemichordates, and echino-
dermata. Alternatively, given the poor support for the
position of hemichordate, tunicate, and cephalochordate
ACY3/ASPA proteins (< 60%) (Fig. 1), this duplication
may have occurred as recently as the ancestor of gnathos-
tomes, which includes the majority of vertebrate animals.
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Fig. 1 Maximum Likelihood Phylogeny of ACY3/ASPA Homologues. The maximum likelihood (ML) phylogeny of ACY3/ASPA homologues inferred
with RAXML is visualized with FigTree in a rectangular phylogram rooted on the edge between the majority of eukaryotic proteins and the
majority of prokaryotic proteins. When appropriate and supported by a high support value, branches are collapsed and illustrated with triangles that
are color-coded according to the taxonomic distribution of the members. The number of proteins represented in the collapsed branches are noted in

Bacteria: Proteobacteria (1)

Bacteria: Unclassified (2)

- Bacteria: Cyanobacteria/Melainabacteria (131)
Eukaryote: Chromophyta (2)

Eukaryote: Alveolata (1)

Eukaryote: Alveolata (1)

The latter is probably more likely as it is consistent
with the 1R or the 2R whole genome duplications,
which are predicted to have occurred in the ancestor of
hyperoartia(lampreys)/hyperotreti(hagfishes) and the ances-
tor of gnathostomes, respectively [44]. Given the poor sup-
port values, it cannot be ruled out that ASPA/ACY3 was
acquired by hemichordates, tunicates, and cephalochor-
dates from another animal early in animal evolution.

The relationship between bacteria and eukaryote proteins
is less clear in non-animals. Proteins from chromophytes
and alveolates are nested amongst proteins from disparate
bacterial taxa (88% support), predominantly cyanobacteria,
fibrobacteria, and gamma-proteobacteria, but also two
Campylobacter, which are epsilon proteobacteria (Fig. 1).
Chromophytes and alveolates are both Chromista, a group
of non-animal/metazoan eukaryotic photosynthetic or-
ganisms that likely acquired their chloroplasts from red
algae. The structure of the phylogeny suggests that
LGT may have occurred between the bacterial and these
non-animal/metazoan eukaryotic ASPA/ACY3 homologues,
although the support values for the tree topology do not
allow for any further elucidation of the relationship. On one
extreme, the phylogeny supports that ACY3/ASPA may

have been present in the ancestor of all eukaryotes and was
acquired by bacteria via LGT from the ancestor of chromo-
phyta and alveolata, and on the other extreme, ACY3/ASPA
may have been acquired by animals, chromophyta, and/or
alveolates from bacteria.

Gene loss or lateral gene transfer?

Protein phylogenies only examine the relationship be-
tween extant proteins that have been sequenced. Two al-
ternate hypotheses to consider when examining evidence
for/against LGT are gene loss and rate variation. To con-
sider gene loss, information about lineages lacking these
proteins is required since some taxa are more abundant
on earth, and genome sequencing has been unevenly ap-
plied across taxa. For example, despite many arthropod
and nematode sequences in NR, arthropod and nematode
homologues of ACY3/ASPA were not identified in the
BLASTP searches. To account for this, the numbers of
ACY3/ASPA homologues for given taxonomic levels were
compared to the number of organisms at that taxonomic
level that have > 5000 protein sequences in NR. If an or-
ganism has >5000 protein sequences in NR, any ACY3/
ASPA homologues are likely to have been sequenced and
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Fig. 2 Gene Loss Analysis. Phylogenies from the Tree of Life Web Project were concatenated and used to interpret gene loss. However, it is important
to consider that some of the older branches in the tree of life are still disputed. The animal phylogeny was broken out into two panels
illustrating: a the evolution of mammals from vertebrates and b the evolution of vertebrates from animals. To assess gene loss, the number of
ACY3/ASPA homologues in a given taxonomic lineage were compared to the number of organisms with > 5000 proteins deposited in public
databases. ACY3/ASPA homologues are consistently found in the deuterostome lineage, but are missing from some well-sequenced sister taxa
like arthropods and nematodes. There are inadequate levels of genome sequence data at key taxonomic levels to enable the delineation of
the relative contribution of LGT, gene loss, and rate variation for ASPA/ACY3 homologues

identified through the BLASTP searches of NR. Nearly
identical results were obtained for thresholds between
5000 and 10,000 proteins, giving confidence that a thresh-
old of 5000 proteins was neither too stringent nor lenient.
However, it is important to note that while it is likely that
ACY3/ASPA homologues have been sequenced, genome
and transcriptome assemblies can be incomplete and as
such absence may be over-predicted. Contamination is
also a concern, which would lead to under-predicting ab-
sence. However, in most cases at least two organisms of a
taxa were sequenced and had concordant results.

Among the chordates, ACY3/ASPA homologues are
distributed among all of the vertebrate lineages that were
sequenced sufficiently (Fig. 2a). In all vertebrate lineages,
more ACY3/ASPA homologues were identified in NR
from that taxon than there were organisms with > 5000

protein sequences in NR for that taxon suggesting that
many of the vertebrate organisms contain at least one
ACY3/ASPA homologue. This strongly supports the con-
clusion that the aspartoacylase was likely present in the
ancestor of all vertebrates, or at least gnathostomata, and
was duplicated.

Among the deuterostomes, there is very limited sequen-
cing outside the chordates such that only 3 echinodermata,
1 hemichordata, 2 urochordata, 2 cephalochordata, and no
hyperotreti have >5000 proteins characterized in NR
(Fig. 2b). Of those, the hemichordate and the cephalochord-
ate have ACY3/ASPA homologues, and it is the BLAST
match to the hemichordate homologue that led to the re-
assignment of this as “not HGT” by Salzberg. If ACY3/
ASPA were present in the ancestor of all deutersomes, then
ACY3/ASPA proteins were lost or unsequenced in the 2
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urochordata and 3 echinodermata sequenced. Of note,
the phylogenetic analysis of BLAST-identified homologues
shows presence of this protein in at least one urochordate.

While ACY3/ASPA homologues are prevalent among
the deuterostomes, they are noticeably absent in the 202
ecdysozoa with > 5000 proteins in NR, including arthro-
pods, nematodes, and tardigrades. Likewise, they are also
absent from the 10 lophotrochozoa with > 5000 proteins
in NR, including annelids, brachiopods, and mollusks.
They are also missing in unplaced bilateria taxa, includ-
ing platyhelminths and mesozoa (Fig. 2b). Therefore, this
protein has a limited taxonomic distribution within bila-
teria such that if the ACY3/ASPA homologue was present
in the ancestor of bilateria, it would have needed to be lost
from numerous lineages, including at least ecdysozoa,
lophotrochozoa, urochordata, and echinodermata, given
our current understanding of genomics/transcriptomics
and the tree of life.

In animals, there were two ACY3/ASPA homologues
in cnidaria, which are not bilateria (Fig. 2b). While there
are lots of bilaterian species that have > 5000 proteins in
NR, only 9 non-bilateria species have been sequenced
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and had data deposited in NR across the other five
taxa — 7 cnidaria, 1 placozoa, and 1 porifera — and
only 2 cnidaria have an ACY3/ASPA homologue (Fig. 2b).
If the ACY3/ASPA homologue was present in the ancestor
of all animals, it would have had to have been lost from
some cnidaria as well as placozoa and porifera, in addition
to the four bilateria lineages discussed above; if it was
present in the ancestor of all eukaryotes even more gene
loss events are needed (Fig. 3a). Given that extensive LGTs
occur in other bilateria, namely insect and nematodes,
LGT alone might actually be a more parsimonious ex-
planation than gene loss (Fig. 3b) or a combination of
LGT or gene loss may be responsible for the distribu-
tion seen today (Fig. 3c, d). In other words, two LGTs
of a bacterial gene into animals, one in cnidaria and
one in deuterostomes, could be more likely than a half
dozen gene loss events across diverse animal taxa. Un-
fortunately, without rate estimates for both gene loss
and LGT, robust resolution of the relatedness of key
unresolved taxa, and more genomic data from key ani-
mal taxa, it is not possible to be definitive or calculate
the probabilities of the events.

a No LGT; Only Gene Loss
A 4
A 4
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Fig. 3 Schematics lllustrating Possible Paths to Explain the Current Distribution of ACY3/ASAP Homologues. Phylogenies from the Tree of Life Web
Project were concatenated and LGT and gene loss events were overlaid in four possible scenarios: a presence of ASPA/ACY3 in the last common
ancestor of eukaryotes and only gene loss, b absence of ASPA/ACY3 in the last common ancestor of eukaryotes and only LGT, ¢ combination of LGT
and gene loss where LGT occurred in the ancestor of all deuterostomes, d combination of LGT and gene loss where LGT occurred in the ancestor of
all animals. Maroon arrows are used to indicate LGT in an entire lineage, while pink arrows are used to indicate LGT in a subset of taxa represented
here. Dark purple arrows are used to indicate gene loss in an entire lineage, while lavender arrows are used to indicate gene loss in a subset of taxa
represented here. It is not possible at this time to determine the likelihood of all of these possible scenarios, without better resolution of the eukaryotic
tree of life, more sequence data from non-animal lineages, and a better understanding of the rates of gene loss and LGT in eukaryotes, which likely
vary by lineage. However, it seems improbable that gene loss alone explains these results, which suggests that some LGT from bacteria to eukaryotes,
and most likely, animals is responsible for the distribution of ACY3/ASPA homologues observed today
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Rate variation

Another alternate explanation to LGT and/or gene loss
is rate variation. When considering rate variation, some
proteins are under accelerated rates of evolution relative
to other proteins. For example, following duplication,
two proteins may diverge at different rates. Following
LGT, genes might be expected to undergo different rates
of evolution as they enter a new environment. As such
rate variation and LGT are not mutually exclusive. How-
ever, when considering rate variation as an alternative to
LGT we are looking for signatures that might suggest
that one lineage has vertically inherited genes that are
evolving at a different rate confounding BLAST- and
phylogeny-based methods.

To examine this, we relied on the results of two large
pre-computed datasets, eggNOG and PFAM. EggNOG
is an algorithm that currently uses graph-based unsuper-
vised clustering to identify orthologous genes in 2031
eukaryote and prokaryote genomes. When eggNOG is
interrogated with ACY3 or ASPA, an orthologous group
is identified that is found to contain proteins from bacteria
and metazoans, making it largely similar to the results
returned with the BLAST-based results described above
(Additional file 1). However, key taxa were not recovered
like the hemichordate homologues (Additional file 1),
likely because the genome was only recently reported.

PFAM uses hidden Markov model (HMM) searches to
find functionally-related, but substantially-diverged, pro-
teins. HMM searches rely on the use of probabilistic,
hidden Markov models to identify protein homologues
with great sensitivity and specificity; these models quickly
and efficiently find homologues based on the presence of
protein features shared between homologues (e.g. catalytic
residues) not identified through traditional BLAST-based
searches. These HMM results can be overlaid on a species
tree (e.g. for Acy3/ASPA: http://pfam.xfam.org/family/
AstE_AspA#tabview=tab?).

Among the metazoa, the HMM searches yielded the
same results as the gene loss analysis above, except for a
match to Acyrthosiphon pisum (pea aphid) which is an
arthropod. The match is not to a protein in NR, but in-
stead to a nearly 1 kbp region that has closest similarity
to proteins annotated as succinylglutamate desucciny-
lase from Pantoea endosymbionts that is on a 7.6 kbp
contig from the whole genome sequencing project
(N'W_003385628.1) (Additional file 2). It is likely that
this is a contig from a contaminant bacterial endosym-
biont given that the contig contains multiple regions
with homology to almost exclusively bacterial se-
quences; there is only one non-bacterial match that is
to an ascomycetes in a region that also matches Sal-
monella enterica (Additional files 3 and 4).

However, in more distant eukaryotic lineages, the
HMMs gave different results from eggNOG and BLAST.
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Two taxonomically disparate plant taxa, Cajanus cajan
(pigeon pea) and Monoraphidium neglectum (single-cell
green alga) as well as 49 fungi across many diverse fun-
gal lineages contain proteins with the ACY3/ASPA do-
main. Unfortunately, and similar to the problem with
phylogenetic trees, no information can be gleaned about
taxa lacking ACY3/ASPA domain-containing homologues.
However, it is clear that the functional domain exists in
taxa beyond those identified with BLAST or eggNOG
searches suggesting that there can be substantial sequence
divergence. However, the sequence divergence and our
inability to produce high quality alignments of these se-
quences precludes further analyses.

Discussion

Salzburg [38] and others have stated, when referring to
LGT, that extraordinary claims require extraordinary
evidence, implying that LGT is an extraordinary claim.
Salzberg goes on to suggest that more mundane explana-
tions are at play, like gene loss and rate variation [38]. It
seems unlikely that gene loss and rate variation alone can
explain these results. On one extreme, it seems reasonable
that eukaryotes may have acquired these genes from bacteria
a handful of times, once in the ancestor of fungi and at least
once in animals as well as an unresolved number of times in
alveolates/chromophytes. On the other extreme, it also
seems equally reasonable that instead, the genes have been
vertically inherited in eukaryotes with dozens of gene loss
events and at least one LGT to bacteria, where it could have
spread further via LGT. It is not possible to be more defini-
tive at this time given the lack of phylogenetic resolution at
key position in the tree of life and the lack of sufficient gen-
ome sequencing of key taxa, like hyperartia, hyperotreti, and
ctenophore as well as placozoa, porifera, cephalochordate,
urochordata, hemichordate, and echniodermata. However,
the most parsimonious explanation for the distribution of
ACY3/ASPA homologues involves bacteria-animal LGT.
This case, of a gene essential for proper brain development
and function that seems to have a limited phylogenetic dis-
tribution, illustrates some of the limitations of using an
h-index or BLAST-based approach, as well as how these
comparisons need careful scrutiny. It highlights the need for
more robust, focused analyses on the extent of LGT, gene
loss, and rate variation in eukaryotes and their influence on
trait acquisition. Furthermore, unbiased estimates of LGT
and gene loss rates across and between different taxa are
desperately needed to understand the likelihood of both
events. Our understanding of the topology of the tree of life
also influences these analyses, and many important branches
have yet to be resolved or remain in dispute.

Conclusions
Collectively, this analysis demonstrates our need for fur-
ther high quality complete genome and transcriptome
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assemblies from key phylogenetic groups in order to have
the power to infer the correct relationships between both
taxa and proteins of interest in order to properly evaluate
claims of LGT and gene loss. Regardless, the most parsi-
monious explanation for the distribution of ACY3/ASPA
genes in eukaryotes involves both gene loss and bacteria-
animal LGT, albeit LGT that occurred hundreds of
millions of years ago. Given the many known, well-
characterized, and adaptive lateral gene transfers from
bacteria to insects and nematodes in this time frame,
lateral gene transfers at these time scales in the ances-
tors of humans is expected.

Methods

BLAST searches

ACY3/ASPA homologues were identified from a BLASTP
search [45] using ACY3 as a query (ENSG00000132744;
NP_542389; ACY3) and NR as a reference using the NCBI
BLAST server during August and September 2017. A
similar search using ASPA as the query produces similar
results, but all subsequent analyses were conducted on the
output using ACY3 as a query. All BLASTP searches were
performed with the default parameters except that 20,000
results were allowed to be returned. To identify homo-
logues in specific clades, the BLASTP searches were
restricted to these clades using the appropriate taxon_id
(e.g. fungi/taxid:4751, plants/taxid:3193, arthropods/
taxid:6656, insects/taxid:6960, nematodes/taxid:6231,
mollusks/taxid:6447, and apicomplexan/taxid:5794). A
neighbor joining tree and a fast-minimum evolution tree
were generated using the NCBI BLAST interface with
maximum sequence difference of 0.85 and Grishin dis-
tance labeling sequences by taxonomic name.

Multiple sequence alignment, model testing, and
inferring/visualizing phylogenetic trees

All of the protein sequences identified from the
ACY3-based BLASTP searches were downloaded locally
and aligned with CLUSTALW v.1.4 [46] as implemented
in Bioedit v.7.2.5 [47]. Poorly aligned sequences, particu-
larly partial sequences and isoforms, were removed
manually. The sequences were then re-aligned with
CLUSTALW v.1.4 [46] as implemented in Bioedit v.7.2.5
[47]. The best-fit model of amino acid substitution was
determined for each of the datasets with ProtTest3.2
[48]. All 15 models of protein evolution were tested in
addition to the +G parameter (i.e. including models with
rate variation among sites). RAXML v.8.2.10 [49] auto-
matically removed undetermined columns and sequence
duplicates and was used to infer the phylogeny with
1000 rapid bootstrap inferences, a thorough ML
search, the GAMMA model of rate heterogeneity, the
ML estimate of alpha-paramter, and the JTT substitu-
tion matrix using the command raxmlHPC -f a -m
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PROTGAMMA]JTT -p 12345 -x 12,345 -N autoMRE.
Taxonomic information from the NCBI Taxonomy
database was added to the RAXML output. Accessions
that lack an entry in the taxonomy database were left
blank. However, in some figures the genus and species
designations were added in manually after confirming
the lack of an entry in the taxonomy database; these
are denoted with an asterisk (*). Phylogenetic trees
were visualized with Dendroscope v.3.5.7 [50].

Gene loss

Taxa with >5000, >6000, >7000, >8000, and > 10,000
known proteins in NR were determined by using the NCBI
protein server (https://www.ncbi.nlm.nih.gov/protein) to
search PDB, RefSeq, UniProtKB/Swiss-Prot, DDBJ, EMBL,
GenBank, and PIR with the appropriate taxon_id in
November 2017. These results were overlaid on reference
phylogenetic trees for the eukaryotic lineages that were
concatenated from trees retrieved from the Tree of Life
website (tolweb.org) [51-62].

Rate variation

In order to identify ACY3/ASPA homologues that may be
subject to rate variation, pre-computed orthologous clus-
ters in eggNOG were examined (http://eggnogdb.embl.de/
#/app/results#COG2988_datamenu) as well as hidden
markov model (HMM) search results generated by PFEAM
were overlaid on a species tree using the PFAM server
(http://pfam xfam.org/family/AstE_AspA#tabview=tab7).
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