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Abstract

Background: Along with trophoblast elongation (Days 10 to 12), estradiol is secreted in increasing amounts for
recognition of pregnancy. Endometrial secretions driven by ovarian progesterone and conceptus signals are
essential for conceptus growth and development. Results of transcriptome analyses of whole endometrial tissue
samples in the pig indicated the need for cell type-specific endometrial gene expression analysis for a better
understanding of transcriptome changes associated with establishment of pregnancy.

Results: The most distinct transcriptome profile and the majority of differentially expressed genes (DEGs) were
identified in luminal epithelium (LE). Many DEGs were found only in the cell type-specific analysis. The functional
classification of DEGs identified in specific endometrial cell types revealed various distinct functions and pathways.
Genes related to immune activation, estrogen signaling pathway, embryo development, and cell proliferation were
upregulated in LE of pregnant gilts. Genes involved in sterol biosynthetic and metabolic processes and extracellular
matrix were upregulated in stroma. Genes associated with cell communication such as via exosomes and vesicles
were found as differential in LE, glandular epithelium (GE), and stroma (S).

Conclusions: This study revealed that conceptus signals induce different transcriptomic regulations in the
endometrial compartments/cell types related to their specific function during recognition and establishment of
pregnancy.
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Background
Uterine receptivity to conceptus implantation begins
after hatching from the zona pellucida. The embryo
pre-contacts with uterine luminal (LE) or superficial
glandular (sGE) epithelia; later followed by apposition
and adhesion between trophectoderm and uterine LE/
sGE. Finally, limited or extensive endometrial invasion
(depending on species and type of placenta) initiates pla-
centation. These peri-implantation events are prerequi-
sites for fetal and placental growth and development
through the remainder of pregnancy [1, 2]. During the
conception cycle, the porcine embryo undergoes the first
cell divisions in the oviduct and arrives in the uterus in

the 4 cells stage [3]. After hatching from the zona pellu-
cida on Day 7, the porcine conceptus changes rapidly
from spherical to tubular, and then filamentous form
between Days 10 and 12 after ovulation [4]. This is
accompanied by differentiation of trophoblast cells mak-
ing the conceptus ready for implantation [5]. Maternal
recognition and establishment of pregnancy in pigs
requires a biphasic pattern of estrogen secretion by the
conceptus, mainly 17β-estradiol (E2), increased between
Days 11–12 and Day 15 and Days 25–30, respectively
[6]. Previous studies also indicated that the porcine em-
bryo exerts local effects on endometrial structures and
functional parameters as well [7, 8]. The effects on the
endometrial luminal epithelium structure, uterine blood
flow [9], histotroph production and changes in prosta-
glandin F2α (PGF2a) release are mainly caused by E2
through directly or indirectly mediating the release of
other substances [10]. Influences on cellular organization,
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composition, and function derived from E2 effects is
thought to facilitate in turn conceptus development and
later plancentation [11]. The pro-inflammatory cytokine
interleukin one beta 2 (IL1B2) which expression is dra-
matically increased only in expanding porcine conceptuses
(Day 11–12), is proposed to contribute to embryo
implantation [12]. Interleukin one beta 2 binds to the
interleukin 1 receptor type 2 (IL1R2) on the epithelial sur-
face which can activate the nuclear factor kappa-B (NFKB)
system [13], followed by cytokines (tumor necrosis factor
(TNFα), Interleukins (ILs), interleukin 6 family cytokine
(LIF), and colony stimulating factor 2 (GMCSF)), chemo-
kines (C-C motif chemokine ligand 5 (RANTES)), and the
PTGS2 signaling pathway [14].
The embryo-endometrial cross-talk in the pig has

evolved as a critical mechanism responding initially to
the hormonal trigger in order to achieve receptivity and
then amplify the decision under embryonic signals for
pregnancy. Thus, the endometrium’s receptive ability
and the prevention of luteolysis is very important during
this critical period [5]. So far, a number of studies have
been performed to analyze differential gene expression
in porcine endometrium in response to embryonic sig-
nals starting from blastocyst stage [15] until placentation
[16–19]. In our previous studies we investigated differ-
ential gene expression in porcine endometrium on Days
12 and 14 of pregnancy by the use of RNA-sequencing
(RNA-seq) and identified numerous DEGs in response
to the presence of conceptuses [18, 19]. Previous studies
in the mouse conducted with Laser capture microdissec-
tion (LCM), a commonly used method to isolate differ-
ent cell types from whole tissues or organs with high
purity [20, 21], and microarrays indicated cell
type-specific differences in transcriptome changes be-
tween LE and GE in response to pregnancy and revealed
that different cell types act differentially and synergistic-
ally to permit blastocyst implantation [22]. Field et al.
studied the immune-related gene expression in endo-
metrial epithelial and stromal cells by LCM and microar-
rays, and found that the expression of factors involved in
immunomodulation/endometrial remodeling was differ-
ent between the epithelial and stromal compartments in
a temporal manner [23]. Although the mouse is a good
model to study the uterine transcriptome, the results
can not be directly transferred to other species. Previ-
ously, Brooks et al. focused on the ovine cell-specific
uterine transcriptome by the use of LCM and found a
number of genes that contribute to cell proliferation,
migration, attachment, and differentiation in ovine uter-
ine LE [24]. Although a number of studies using LCM to
dissect the endometrial cell types have been performed,
none of them compared more than two cell types and
did a comparison to the complete tissue sample. Since
the knowledge about the cell-type specific gene

expression is rather limited in porcine endometrium, the
aim of the present study was to characterize the complex
transcriptome changes in different endometrial cell types
during the preimplantation period for improving our
understanding of localization of endometrial gene
expression regulation in context of recognition of preg-
nancy. To do this analysis in a transcriptome-wide man-
ner, RNA-seq was performed for samples derived from
luminal epithelium (LE), glandular epithelium (GE), and
stroma (S) isolated by the use of LCM and compared to
a corresponding data set for complete endometrial tissue
samples.

Methods
Isolation of target cells
The animal experiment and sample collection is de-
scribed in Samborski et al. [18]. Treatments of gilts were
performed in accordance with the regulations of the
local authorities (District Government of Upper Bavaria,
Veterinary Office). The performed standard procedures/
treatments in animal breeding were all in accordance
with the International Guiding Principles for Biomed-
ical Research Involving Animals, as proposed by the
Society for the Study of Reproduction, with the Euro-
pean Convention on Animal Experimentation and
with the German Animal Welfare Act. The animals
were housed at farm facilities of the LMU Munich
(Chair for Molecular Animal Breeding and Biotech-
nology) and slaughtered at the slaughterhouse of the
Institute for Animal Breeding, Bavarian State Research
Center for Agriculture, Poing, Germany.
A number of 8 prepuberal gilts were bought from a

livestock trader (crossbreeds of German Landrace and
Piétrain) and received a single injection of 750 IU PMSG
(Intergonan®, MSD Animal Health Innovation GmbH,
Schwabenheim, Germany) and 72 h later 750 IU hCG
(Ovogest®, MSD Animal Health Innovation GmbH) to
synchronize ovulation. Gilts of the “pregnant” group (n =
4) were inseminated twice (24 h and 36 h after hCG) with
a standard dose of German Landrace semen whereas gilts
of the “non-pregnant” control group (n = 4) were insemi-
nated with the supernatant of centrifuged (10 min,
3000 rpm) semen of the same boar. Gilts were slaughtered
on Day 12 after insemination. Endometrial samples (med-
ial part of the uterine horns) were collected and
snap-frozen in liquid nitrogen and stored at − 80° until
preparation for LCM. Pregnancy was confirmed by the
presence of filamentous conceptuses in the flush of the
uterine horns. Briefly, frozen endometrium samples were
cut in 10 μm thick sections with a Leica CM1950 clinical
cryostat (Leica Biosystems, Germany), mounted onto
membrane slides (MembraneSlide NF 1.0 PEN, Zeiss,
Germany), and stained using a modified, rapid Cresyl vio-
let staining protocol to identify LE, GE, and stromal cells.
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Briefly, the slides were first fixed with 70% ethanol
(Sigma), and quickly washed in 50% ethanol. Cresyl violet
was used to stain for 3 min, and then the stained slides
were washed again with 50, 70, 100% ethanol, respectively
(dip slides two/three times into each solution). Finally, the
slides were dried at room temperature. All solutions
were prepared with RNase-free water. The target cells
from the sections were captured using a LCM Zeiss
200 M (inverse) microscope (Zeiss PALM Microsys-
tems, Germany). When satisfactory cutting was
achieved, the target tissue was lifted to the LCM cap
(AdhesiveCap 200 clear, Zeiss, Germany) and 50 μl
extraction buffer was used to incubate the LCM sam-
ples at 42 °C for 30 min to lyse the cells.

Isolation of RNA, quality control, and RNA-sequencing
Total RNA was isolated from luminal epithelium, glan-
dular epithelium, and stromal samples of each pig using
the PicoPure RNA Isolation Kit (Applied Biosystems™,
Vilnius, Lithuania) following the manufacturer’s instruc-
tions. Integrity and quantity of the RNA were assessed
using the Agilent RNA 6000 Pico assay on the Agilent
2100 Bioanalyzer (Agilent Technologies, Waldbronn,
Germany). The quality of the isolated total RNA
extracted from LE, GE, and S were ranging from 6.6 to
9.4 (RNA integrity number, RIN). Most of the samples
had a RIN around 8 were used to prepare a total of 24
RNA-seq libraries for biological replicates per group
(n = 4 gilts) and cell type.
The Ovation SoLo Single Cell RNA-Seq System

(NuGen Technologies, San Carlos, USA) was used for
preparing RNA-Seq libraries starting from 500 pg of
total RNA (corresponding to no more than 50 cells) ac-
cording to the manufacturer’s recommendations. The
number of PCR cycles for the first amplification step
(determined by qPCR according to the manual) was be-
tween 15 and 20, for most of the samples 17. The 24 li-
braries were prepared from each individual sample for
the three cell types of each replicate of both experimen-
tal groups. Then, all individual barcoded libraries were
pooled for sequencing on two lanes of a single-read flow
cell on an Illumina HiSeq 2500 instrument. Sequencing
and demultiplexing were performed at the Functional
Genomics Center Zurich (FGCZ).

Bioinformatics and data analysis
The obtained sequence reads (Fastq files) were analyzed
with a locally installed version of Galaxy [25]. The
adapter sequence was clipped (for shorter fragments
where sequencing runs into the adapter) and 5 bp were
removed from the start of the reads. Sequences were
mapped with Hisat2 (Sscrofa 11.1) from NCBI (ftp://
ftp.ncbi.nih.gov/genomes/Sus_scrofa/GFF) and filtered
by CPM cutoff after removing the PCR duplicates with

NUGEN nudup based on the 8 random bases contained
in the barcode adapter. The resulting read count table
was used for statistical analysis in EdgeR to identify dif-
ferentially expressed genes (DEGs) [26]. With a false dis-
covery rate (FDR) of < 1% for LE and using its
corresponding p value of 0.0021 as a cut-off for GE,
stroma, and complete tissue, hierarchical cluster analysis
was performed for DEGs in MultiExperiment Viewer
(MeV). Gene ontology (GO) and pathway analysis was
conducted by using the online tool ToppCluster and the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID) [27]. The data set from complete
endometrial tissue samples was analyzed with the same
pipeline except the step for removal of PCR duplicates.
Raw FASTQ files were deposited at National Center for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GSE109539).

Results
Transcriptome sequencing of samples collected by LCM
Cells from uterine LE, GE, and S were isolated from en-
dometria collected from Day 12 pregnant gilts (n = 4)
and Day 12 nonpregnant cyclic gilts (control, n = 4)
using LCM. Although the isolated stromal areas com-
prise a mix of fibroblasts and other cell types, mainly
different immune cells, stroma (S) is in the following re-
ferred to as a “cell type”. A total of 458.1 million raw
reads were obtained from the two experimental groups;
205.4 and 252.7 million in pregnant and control groups,
respectively. After low-quality reads were filtered out
and PCR duplicates were removed, a total of 259.3 mil-
lion clean reads (116.1 in pregnant group, 143.2 million
in control group) were selected for further analyses
(Additional file 1: Table S1).

Detected genes and DEGs in comparison of complete
tissue and LCM samples
The obtained LCM RNA-seq expression data were com-
pared to data from complete endometrium tissue sam-
ples collected from Day 12 pregnant gilts and
corresponding cyclic controls (raw data from Samborski
et al. [18]). A total of 12,401 genes were detectable with
the LCM method. For the individual endometrial com-
partments these were 11,415, 11,676, and 11,532 genes
(LE, GE, and S, respectively). Clearly more genes
(16260) were detectable in complete endometrial tissue
samples. A high number of genes (10576) could be de-
tected in the three LCM sample types and in complete
tissue (Fig. 1a). Only 170 genes were detectable in the
LCM samples but not in the complete sample. The
numbers of genes putatively showing cell type-specific
expression were 317, 344, and 161, for LE, GE, and
stroma, respectively (expression detected in the corre-
sponding cell type and for most of the genes also in
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complete tissue). Eleven solute carrier family members
(SLCs) and 5 genes coding for transmembrane protein
(TMEMs) were only detected in LE. In addition, 10
coiled-coil domain containing (CCDC) mRNAs were
only found in GE. These genes detected only in one cell
type were mostly expressed at rather low levels (data not
shown).
The analysis of differential gene expression was per-

formed between the pregnant and the nonpregnant
group for each cell type and also for complete tissue

samples. More DEGs were found for LE when compared
with GE and S, i.e., 2388, 246, and 597 DEGs, respect-
ively (Fig. 1b, Additional file 2: Table S2). Almost 5000
DEGs were obtained for the complete tissue samples in
comparison of pregnant and nonpregnant gilts (Fig. 1b,
Additional file 2:Table S2). Many of the DEGs, mainly
for LE with 1920 DEGs, were differentially expressed
(DE) in one cell type but not in the other cell types or in
complete tissue (Fig. 1b, sector overlap LE with
Complete and sector LE only). Also, for GE and S, many
DEGs were specifically DE in these cell types (Fig. 1b).
About half of all genes found to be DE in a cell
type-specific way were not found as DE in the complete
tissue sample.

Unsupervised clustering of samples by multiple
dimension scaling plots
Multiple dimension scaling (MDS) plot analysis revealed
for principal component 1 a grouping according to the
individual cell types, particularly for the LE in the preg-
nant state (Fig. 2a). The GE and S samples derived from
pregnant endometria were more similar to each other
than the corresponding samples derived from the cyclic
group. In the second dimension (principal component
2), a clear separation of pregnant and control samples
was mainly found for LE, but also for GE and S (Fig. 2a).
The lowest distance between the pregnant and cyclic
control group was observed for GE corresponding to the
lowest number of DEGs.
Furthermore, hierarchical cluster analysis was performed

for the DEGs identified for each cell type (Figs. 2b, c, d).
With respect to higher or lower expression in pregnant
compared to cyclic endometrium, 1260 up-regulated and
1128 down-regulated, 193 up-regulated and 53
down-regulated, and 231 up-regulated and 366
down-regulated DEGs were identified in LE, GE and S, re-
spectively (Additional file 2: Table S2).

Functional category analysis of DEGs
An overview of the network illustrating functional classi-
fication of the obtained DEGs is shown in Fig. 3. All
DEGs of LCM were analyzed with ToppCluster tool for
Gene Ontology (GO) and pathway analysis. Selected spe-
cifically enriched functional categories are shown for
biological process (BP), molecular function (MF), cellu-
lar component (CC), and pathways for LE, GE, and S,
respectively. The majority of overrepresented categories
such as adhesion junction, cell motility, embryo develop-
ment and MAPK cascade were obtained for LE. Cellular
homeostasis, metal transport, and steroid metabolic
process were found for stroma. Peptidase inhibitor activ-
ity and membrane transporter activity were enriched for
GE samples. A systematic comparison of overrepresented
GO categories and KEGG pathways between the

Fig. 1 Venn diagram showing the overlaps of detectable genes (a)
and differentially expressed genes (b). Green, luminal epithelium (LE);
blue, glandular epithelium (GE); pink, stromal cells (S); yellow,
complete tissue samples
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endometrial cell types and complete endometria was per-
formed with the DAVID tool. At a FDR of 1%, 47 overrep-
resented functional categories and KEGG pathways were
found in total. For selected categories, the FDR and the
fold enrichment obtained for the three cell types and
complete endometria was used to generate a heatmap in
order to illustrate specific and common overrepresented
categories and pathways (Figs. 4a and b). Based on this

comparison, DEGs were enriched for the functional cat-
egories “extracellular exosome” and “extracellular vesicle”
in all three cell types as well as complete tissue. Specific
enrichment of DEGs in LE was found for categories re-
lated to cell communication and signaling (e.g. estrogen
signaling), immune response, epithelium development,
cell proliferation, cytoskeleton, cell junction and migra-
tion. In contrast, DEGs found in stroma were enriched for
functional categories and pathways involved in sterol and
steroid biosynthesis and metabolism, inflammatory
response, extracellular matrix, and ion transport. Particu-
lar enrichment for DEGs in complete endometria was
identified for categories related to cell division and blood
vessel morphogenesis. For GE, the number of enriched
terms and pathways was generally very low due to the low
number of DEGs. More detailed information about the
comparison of overrepresented categories and pathways
and the assigned DEGs for specific cell types and complete
tissue is shown in Additional file 3: Table S3.

Genes differentially expressed in specific cell types or in
complete tissue
First, the log2 fold changes (FC) (pregnant/control) of
the top 10 up- and downregulated DEGs for each cell
type and complete endometrial tissue were compared
(Fig. 5, Additional file 4: Table S4). Genes such as
multimerin 1 (MMRN1), prospero homeobox 1
(PROX1), sodium voltage-gated channel alpha subunit
3 (SCN3A), synuclein alpha (SNCA), sclerostin do-
main containing 1 (SOSTDC1), LOC102165712 were
only DE in stroma. The genes neuropeptide Y (NPY),
osteocrin (OSTN), hemoglobin subunit epsilon 1
(HBE1), LOC106510525, LOC110257993 could only be
found as DE in complete tissue. Some members of
the S100 calcium binding protein A family were
highly upregulated in all three cell types, except S100
calcium binding protein A7 (S100A7) which was spe-
cifically upregulated in LE. Furthermore, serpin family
B members 2 and 7 were highly upregulated in all
cell types whereas serpin family B member 11 (SER-
PINB11) in LE only (not detectable in GE and
stroma).
Genes were defined as specifically DE if they were

contained in the Venn diagram in the not overlapping
sectors of each cell type and the sector for the over-
lap of one cell type with the DEGs found in the
complete tissue samples (Fig. 1b). Furthermore, genes
were analyzed that were DE only in the complete tis-
sue samples, which may well contain genes DE in cell
types not present in the LCM samples. Functional an-
notation results (overrepresentation analysis) for genes
only DE in certain cell types or complete tissue are
shown in Additional file 5: Table S5. The main over-
represented functional categories for the genes

Fig. 2 Unsupervised clustering of endometrial LCM samples. a. A
multidimensional scaling plot (principal component analysis) for the
500 genes showing the highest pairwise fold changes between the
samples in the dataset for LCM samples was performed in EdgeR.
Samples from the same group are shown in the same color. b-d
Hierarchical cluster analysis of differentially expressed genes
identified for the luminal epithelium (b), glandular epithelium (c),
and stroma (d). Mean-centered expression values (log2 counts per
million of sample – mean of log2 counts per million of all samples)
for the samples of the control and pregnant groups are shown for
genes with significant differences in gene expression (FDR < 1%).
Color scale is from − 2 (blue, lower than mean) to 2 (red, higher
than mean). Each row represents 1 gene, each column 1 sample.
The first letter of the sample IDs indicates the group (C or P: control
or pregnant group) and the second the cell type (L, G, and S:
luminal epithelium, glandular epithelium, and the stromal cells),
followed by the ID of the animal, respectively
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specifically upregulated in LE were related to “phos-
phorus metabolic process”, “ATP binding”, “signal
transduction”, “cell adhesion/junction”, “cell migra-
tion”, “extracellular vesicle”, “amide and peptide bio-
synthetic process”, “protein transport”, “cytoskeleton
organization”, “immune response”, and “cell cycle”.
The genes specifically downregulated in LE were in-
volved in “metal ion binding”, “cell morphogenesis”,
“epithelium development”, “microtubule cytoskeleton”,
and “DNA repair”. Only a few overrepresented func-
tional categories were found for GE-specific DEGs,
“endoplasmic reticulum” and “extracellular vesicle” for
upregulated genes. Specific DEGs for stromal regions
were enriched for “ion transport”, “cytoskeleton
organization”, “cell morphogenesis”, and “blood vessel

development” (upregulated genes) and “cellular lipid
metabolic process”, “steroid biosynthetic process”,
“endoplasmic reticulum”, and “metal ion binding”
(downregulated genes). Highly significant enrichment
was obtained for many functional categories in the
analysis of upregulated genes specific for complete
tissue. The main processes and functions were “cell
cycle”, “cell proliferation”, “vasculature or blood vessel
development”, “cell motility”, “cell death”, “proteoly-
sis”, “signal transduction”, “cell adhesion”, “leukocyte
activation”, and “extracellular vesicle”. For the down-
regulated genes, specific for complete tissue, overrep-
resentation was found for “mitochondrion”, “steroid
dehydrogenase activity”, “ciliary part”, “cilium
organization”, and a variety of metabolic processes.

Fig. 3 Gene Ontology (GO) functional classification network. All significant genes (human Entrez Gene IDs) in three cell types were used as input
for the ToppCluster. The following databases were used, i.e. “biological process”, “cellular component”, “molecular function” and pathway. Finally,
the data were uploaded in Cytoscape 3.4.0 to modify the network. Nodes were colored based on specificity: red nodes specific for luminal
epithelium (LE), glandular epithelium (GE), and stromal cells (S); nodes for the three GO functions and pathway were in different colors
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DEGs involved in estrogen signaling, prostaglandin
metabolism and signaling, and other selected pathways
A number of 249 DEGs assigned to a selection of
particularly interesting pathways and processes, e.g.,
estrogen signaling, steroid hormone biosynthesis, prosta-
glandin (PG) metabolism, signaling and transport,
interleukin-1 (IL1) and interferon (IFN) type I signal-
ing are shown in Additional file 6: Table S6. A total
number of 122 DEGs including 81 up- and 41 down-
regulated genes were found as DE in LE. For the GE,
16 were up- and 3 downregulated. In addition, a
number of 20 genes were upregulated and 22 genes
were downregulated in stroma. For complete endo-
metrial samples, 117 assigned genes were upregulated
and 69 were downregulated. For some of the path-
ways, functionally related genes showed distinct

localization of gene expression regulation and in part
the same direction of regulation (i.e., collective up- or
downregulation).

Comparison of the LCM RNA-seq results to data from
real-time RT-PCR and published localization studies
Overall, the overlap of the DEGs between the LCM sam-
ples and the complete tissue samples (dataset from Sam-
borski et al. [18]) showed the reliability of the LCM
RNA-seq data. Furthermore, a comparison to results of
quantitative PCR for 25 selected genes from Samborski
et al. [18] and other studies was performed (Table 1).
Furthermore, the localization of endometrial gene ex-
pression of 20 selected genes observed by LCM
RNA-seq was compared to results from in situ
hybridization (ISH) and immunohistochemistry (IHC)

S      GE      LE   Complete LE  Complete  GE   S
a b

Fig. 4 Comparison of significance of enrichment (false discovery rate, FDR) of selected functional categories and pathways between endometrial
compartments and complete endometrium samples (a). Overrepresented functional categories and pathways were selected (FDR < 1%) from the
results obtained for each cell type and the complete endometria. The FDR from 0 (black) to 1 (white) is shown for selected categories/pathways
specific or in common for the studied cell types. Each row represents a function or pathway, each column a cell type or complete tissue (luminal
epithelium (LE), glandular epithelium (GE), stromal cells (S), and complete tissue). Comparison of fold enrichment of selected functional categories
and pathways between endometrial compartments and complete endometrium samples (b). Overrepresented functional categories and
pathways were selected (FDR < 1%) from the results obtained for each cell type and the complete endometria. The fold enrichment from 1
(white, no enrichment) to 3 (red, 3-fold enrichment) is shown for selected categories/pathways specific or in common for the studied cell types.
Each row represents a function or pathway, each column 1 cell type or complete tissue (luminal epithelium (LE), glandular epithelium (GE),
stromal cells (S), and complete tissue)
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(Table 2). Both comparisons showed very good agree-
ment and in addition the superior sensitivity in compari-
son to ISH and IHC.

Discussion
The present study implemented laser capture microdis-
section (LCM) to isolate endometrial LE, GE, and
stroma from the porcine uterus with the aim of uncover-
ing important cell-specific gene expression regulation,
which is masked in the transcriptome analysis of whole
endometrium samples due to the complex cell type
composition of this mucosal tissue. Overall, the obtained
results and the clear sample clustering based on the
RNA-seq data generated by this approach agreed very
well with our previous studies utilizing RNA-seq of
complete tissue samples and the confirmation of se-
lected DEGs by real-time RT-PCR [18, 19]. Furthermore,
a comparison to published results for localization of ex-
pression of selected genes in porcine endometrium

revealed good agreement and showed higher sensitivity
of the LCM RNA-seq approach compared to ISH and
IHC. In comparison to the data derived from complete
endometrial tissue, less detectable genes were found for
the certain cell types/compartments. This may be attrib-
uted to the fact that the endometrial tissue has a com-
plex and dynamic cellular composition, which includes
LE, GE, fibroblasts, endothelial cells, pericytes, and vari-
ous immune cells. However, the number of more than
11,500 detectable genes obtained from the analysis of
the LCM samples is in the expected range of transcribed
genes for the analysis of an individual cell type.
The results for the LCM samples revealed that there

was a clear difference in gene expression between
non-pregnant and pregnant samples, particularly for the
LE. This indicates that the main effects of the conceptus
signaling on endometrial gene expression are localized
to the luminal epithelium. Furthermore, more than half
of the genes DE in LCM samples were not found as

Fig. 5 Heatmap for the log2 fold changes (pregnant/control) of the top 10 differentially expressed genes of each gene expression comparison.
The scale is from log2 FC -7 (blue, downregulated in pregnant samples) to log2 FC 7 (red, upregulated in pregnant samples). Each row represents
1 gene, each column 1 cell type or tissue (luminal epithelium (LE), glandular epithelium (GE), stromal cells (S), and complete tissue)
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differential in complete tissue, showing that analysis of
the whole endometrium is partially missing cell
type-specific gene regulation. Some genes not appearing
as DE in whole endometria can even be expressed both
in LE and GE or stroma but with opposite expression
regulation, which eventually results in similar expres-
sion between pregnant and non-pregnant state in
complete tissue.

Genes preferentially differentially expressed in
endometrial cell types are related to specific functions
For the genes specifically DE in LE overrepresented
functional categories were mainly related to signaling,
immune functions, and cell adhesion. This is probably
reflecting the various responses to the signals derived
from the elongating conceptus mainly affecting the LE.
Genes upregulated in LE and assigned, e.g., to “protein
phosphorylation” and other categories related to signal-
ing could be induced by conceptus-derived interleukin 1
beta which has been suggested to play an important role
in development of the LE by stimulating cell prolifera-
tion via activation of the ERK1/2 and P38 MAPK cell
signaling cascades [28]. Furthermore, endometrial- and/
or conceptus derived epidermal growth factor (EGF) has
been shown to stimulate phosphorylation of ERK1/2

MAPK in porcine LE cells and proposed to regulate
development of the peri-implantation uterine LE at the
fetal-maternal interface [29].
For stroma, DEGs, related to “vasculature develop-

ment”, “ion transport”, “cell development”, were overrep-
resented. Angiopoietin-2 (ANGPT2) mRNA was
detectable in all three cell types but only upregulated in
stroma and complete endometria in this study. ANGPTs
comprise a second key group of vascular regulators in
the endometrium with interactions with the vascular
endothelial growth factor (VEGF) system and appear to
play a major role in the regulation of blood vessel
growth, maturation, and regression [30, 31]. In human
endometrium, ANGPT2 expression was mainly localized
to the glandular epithelium and endothelium [32]. While
only 11 genes upregulated in stroma (3.8-fold enrich-
ment) were assigned to “vasculature development”, 116
genes upregulated in complete endometria (2.4-fold en-
richment) were assigned, showing that most of the genes
involved in this process are regulated in endometrial re-
gions rich in blood vessels which were not collected for
the stroma samples. These genes included several
angiogenesis-related genes such as VEGFC, VEGFD, and
VEGF receptors 1, 2, and 3 as well as angiopoietin re-
ceptors, and a number of endothelial cell markers. The

Table 2 Comparison of LCM RNA-seq results for endometrial localization of gene expression to results from in situ hybridization and
immunohistochemistry

Gene LE GE S Complete Other studies Technique PubMed ID

AKR1B1 5.2 5.2 2.2 5.1 LE days 12/13 P ISH 17640989, 24695626

HPGD −3.8 −1.4 −3.6 −3.0 expression in LE D12C ISH 24695626

EGFR −0.7 d d −1.0 low abundance in LE/GE D12 ISH 24012778

FGF7 2.3 1.7 d 2.1 expression in LE/GE D12P ISH 10819782

FGF9 2.2 nd nd 3.0 expression in GE D14P IHC 20393170

FGFR2 d d d d expression in LE/GE D12 ISH 28395342

ABCC1 3.5 d d 2.4 expression in LE/GE D12P (weak) ISH 27764917

LOC100738425 (ABCC4) nd 2.9 nd 2.2 expression in LE/GE D12P ISH/IHC 24695625

ABCC9 1.2 d d 2.2 expression in LE/GE D12P (weak) ISH 27764917

SLC24A4 −8.2 d −2.0 −1.9 nd in LE D12P ISH 24472379

SLCO2A1 1.0 d 2.3 d expression in LE/BV D12P ISH 24695625

SLCO4C1 1.6 d d 2.3 nd, ISH too weak, qPCR D12P up ISH 27764917

SLCO5A1 8.4 4.9 5.9 6.4 nd, ISH too weak, qPCR only D12 P ISH 27764917

GJA1 2.0 d 1.3 1.3 stroma, BV IHC 9669753

GJB1 nd nd nd −1.3 nd in LE IHC 9669753

GJB2 nd nd nd nd nd in LE IHC 9669753

IRF2 1.3 d d 1.0 cycle: low all cell types, from D12P up in LE ISH 17475929

S100G 2.9 d d 3.6 expression in LE D12P ISH 19641180

STAT2 −0.8 d d d cycle: low in all cell types, after D12P: up in stroma ISH 17475929

TRPV6 5.6 6.3 2.1 5.9 strong expression in LE, weak in GE D12P ISH 19641180

Values are log2 FC; d: expression detected; nd: expression not detectable; LE: luminal epithelium; GE: glandular epithelium; BV: blood vessels; P: pregnant; C: cyclic;
ISH: in situ hybridization; IHC: immunohistochemistry
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high enrichment scores obtained for “blood vessel devel-
opment” and related categories is in concordance with
the finding that conceptus estrogen can increase endo-
metrial vascular permeability [33].
The functional category “ion transmembrane trans-

port” showed higher enrichment for genes upregulated
in stroma compared to genes upregulated in LE of preg-
nant group. However, many more genes were assigned
to this category for genes DE in LE. In LE and stroma
calcium transporter genes had lower expression in sam-
ples from pregnant gilts, particularly solute carrier family
24 member 4 (SLC24A4) with a log2 FC of − 8.2. This is
in agreement with a recent study where SLC24A4
mRNA was detectable in LE cells during the estrous
cycle by in situ hybridization, but undetectable during
early pregnancy including Day 12 [34]. In addition, the
mRNAs for the calcium ion channel protein TRPV6 and
the intracellular calcium-regulatory molecule S100G
were upregulated in all three cell types but highest in LE
of pregnant gilts which is in agreement with results
from quantitative PCR and localization by ISH of a
previous study [35].
Altogether, the analysis of genes specifically DE in

endometrial compartments showed differential local re-
sponses to the conceptus-derived signals. Selected func-
tional categories important for maternal recognition of
pregnancy (MRP) and establishment of pregnancy are
discussed in the following.

Genes involved in cell communication and endometrial
remodeling
In the present study, genes involved in extracellular exo-
somes/vesicles (EVs) were overrepresented in DEGs of
LE, GE, and stroma. In sheep, EVs that carry genetic ma-
terials (mRNAs, proteins and miRNAs) were found in
uterine luminal fluid (ULF), indicating its potential role
in the conceptus-endometrial interaction [36]. The over-
representation of this theme indicates a similar import-
ance of EVs for embryo-maternal interactions as
suggested for humans [37].
In addition to cell-cell adhesion (see below), cell junc-

tions play also an important role in cell-to-cell commu-
nication. Genes involved in cell junction assembly, e.g.,
members of the connexin family were enriched for
DEGs in LE. A number of connexins was upregulated,
namely gap junction protein alpha (GJA1, GJA4, and
GJA5), beta (GJB3, GJB4, and GJB5), and gamma (GJC1).
Connexin 43 (GJA1) was expressed in all three cell types
and upregulated in LE and stroma. Expression of GJA4
and GJB4 was only detectable in complete endometrium
samples and GJA5 only in GE. Expression and upregula-
tion of GJB3 was found in all three cell types with high-
est expression in LE whereas GJB5 mRNA was only
detected in LE of Day 12 pregnant gilts. In comparison

to findings of connexin expression in human and rodent
endometrium and placenta, there are some similarities,
but also distinct differences probably related to the
non-invasive type of placentation in the pig. In humans
as well as in rodents, expression of connexin 26 (GJB2)
is suppressed in LE and connexin 43 (GJA1) is sup-
pressed in stromal cells during the receptive phase and
expression of GJB2 is induced by the presence of a
blastocyst and by proinflammatory factors such as
PGF2a and IL1B [38]. In contrast, in porcine endomet-
rium, expression of GJB2 mRNA was not detectable on
Day 12 of pregnancy and the estrous cycle, respectively
and GJA1 mRNA was upregulated on Day 12. Expres-
sion of connexins in porcine endometrium could be
controlled by a combination of conceptus estrogens and
IL1B2 and PGs. So far, differential expression of GJA4,
GJA5, GJB3, GJB4, and GJB5 has been described only in
trophoblast cells of human and/or mouse placenta [39],
but not in endometrial cells. In addition, several genes of
the tight junction protein family (claudins) were found
as DE, CLDN1 upregulated in LE and stroma, CLDN3
and CLDN4 upregulated only in LE, and CLDN8 down-
regulated in LE and stroma. The distinct expression pat-
tern of connexins and claudins in porcine endometrium
suggests an important role in the interaction of the dif-
ferent functional compartments of the endometrium and
with the conceptus.
The functional term “epithelial cell morphogenesis”

was significantly enriched for LE. In this context, a num-
ber of growth factor and growth factor receptor genes
have been found as differentially expressed in porcine
endometrium during the preimplantation phase [40].
Fibroblast growth factor 7 (FGF7) mRNA was upregu-
lated in LE and GE but not in stromal regions in agree-
ment with the results of a previous study [41]. FGF7
secreted to the uterine lumen has been suggested to
have autocrine effects on the endometrium as well as
paracrine effects on the conceptus trophectoderm [42].
The mRNA for the high-affinity receptor for FGF7,
FGFR2 was expressed in all three endometrial cell types
at high levels, supporting FGF7 could have autocrine ef-
fects on the endometrium. The mRNA of another fibro-
blast growth factor, FGF9 was specifically upregulated in
LE in agreement with the results in one of our previous
studies [43]. Upregulation of FGF9 expression was also
found during the phase of maternal recognition of preg-
nancy in the mare [44].
In human endometrium, stroma-derived insulin-like

growth factors (IGFs) are implicated in growth regula-
tion of epithelial cells [45]. In porcine endometrium,
mRNAs for IGF1 and IGF2 as well as their receptors
were not DE on Day 12 but detected in all three endo-
metrial cell types, with high expression levels for IGF1,
IGFR1, and IGFR2. A number of mRNAs for IGF
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binding proteins (IGFBP2, IGFBP3, IGFBP4, IGFBP5,
IGFBP6, IGFBP7) were also detected, but only IGFBP2
was found as upregulated in complete endometria, sug-
gesting upregulation in blood vessel regions. Another
growth factor gene, EGF and its receptor (EGFR) were
DE in porcine endometrium, EGF downregulated in LE
and stroma and EGFR downregulated in LE. A recent
study in cyclic and ovariectomized gilts revealed down-
regulation of endometrial EGFR expression in ovariecto-
mized estradiol-treated gilts while EGF remained
unchanged [46]. Localization of expression in porcine
endometrium by ISH revealed low abundance of EGFR
mRNA in LE and GE between days 9 and 15 of the es-
trous cycle and days 9 and 12 of pregnancy [47].
The transforming growth factor beta (TGFB) signaling

pathway has been identified as an important modulator
of many endometrial functions during the sexual cycle,
the implantation phase and placentation [48]. Most of
the genes assigned to the TGFB signaling pathway were
found as DE in complete endometria and some in
stroma, such as bone morphogenetic protein 2 and 4
(BMP2, BMP4), suggesting a role in vascular remodeling.
TGFB1 and TGFB2 were expressed in LE, GE, and
stroma and were upregulated in complete endometrial
samples, TGFB3 was identified as upregulated in stroma
only. Inhibin beta B subunit (INHBB) mRNA was upreg-
ulated in LE and stroma.
In summary, intercellular communication is regulated

by cellular junctions in a species-specific manner in con-
text of the strictly non-invasive type of implantation in
the pig. Several growth factor systems are regulated in
the endometrium. The FGF system seems to be involved
in autocrine and paracrine effects on the epithelium and

conceptus, respectively. Based on the localization of
gene expression regulation of the IGF, EGFR, and TGFB
systems, suggests a role mainly in remodeling of stromal
regions and blood vessels (overview in Fig. 6).

Genes related to cell adhesion
Members of the integrin family were reported to be crit-
ical for endometrium-conceptus communication and im-
plantation, as well as cell adhesion cascades [49]. Two
integrin alpha genes (ITGA1 and ITGAV) and six integ-
rin beta genes (ITGB1, ITGB2, ITGB3, ITGB5, ITGB6,
and ITGB8) showed higher mRNA concentrations in
complete endometrium on Day 12 of pregnancy. The re-
sults from the LCM samples revealed four integrin
genes, ITGAV, ITGA3, ITGB6, and ITGB8 as upregulated
in LE, ITGB6 in addition upregulated in GE. In line with
the mRNA expression, ITGA3 protein was localized to
the uterine epithelium during early pregnancy in the pig
[50]. The genes for ITGA1, ITGB1, ITGB2, ITGB3,
ITGB5, ITGB6, and ITGB8 were only DE in the
complete tissue samples. Based on the known functions
of these integrins, it is likely that they are DE in B or T
cells and/or blood vessels.
The expression of osteopontin (also known as Secreted

Phosphoprotein 1, SPP1), a secreted ECM protein that
binds to a variety of cell surface integrins, has been
shown to increase markedly in LE during the
peri-implantation period in pigs [51]. In our study, SPP1
mRNA was upregulated in LE and also in stroma. It is
known that expression of the integrin heterodimer
alpha(v)beta(6), which is binding to SPP1, on the endo-
metrium and the trophoblast is necessary for conceptus

Fig. 6 Summary of the main findings of the study. This schematic overview is based on the results of the present study of endometrial
localization of differential gene expression. Genes highlighted in red and blue color were found as up- and downregulated, respectively when
comparing pregnant to nonpregnant sows
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attachment as the ability of trophectoderm cells to bind
to OPN decreased after knocking down ITGAV [52].
A number of further genes assigned to the GO cat-

egory “cell-cell adhesion” were upregulated in LE. Galec-
tin 9 (LGALS9) mRNA was specifically upregulated in
LE, and a similar expression profile was also reported in
bovine endometrium [53]. Popovici et al. characterized
the cells that express LGALS9 in human endometrium,
and found that LGALS9 mRNA was significantly upregu-
lated during early pregnancy in epithelial cells, whereas
it was not expressed in stromal cells [54]. Additionally,
syndecan 4 (SDC4) was upregulated in LE. In mice,
SDC4 was found as upregulated in LE and GE, and also
in endometrial fibroblasts [55]. Another mRNA for a cell
adhesion molecule, activated leukocyte cell adhesion
molecule (ALCAM) was upregulated in LE and stroma.
The results of a previous study showing that ALCAM is
over-expressed in human endometrial cell during the
implantation period [56] and expression of ALCAM on
human endometrial epithelial cells and blastocysts [57]
suggests that the ALCAM-ALCAM cell adhesion system
is probably involved in the interaction between the em-
bryo and maternal endometrium in humans and the pig.
The observed expression of genes known as in-

volved in cell adhesion, shows that the attachment of
the conceptus trophectoderm to the LE following
after day 13 of pregnancy is already initiated on Day
12 (overview in Fig. 6).

Genes related to immune response
In context of conceptus-endometrium interactions in
the pig, a number of signaling molecules involved in
regulation of immune response have been described
[58]. The pig conceptus-specific IL1B2 plays an import-
ant role during conceptus elongation and establishment
of pregnancy through its effects on the uterine luminal
epithelium [59, 60]. In the context of IL1B signaling,
interleukin 1 receptor type 1 (IL1R1), interleukin 1 re-
ceptor accessory protein (IL1RAP), and interleukin 1 re-
ceptor associated kinases 3 and 4 (IRAK3, IRAK4) were
upregulated in LE in the present study. In agreement
with upregulation of IL1R1 in LE, a previous report
showed that secretion of IL1B2 from the conceptus is
associated with increased endometrial expression of
IL1R1 [61]. In general, interleukin 1 beta is one of the
major signaling molecules in the NFKB signaling path-
way. Many members of this central immune response
signaling pathway were found to be differentially
expressed in LE, e.g., mRNAs for a number of NF-kappa
B subunits (NFKB1, NFKB2, REL, RELB) were upregu-
lated as well as NFKB inhibitors (NFKBIA, NFKBIB,
NFKBIE). A recent study revealed that compared to
IL1B1, the extent of NFKB activation and related gene
expression was lower in endometrium treated with

IL1B2 in the pig [59]. The lower NFKB activation ob-
served for the IL1B2 secretion from the conceptus could
be associated with the simultaneous upregulation of
NFKBIA, NFKBIB, and NFKBIE.
In addition to the IL1 and NFKB signaling pathway, a

number of genes involved in the interferon type I signal-
ing pathway (WP585) were obtained as DE. Members of
the signal transducer and activator of transcription fam-
ily (STAT1, STAT4, STAT5A, STAT5B) were mainly
found as upregulated in LE, except STAT2 which was
downregulated in LE. Protein inhibitor of activated
STAT 1 (PIAS1) was also found as upregulated but only
in the complete endometria. Furthermore, a number of
genes of the type I IFN signaling pathway were differen-
tially expressed. Interferon alpha and beta receptor sub-
unit 1 (IFNAR1) and IFNAR2 were both upregulated in
LE and GE, and all three LCM samples, respectively. In
a recent study, upregulation of IFNAR1 and IFNAR2
mRNAs was also found on Day 12 of pregnancy in por-
cine endometrium and positive regulation by IL1B for
IFNAR1 mRNA and by IL1B and E2 for IFNAR2 mRNA
[62]. In contrast, the expression of interferon regulatory
factors IRF3, IRF4, IRF7, and IRF9 was lower in samples
from Day 12 pregnant gilts, IRF3, IRF4, IRF7 in
complete endometria and IRF9 in LE. Furthermore, a
number of typical IFN-stimulated genes (IFI6, IFI30,
IFI44, IFI44L, IFIT1, IFIT2, IFIT3, IFITM1, IFITM3,
MX1, 2′-5′-oligoadenylate synthetases (OAS1, OAS2),
and radical S-adenosyl methionine domain containing 2
(RSAD2) in LE and/or stroma) which are upregulated by
IFNT in ruminants, showed lower expression in samples
derived from Day 12 pregnant gilts. These findings are in
line with the results from our previous studies [18, 19, 63]
which showed that the endometrial response to conceptus
signals has very distinct characteristics in comparison of
Days 12 and 14 of pregnancy and a typical response to
type I IFNs can only be observed on Day 14. In agreement
with a previous study [64], increased expression of IRF2
mRNA in LE was found in pregnant endometrium sup-
porting upregulation by conceptus-derived E2.
However, in the pig, interferon gamma (IFNG) is the

major trophoblast-derived IFN on Day 12 of pregnancy,
which is synthesized between Days 12 and 20 during the
gestation period [65]. Interferon gamma receptor 2
(IFNGR2) was upregulated in all three cell types of the
pregnant endometrium in this study. Interferon gamma
plays a crucial role in innate immune responses [66],
and its functions are achieved via receptor-mediated sig-
nals that lead to changes in the transcription of hun-
dreds of genes [67]. But since a strong inflammatory
response would have negative effects on establishment
of pregnancy, IFNG effects have to be regulated. Sup-
pressor of cytokine signaling 1 (SOCS1) has been identi-
fied as a specific negative regulator of IFNG effects [68].
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SOCS1 mRNA was upregulated in complete endometria.
In addition, SOCS4 was found as upregulated in LE,
whereas SOCS6 was downregulated in LE and stroma.
Members of the S100 calcium binding protein A gene

family have been found as involved in innate immunity
[69]. Particularly S100A7, S100A8, S100A9, and S100A12
were highly upregulated in pregnant sows (log2 FC up
8–12). Members of this protein family are in addition
important for the modulation of the inflammatory re-
sponse [70].
Many CD molecules genes (e.g. CD14, CD34, CD36,

CD40, CD46, CD58, CD93, and CD99) were found as
upregulated in complete tissue. In LCM samples, CD14
was found as upregulated in GE and stroma and was not
detectable in LE. The CD14 molecule is an accessory
molecule of toll like receptor 4 (TLR4) which is import-
ant for innate immune responses to bacterial and other
microbial structures [71]. The mRNA for TLR4 was
downregulated in LE and stroma. The expression pat-
terns of CD14 and TLR4 suggest a specific and local
modulation of proinflammatory effects in the porcine
during early pregnancy. In addition, CD99 was found as
upregulated in LE and stroma, which has a major regula-
tory function in early T-cells [72]. Inducible T-cell costi-
mulator ligand (ICOSLG) playing a role in regulation of
endometrial T-cells [73] was upregulated in LE which
could also be involved in modulation of the maternal
immune system.
The expression patterns of genes involved in immune

response reflects the effects of conceptus- and
endometrium-derived signaling molecules. Overall, the
involved genes and their spatial regulation suggests a
tight control of the maternal immune response to sup-
port conceptus growth and to avoid negative inflamma-
tory effects (overview in Fig. 6).

Genes involved in estrogen signaling and metabolism
Estrogen receptor alpha (ESR1) expression has been
studied in endometrium of gilts and sows during the es-
trous cycle and early pregnancy [74–76]. No differences
in ESR1 mRNA expression was found between cyclic
and pregnant endometrium on Days 11–12. Here, we
found three-fold lower mRNA concentrations in LE of
samples from pregnant gilts. The mRNA encoding the
membrane-bound G protein-coupled estrogen receptor
1 (GPER1) was also downregulated, but only in the
complete tissue samples. The fact that GPER1 was only
found as DE in complete endometrium samples suggests
regulation near blood vessel regions. Downregulation of
GPER1 mRNA could result from downregulation of
ESR1 since it has been shown that GPER1 is regulated
by nuclear ESR1 and progesterone receptors [77].
The functional categories “sterol biosynthetic process”

and “steroid metabolic process” were specifically

overrepresented for the DEGs found in stroma. Genes en-
coding UDP-glucuronosyltransferases (UGTs) were upreg-
ulated, UDP glucuronosyltransferase 1 family, polypeptide
A6 (UGT1A6) in GE, UDP-glucuronosyltransferase 2B31
(UGT2B31) in LE, and UDP-glucuronosyltransferase
2B31-like (LOC100515741) in complete endometria. As
UGT enzymes are involved in glucuronidation of E2 [78],
this indicates increased UGT-mediated estrogen metabol-
ism on Day 12 of pregnancy. Cytochrome P450 family
members CYP1B1, CYP7A1, CYP7B1 which are involved
in E2 synthesis and metabolism [79, 80], were also DE on
Day 12 of pregnancy. For example, CYP7A1 regulating
cholesterol metabolism [81] was downregulated in LE and
stroma, on the other side, CYP7B1 being related to steroid
metabolism [82] was downregulated in LE. Sulfotransfer-
ase family 1E, estrogen-preferring, member 1 (SULT1E1)
involved in steroid synthesis and metabolism has been
found as upregulated in porcine endometrium during
Days 15 and 16 of pregnancy [83]. We found that
SULT1E1 is already upregulated on Day 12 in LE, GE, and
stroma. Overall, the results for genes involved in E2 me-
tabolism showed downregulation of genes involved in E2
synthesis, while genes probably mediating inactivation of
E2 (sulfatases, UGTs) were upregulated in the endomet-
rium on Day 12 of pregnancy (see overview in Fig. 6).

Genes involved in prostaglandin metabolism and
signaling
Members of the phospholipase A2 family (PLA2s), key
enzymes for the release of PG precursor molecules from
the plasma membrane [84], were downregulated mainly
in complete endometrial tissue samples, except
PLA2G4A which was localized to stromal areas. The
downregulation of PLA2 genes in complete endometria
could indicate regulation associated with immune cells
or cells of blood vessels. In a recent study, a trend for
downregulation of PLA2G4A has been found on Day 12
of pregnancy whereas no difference was found on Day
15 [85]. The aldo-keto reductase family 1 member B
(AKR1B1) is an aldose reductase enzyme that is secreted
into the extracellular spaces where it functions in the
synthesis of PGs, specifically PGF2a in the endometrium
[86]. Strong upregulation of AKR1B1 mRNA was found
only in LE and GE with strongest expression in LE,
while prostaglandin-endoperoxide synthase 2 (PTGS2)
was downregulated only in stroma. This leads us to
hypothesize that AKR1B1, together with PTGS2 maybe
important enzymes involved in the change of endocrine
to exocrine secretion of PGF2a in porcine endometrium.
Furthermore, the mRNA for HSD17B12 was upregulated
in LE. Its known function in conversion of estrone to es-
tradiol is in contrast to the observed downregulation of
other genes involved in E2 synthesis, but HSD17B12 is
also known to function in arachidonic acid metabolism
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thereby providing precursors for prostaglandin synthesis
[87]. Together with the localization of upregulation in
LE this suggests a role in PG synthesis on Day 12 of
pregnancy in porcine endometrium. The mRNA for
prostaglandin E synthase (PTGES) was found as down-
regulated in LE. In addition, PTGES2, PTGES3, and
PTGES3L were also expressed in all three cell types
(PTGES2 not in GE). The mRNA of PTGES3L was more
than 4-fold upregulated in LE of pregnant endometrium.
However, the expression of PTGES3 mRNA was clearly
higher compared to the mRNAs of the other PGE2
synthases. Similar to the findings in a recent study [85],
PTGES3 mRNA was slightly higher in LE on Day 12 of
pregnancy but did not reach the significance threshold
(adjusted P-value 0.042 in LE, 0.021 in complete tissue).
The biological effects of PGs are also controlled by PG

transport, e.g., mediated by specific transporters such as
transmembrane transporters ATP-binding cassette, sub-
family C, member 4 (ABCC4) and solute carrier organic
anion transport family, member 2A1 (SLCO2A1). In
porcine endometrium, ABCC4 and SLCO2A1 expression
has been found as upregulated on Day 12 of pregnancy
in LE and GE, and LE and blood vessels, respectively
[88]. In our study, ABCC4 was downregulated and
SLCO2A1 was upregulated in LCM samples from stro-
mal areas. A closer look at the RNA-seq data showed
that ABCC4 is expressed in all three cell types. Likewise,
SLCO2A1 mRNA was detectable at similar expression
levels in all three cell types. In GE, another gene
(LOC100738425) similar to human ABCC4 was
expressed and showed a 7.5-fold increase in samples
from Day 12 pregnant gilts. Altogether, the obtained re-
sults revealed a very complex pattern of regulation for
PG synthesizing, metabolizing and transporting proteins,
as well as PG receptors. Basically, the results from our
endometrial LCM RNA-seq analysis suggest a specific
upregulation of the PGF synthase AKR1B1 in LE and
GE, specific uregulation of PG transporters in the LE,
local upregulation of PGE synthases, and a general
downregulation of PG precursor synthesis in other re-
gions of the endometrium as the molecular mechanism
for the switch from endocrine to exocrine PGF2a secre-
tion and the regulation of PGE2 production, which
needs further comprehensive functional studies at the
protein level (for an overview see Fig. 6).

Conclusions
In summary, this study comprehensively determined dif-
ferential gene expression in the endometrial compart-
ments/cell types LE, GE, and stroma of porcine
endometrium during the preimplantation period. In
comparison to previous studies, the localization of tran-
scriptomic changes in response to conceptus signals was
addressed and used to draw a global picture of molecular

pathways involved in establishment and maintenance of
pregnancy in the pig. The findings of this study will serve
as a basis for in-depth investigations of cell type-specific
molecular pathways in porcine during the phase of mater-
nal recognition of pregnancy.
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