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Abstract

Background: De novo mutations (DNMs) are associated with neurodevelopmental and congenital diseases, and
their detection can contribute to understanding disease pathogenicity. However, accurate detection is challenging
because of their small number relative to the genome-wide false positives in next generation sequencing (NGS)
data. Software such as DeNovoGear and TrioDeNovo have been developed to detect DNMs, but at good sensitivity
they still produce many false positive calls.

Results: To address this challenge, we develop HAPDeNovo, a program that leverages phasing information from
linked read sequencing, to remove false positive DNMs from candidate lists generated by DNM-detection tools.
Short reads from each phasing block are allocated to each of the two haplotypes followed by generating a haploid
genotype for each putative DNM. HAPDeNovo removes variants that are called as heterozygous in one of the
haplotypes because they are almost certainly false positives. Our experiments on 10X Chromium linked read
sequencing trio data reveal that HAPDeNovo eliminates 80 to 99% of false positives regardless of how large the
candidate DNM set is.

Conclusions: HAPDeNovo leverages the haplotype information from linked read sequencing to remove spurious
false positive DNMs effectively, and it increases accuracy of DNM detection dramatically without sacrificing
sensitivity.
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Background
De novo mutations (DNMs) have been shown to be a
major cause of neurodevelopmental and other congenital
diseases including autism [1], schizophrenia [2], intellec-
tual disability [3], and congenital heart disease [4]. Next
generation sequencing of nuclear families provides an
unprecedented opportunity to investigate the de novo
mutation spectrum of these diseases at single nucleotide
resolution. Variant calling methods such as GATK [5]
and SAMtools [6] implement a straightforward approach
to explore DNMs by selecting the mutations that appear
in the child but not the parents. Other approaches such

as DeNovoGear [7] and PolyMutt [8] model the family
relationship as a prior probability of mutation transmis-
sion to distinguish true DNMs from noise, dramatically
improving performance. These programs assume a con-
sistent mutation rate across all positions, which is not
always the case. TrioDeNovo [9] was developed to
address this issue by employing flexible priors. Neverthe-
less, most of the existing algorithms are still over-
whelmed by an enormous number of false positives,
which are probably caused by factors such as sequencing
coverage bias, sequencing batch effects, and alignment
artifacts on repetitive regions. There has been a lack of
studies that investigate which factor has the most impact
and how to correct biases in de novo mutation calling.
Phasing of inherited variants, inferred by linkage dis-
equilibrium or allele transmission, has commonly been
applied to refine inherited variant calls [10–12]. Know-
ing the phase of DNMs is critical in determining their
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parent-of-origin. Yet, phasing is complicated and re-
mains challenging for DNMs on just short reads gener-
ated from the typical ~ 500 bp fragments in Illumina
sequencing. The 10X Chromium system microfluidically
partitions long DNA fragments from which short frag-
ments and, subsequently, Illumina reads are generated
[13]. Thus, each original long DNA fragment generates a
collection of short reads with a shared barcode (linked
reads), enabling robust and accurate, genome-scale vari-
ant genotyping and phasing. Phasing analysis reveals that
linked read sequencing generates a very low overall long
switch error (< 0.03%) [14]. Here we developed a novel
filtering and phasing toolkit for DNMs, HAPDeNovo,
which takes full advantage of robust variant phasing
from linked read sequencing to sift true DNMs from
noise. We show that HAPDeNovo drastically eliminates
false positive DNMs without decreasing the detection
rate of true positives. We identify the culprit of false
positive calls to be allele-specific sequencing coverage
biases.

Implementation
Linked read sequencing is a technology that allows for
simultaneous variant calling and phasing, by recon-
structing the original long fragments from linked short
reads. When reads with the same barcode align in prox-
imity to each other in the genome, they originated from
the same haplotype because the original template was a
single DNA fragment. In general, HAPDeNovo is de-
signed to re-calibrate the DNM quality based on read
coverage and sequencing quality for each haplotype. The
reads from each phasing block are allocated to either of
the two haplotypes, enabling HAPDeNovo to identify
two haploid genotypes for each candidate DNM. Each
putative de novo mutation (homozygous reference allele
for both parents and heterozygosity for the child) is cate-
gorized as high-confidence if all the three genotypes in
the trio can be phased and all haploid genotype calls are
homozygous. The remaining DNMs would be catego-
rized to be low-confidence if there are no reads covering
one or more haplotypes, since there is insufficient infor-
mation to ascertain whether they are false positives.
HAPDeNovo involves three steps (Fig. 1): 1. Variant call-
ing and phasing; 2. Haplotype-specific genotyping; 3. Re-
moving false positive DNMs.
The input to HAPDeNovo is paired-end reads in

FASTQ files generated by Illumina-sequencing of 10X
Chromium libraries for each individual of the trio. In the
first step, all the reads are aligned to the reference gen-
ome by LongRanger or another barcode-aware aligner
and HAPDeNovo would perform multi-sample variant
calling on the trio with any available variant callers
(FreeBayes by default). Because variant phasing is inde-
pendent for each individual, HAPDeNovo separates the

variants into three individual VCF files for variant phas-
ing based on the barcode-aware haplotype assembly ap-
proaches such as Long Ranger or HapCUT2 [15]. The
individual phased VCF files are then merged into a
phased multi-sample VCF file. For each phase block,
HAPDeNovo determines the haplotype that each read
comes from and marks the read accordingly in the BAM
file.
In the second step, the BAM file for each individual is

divided into three, according to the three haplotype tags:
HP1, HP2 and HP0, which denote the reads coming
from maternal haplotype, paternal haplotype, and un-
determined haplotype within the phase block, respect-
ively. Then, multi-sample variant calling is performed
again on all nine BAM files, which identifies the specific
alleles that comprise each individual’s two haplotypes.
In the last step, putative DNMs are extracted into a

VCF (Variant Call Format) file from the original
multi-sample variant calls (FreeBayes by default), if the
allele occurs in only one haplotype of the child (hetero-
zygous variant) and is absent in both parents (homozy-
gous reference). HAPDeNovo currently accepts
multi-sample variant calls to produce the DNM candi-
date set from GATK, TrioDeNovo and DeNovoGear, for
which preprocessing scripts are included in HAPDe-
Novo. HAPDeNovo defines variant sites to be
high-confidence if all the six genotypes called from the
reads with HP1 and HP2 tags are homozygous (0|0 or
1|1, denoting reference and variant haploid genotypes)
and the calls are supported by sufficient sequencing
depth (>1X by default). High-confidence DNMs are de-
fined as such when they belong to the high-confidence
sites, all four parental haploid alleles are 0, the child’s al-
leles are 0 and 1, and the DNM is phased. The candidate
DNMs are defined as low-confidence when one or more
haplotype is uncovered by any reads, but they are identi-
fied as putative DNMs in the original candidate set.
These low-confidence variants are kept for further con-
sideration since HAPDeNovo is unable to determine on
the basis of the haploid genotypes whether they are false
positives.
It is a special case that variants on the male’s X chromo-

some are naturally phased for the non-pseudoautosomal
regions, so their genotypes are directly translated to haplo-
type calls. The variants from pseudoautosomal regions are
merged into autosomal chromosomes for analysis; in prac-
tice, mapping quality is low in the pseudoautosomal re-
gions because they are duplicated in the reference
genome. If the child is female, putative de novo mutations
are categorized as high-confidence if the two genotypes
from the mother and child can be phased and all five hap-
loid calls (including father’s X chromosome) are homozy-
gous. If the child is male, only the haploid calls on the X
chromosomes of mother and child are considered.
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The required sequencing depth per haplotype is a
user-defined parameter. The output of HAPDeNovo is a
flat file containing high-confidence DNMs annotated by
H, and low-confidence DNMs annotated by L.

Results
The performance of HAPDeNovo was evaluated on the
validated DNMs of the 1000 Genomes Project CEU trio
(NA12878, daughter; NA12891, father; and NA12892,
mother). We downloaded the reads of the three samples
that were generated by the 10X Chromium system from
the Genome In A Bottle website. All of them have suffi-
cient sequencing depth for variant calling (NA12878:
300Gb reads, 74.96X coverage; NA12891: 128Gb reads,
36.94X coverage; NA12892: 128Gb reads, 36.88X cover-
age). There are 49 validated germline de novo mutations
in NA12878 [16], serving as a gold standard

(Additional file 1: Table S1). The alternative alleles of 45
of these were covered by 10X-based linked read sequen-
cing at least once; four de novo mutations could not be
evaluated due to poor sequencing coverage of alternative
alleles (Additional file 1: Table S1).
We used Lariat [17] to align the reads from the trio

against the reference genome (hg19) followed by variant
calling and generation of a set of putative DNMs. More
than 95% of the reads can be aligned to the reference
genome (NA12878: 96.17%, NA12891: 97.15%,
NA12892: 96.86%). We included the variant calls from
four programs: two general purpose callers (GATK and
FreeBayes) and two DNM specific callers (TrioDeNovo
and DeNovoGear) to evaluate the impact of different in-
puts with respect to HAPDeNovo performance. To in-
corporate as many DNMs in the gold standard as
possible, we applied lenient parameters in variant calling.

Fig. 1 Workflow of HAPDeNovo. Software is in brackets. HP: haplotype
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A depth threshold was commonly applied to the variants
from all four methods as well as additional unique
threshold for each program to pre-filter those false posi-
tives before phasing. De Novo Quality (DQ) and Poster-
ior Probability (PP) were considered in TrioDeNovo and
DeNovoGear, and Genotype Likelihoods (GL or PL)
were applied to GATK and FreeBayes. We also varied
these thresholds to examine their potential influence
(Additional file 2: Table S2; Additional file 3: Table S3;
Additional file 4: Table S4; Additional file 5: Table S5).
If only DNMs with sequencing depth greater than 15X

were taken into consideration, a majority of the variant
sites were classified as high-confidence (85.3% for Free-
Bayes and TrioDeNovo, 99.5% for GATK, and 98.9% for
DeNovoGear). FreeBayes initially generated 10,431 can-
didate DNMs but after application of a GL filter (GL = −
50), 5829 candidates remained, including all 44 true pos-
itives. TrioDeNovo generated 3955 candidate DNMs;
after application of a more stringent quality threshold
(DQ = 7), 3717 candidates remained, including all 44
true positives. GATK and DeNovoGear generated much
larger candidate sets (242,530 and 89,230 after applying
PL = 450 and PP = 3E-5, respectively), and each missed
one true DNM (Table 1).
Application of HAPDeNovo to these call sets elimi-

nated a considerable number of false positives (81.3% for
FreeBayes, 81.6% for TrioDeNovo, 99.4% for GATK,
98.6% for DeNovoGear; Table 1), without sacrificing any
true positives. The number of remaining candidate
DNMs was similar among the inputs (1439 for GATK,
1127 for FreeBayes, 1284 for DeNovoGear, 718 for Trio-
DeNovo; Table 1). In each of these sets, HAPDeNovo
identified approximately 22% of as high-confidence
DNMs, which included a majority of true positives (33/
44 for FreeBayes and TrioDeNovo and 32/43 for GATK
and DeNovoGear). By increasing the stringency of

thresholds, further false positive reduction was achieved
at a small cost of sensitivity (Additional file 2: Table S2;
Additional file 3: Table S3; Additional file 4: Table S4;
Additional file 5: Table S5). Moreover, HAPDeNovo
could phase and determine the parent-of-origin of all
the 44 validated de novo mutations.
To understand whether the increased specificity of

HAPDeNovo is sensitive to read depth of raw variant
calls from the four programs, we performed an extensive
ROC analysis for each of the four variant callers with
and without HAPDeNovo (Fig. 2). We applied the read
depth thresholds from 10X to 30X to the raw variants
and found the optimal parameter settings for the four
variant callers (the maximal number of true DNMs and
minimal number of false positives; GL = − 50 and PP =
3E-5 for FreeBayes and DeNovoGear, DQ = 7 and PL =
450 for TrioDeNovo and GATK). Application of HAP-
DeNovo on top of the optimal parameter settings always
generated a smallest set of false positives without losing
any true positives. In general, 80 to 99% of false positives
were eliminated by HAPDeNovo. Specifically, by using
HAPDeNovo, the average false positive removal was
82.7% for FreeBayes, 82.7% for TrioDeNovo, 99.5% for
GATK, and 98.8% for DeNovoGear.
To ascertain whether haplotype information was gen-

erally beneficial for calling DNMs we also analyzed re-
sults from Long Ranger, which, like HAPDeNovo, can
allocate allele-specific reads to each haplotype. This
boosts the power for detecting heterozygous variants,
such as DNMs. We compared the performance of Trio-
DeNovo, Long Ranger and HAPDeNovo with respect to
DNM calling. Both Long Ranger and HAPDeNovo per-
formed better than TrioDeNovo, which is consistent
with the idea that the accuracy of calling DNMs benefits
from the haplotype information. Nevertheless, Long
Ranger, which considers the individuals of a trio inde-
pendently from one another, called many more false pos-
itives than HAPDeNovo. HAPDeNovo eliminated ~ 80%
(Table 2) of false positives from Long Ranger, suggesting
that HAPDeNovo’s simultaneous consideration of all six
haplotypes boosts accuracy in DNM detection.
Finally, we explored whether HAPDeNovo’s consider-

ation of reads that cannot be allocated to a specific
haplotype (HP0) would affect the accuracy of DNM call-
ing. We compared HAPDeNovo performance when only
HP1 and HP2 BAM files are provided as input versus
when all nine BAM files (including those of HP0) were
considered. Accuracy without HP0 is lower than with
HP0 (Table 3).
Finally, we separately analyzed the X chromosome in-

dependently from the autosomes. There is only one vali-
dated germline de novo mutation on the X chromosome
in NA12878, serving as a gold standard (Additional file
1: Table S1). For FreeBayes and TrioDeNovo, a depth

Table 1 The performance of FreeBayes, TrioDeNovo, GATK, and
DeNovoGear with sequencing depth threshold 15 and their
optimal parameters (GL = − 50 for FreeBayes, DQ = 7 for
TrioDeNovo, PL = 450 for GATK, and PP = 1E-4 for DeNovoGear)

Optimal-Paras HAPDeNovo HAPDeNovo

TP FP TP FP HC LC

TP FP TP FP

FreeBayes 44 5785 44 1083 33 219 11 864

TrioDeNovo 44 3673 44 674 33 124 11 550

GATK 43 242,487 43 1396 32 258 11 1138

DeNovoGear 43 89,187 43 1241 32 246 11 995

After further applying HAPDeNovo, the number of false positives decreases
significantly for all four inputs. HAPDenovo also calculates the confidence of
DNMs. A high proportion of TP (33/44, 32/43) comes from high-confidence
DNMs. TP (True Positive): number of de novo mutations in both candidate set
and the gold standard. FP (False Positive): number of mutations in the
candidate set but not in the gold standard. HC (High Confidence): high-
confidence DNMs. LC (Low Confidence): low-confidence DNMs
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threshold of 15X retained the smallest number of false
positives and kept the true one. With the inputs from
these two programs, HAPDeNovo decreased the false
positives by 84.0% without sacrificing the true positive
(Additional file 6: Table S6a). For GATK, the optimal
depth threshold for the X chromosome was 39X, and
HAPDeNovo removed 99.9% of false positives, which
was similar to its removal rate for autosomes (Additional
file 6: Table S6b). Eliminating any false positives from
DeNovoGear would also lose the true one simultan-
eously by applying threshold for read depth. DeNovo-
Gear removed the gold standard SNP on the X

chromosome regardless of parameter settings (Add-
itional file 6: Table S6c).

Discussion
Many diseases with early onset age are associated with
de novo mutations. The extensive availability of next
generation sequencing technology has encouraged the
study of de novo mutations, which played an important
role in explaining why diseases with critically decreased
fitness occur frequently in the human population [12].
Barcode-based linked read sequencing, as an alternative
solution to single molecule long reads sequencing, en-
ables high-quality haplotype phasing and structural

Fig. 2 ROC curves of DNMs called by FreeBayes, TrioDeNovo, GATK, and DeNovoGear by optimal parameter setting, and the improved ROC
curves after applying HAPDeNovo (red line). Sequencing depth threshold is varied from 10 (start of each plot line, leftmost point) to 30 (end of
each plot line, rightmost point). FP (False Positive): Number of false positive DNMs. Sensitivity: Number of true positive DNMs divided by the total
number of true positive plus false negative DNMs. GL: Genotype Likelihood; DQ: De Novo Quality; PL: Posterior Likelihood; PP: Posterior
Probability. Blue curves show the sensitivity and number of FPs at default settings (no GL and no PL thresholds for FreeBayes and GATK,
respectively). Green curves show the sensitivity and number of FP at optimal parameter settings (GL = −50 for FreeBayes, DQ = 7 for TrioDeNovo,
PL = 450 for GATK, and PP = 3E-5 for DeNovoGear). Red curves show the performance after applying HAPDeNovo

Table 2 Comparing the performance of TrioDeNovo, Long Ranger and HAPDeNovo (using TrioDeNovo as input) as a function of
sequencing depth ranging from 10 to 20. DQ = 7 was used as the quality threshold for TrioDeNovo

Depth 10 11 12 13 14 15 16 17 18 19 20

TrioDeNovo TP 44 44 44 44 44 44 43 42 41 39 36

FP 3932 3926 3923 3862 3789 3673 3532 3410 3250 3106 2969

Long Ranger TP 44 44 44 44 44 44 43 42 41 39 36

FP 3911 3907 3904 3844 3771 3655 3515 3394 3235 3092 2956

HAPDeNovo TP 44 44 44 44 44 44 43 42 41 39 36

FP 768 766 765 744 715 674 626 593 558 525 496

TP (True Positive): Number of DNMs in candidate set plus gold standard. FP (False Positive): Number of DNMs in the candidate set but not in the gold standard
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variation analysis [14]. In this study, we developed HAP-
DeNovo, a flexible and efficient pipeline that benefits
from variant phasing from linked read sequencing to im-
prove de novo mutations calling. The assignment of
reads to each haplotype (HP1, HP2) decreases the
chance that a genotype is miscalled because one haplo-
type is dominant, such as the haplotype with the refer-
ence allele in the parents. This is the major cause of an
inherited variant getting called as a de novo mutation.
To date, methods that were developed to work on

short reads alone have not achieved satisfactory per-
formance for calling DNMs. For example, GATK best
practices is highly effective in reducing the impact of se-
quencing and alignment artifacts on variant calls, but it
is still challenged in the accurate detection of de novo
mutations. Existing de novo mutation-specific callers
like DeNovoGear and TrioDeNovo perform better than
the general callers such as GATK and FreeBayes. Never-
theless, tremendous numbers of false positives remain in
their ultimate results. We showed HAPDeNovo to be
superior in comparison because it explicitly leverages
the haplotype-specific genotypes of the three individuals
of a trio simultaneously.

Conclusions
Linked read sequencing is a powerful tool to phase the
variants from a single person rather than by statistical
inference from a population. This boosts our ability to
identify the parent-of-origin and transmission of de novo
mutations. HAPDeNovo introduces haploid genotyping
to take advantage of physical phasing that benefits from
linked read sequencing and to overcome sequencing
coverage imbalance and alignment artifacts in detecting
de novo mutations. HAPDeNovo can be applied in con-
junction with any variant caller to dramatically decrease
false positive mutations. HAPDeNovo is user friendly
and includes auxiliary scripts to process the results from
other tools, and in the future, will be extended to detect
inherited mutations in complex pedigrees and somatic
mutations in tumor-normal pairs.

Availability and requirements
Project name: HAPDeNovo.
Project home page: https://github.com/maiziex/

HAPDeNovo.
Operating system(s): Linux.
Programming language: Python & Shell.
Other requirements: GATK and FreeBayes.
License: GNU GPLv2.
Any restrictions to use by non-academics: None.

Additional files

Additional file 1 : Table S1 49 de novo mutations for NA12878 (hg19)
validated by sanger sequencing. Four gold DNMs (chr5:52638226,
chr10:56256293, chr10:56256294, chr20:7195809) could not be evaluated
due to poor sequencing coverage of alternative alleles. (PDF 32 kb)

Additional file 2 : Table S2 Comparing the performance between
TrioDeNovo and TrioDeNovo+HAPDeNovo with sequencing depth
changing from 10 to 30 and different values of DQ. TP (True Positive):
the number of DNMs mutations in both candidate set and the gold
standard. FP (False Positive): the number of mutations belongs to the
candidate set but not in the gold standard. (PDF 42 kb)

Additional file 3 : Table S3 Comparing the performance between
FreeBayes and FreeBayes+HAPDeNovo with sequencing depth changing
from 10 to 30 and different values of GL. TP (True Positive): the number
of DNMs in both candidate set and the gold standard. FP (False Positive):
the number of DNMs belongs to the candidate set but not in the gold
standard. (PDF 43 kb)

Additional file 4 : Table S4 Comparing the performance between
GATK and GATK+HAPDeNovo with sequencing depth changing from 10
to 30 and with different values of PL. TP (True Positive): the number of
DNMs in both candidate set and the gold standard. FP (False Positive):
the number of DNMs belongs to the candidate set but not in the gold
standard. (PDF 42 kb)

Additional file 5 : Table S5 Comparing the performance between
DeNovoGear and DeNovoGear+HAPDeNovo with sequencing depth
changing from 10 to 30 and with different values of PP. TP (True
Positive): the number of DNMs in both candidate set and the gold
standard. FP (False Positive): the number of DNMs belongs to the
candidate set but not in the gold standard. (PDF 42 kb)

Additional file 6 : Table S6. Comparing the performance only on X
chromosome for FreeBayes, TrioDenovo, GATK, and DeNovoGear before
and after applying HAPDeNovo. (PDF 44 kb)

Abbreviations
DNMs: De novo mutations; DQ: De Novo Quality; GL: Genotype Likelihoods;
NGS: Next generation sequencing; PL: Phred-scaled Likelihood; PP: Posterior
Probability; ROC: Receiver Operating Characteristic; VCF: Variant Call Format

Table 3 Comparing the performance of HAPDeNovo using HP1 and HP2 only versus HP0, HP1 and HP2 (both with TrioDeNovo as
input), with DQ = 7 and sequencing depth changing from 10 to 20

Depth 10 11 12 13 14 15 16 17 18 19 20

TrioDeNovo TP 44 44 44 44 44 44 43 42 41 39 36

FP 3932 3926 3923 3862 3789 3673 3532 3410 3250 3106 2969

HAPDeNovo TP 40 40 40 40 40 40 40 39 39 37 35

by HP1, HP2 FP 605 604 603 584 557 521 481 453 423 394 372

HAPDeNovo TP 44 44 44 44 44 44 43 42 41 39 36

by HP1, HP2, HP0 FP 768 766 765 744 715 674 626 593 558 525 496

TP (True Positive): Number of DNMs in candidate plus gold standard. FP (False Positive): Number of DNMs in the candidate set but not in the gold standard
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